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Abstract We propose DeepDefrag, a model-assisted reinforcement learning for spatio-temporal 
defragmentation of time-varying virtual networks in a cross-layer optical network testbed, which realizes 
the efficient utilization of computing nodes and lightpaths by co-optimizing scheduling and embedding 
with fragment matching, reduces >13.5% cost of computing power network. ©2022 The Author(s)

Introduction 
In the metaverse era, computing power as the 
core of service forms will be ubiquitous in the 
network. The computing power network (CPN) 
integrates the ubiquitous computing resources 
through an IP/optical cross-layer network 
supporting wavelength bypass and traffic 
grooming, provides ultra-low latency, flexible 
adjustment, and green energy savings computing 
power services[1]. The services usually encode 
multiple stages into virtual networks composed of 
virtual nodes and virtual links. Embedding virtual 
networks into optical substrates (VONE)[2] has 
become a major problem in CPN. Traditional 
VONE researches mostly assume that virtual 
networks keep fixed allocated resources during 
the lifetime[2-5]. In practice, however, virtual 
networks’ computing and bandwidth resources 
requirements exhibit time-varying characteristics 
due to the dynamic trend of the actual rate at 
which terminals collect data to be processed[6]. 
The embedding of time-varying virtual network 
requests (TVNRs) causes serious resource 
fragmentation, which will bring challenges to the 
efficient utilization of resources in CPN. 

The resource fragmentation of CPN consists 
of temporal fragments and spatial fragments, 
which refer to some remaining computing or 
bandwidth resources that are isolated and cannot 
meet the demands of TVNRs due to the 
discontinuity in the spatio-temporal dimension. 
Recent researches related to VONE of TVNRs, 
however, have been limited to resource 
redistribution[6,7] or traffic-aware migration[8,9], 
failing to consider the spatio-temporal resource 
fragments (ST-RF), which account for a large 
proportion of resource waste. To this end, we 
innovatively optimize the cost of VONE (i.e., the 
energy consumption of activated computing 
nodes and lightpaths) by promoting the efficient 
utilization of ST-RF. 

In this paper, we first propose the metric of ST-
RF. Then, we analyze the principal causes of ST-
RF lie in: for one thing, the embedding of 

mismatched nodes and lightpaths; for another, 
the inappropriate scheduling sequence of TVNRs. 
An auxiliary graph (AG)[10] model-assisted edge-
featured graph attention network[11]-enabled 
reinforcement learning (EGAT-RL), DeepDefrag, 
is proposed for spatio-temporal defragmentation 
in CPN. Its core highlight is co-optimizing batch 
TVNRs scheduling and embedding with fragment 
matching. We demonstrate DeepDefrag in a 
cross-layer optical network testbed, which 
reduces the number of activated computing 
nodes and lightpaths for >13.5% cost reduction. 

Spatio-Temporal Fragmentation of CPN 
Fig. 1(a) shows the CPN composed of: the 
computing layer where CPU supplies computing 
resources, IP layer where E-Switch aggregates 
traffic, and the optical layer where ROADM 
provides wavelength bypass. We model CPN as 
a dynamic directed graph 𝑮𝑺 with CPU nodes 𝑵𝑺. 
Its dynamically connected edges 𝑬𝑺  represent 
lightpaths established during cross-layer routing. 

As shown in Fig. 1(b), the remaining 
bandwidth of edge AB/AD is discontinuous during 
the period. These temporal fragments cannot 
further carry virtual links, thereby causing the 
remaining computing resources of node A to be 
isolated in the spatial dimension, forming spatial 
fragments. In CPN, increased ST-RF will lead to 
lower resource utilization, and hence result in 
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more activated CPU and lightpaths, bring larger 
costs. To promote the efficient utilization of ST-RF, 
we define the metric 𝜓 of fragment resources for 
each node or edge in the temporal dimension as 
Eq. (1)-(3), where 𝜇 and 𝜎 denote the mean and 
standard deviation of the time-varying remaining 
computing or bandwidth resources 𝑳  during the 

period 𝑻 , and 𝐶  is the resource capacity. 𝛾  is a 
weighting factor, indicating that with the decrease 
of the minimum value of 𝑳, the impact of 𝜎 on 𝜓 

increases. 𝜙  represents the temporal fragment 
availability of each node or edge. 

𝜓 = 𝛾 · 𝜎(𝑳), 𝑳 = {𝑙𝑡}𝑡∈𝑻 (1) 
𝛾 ∝ 1 − Min(𝑳)/𝐶 (2) 

𝜙 = 𝜇(𝑳) − 𝜓 (3) 
Further, we extend the centrality in graph 

theory to dynamically calculate the availability 𝜣 
of ST-RF of each node by combining the state of 
adjacent nodes and edges as Eq. (4), where 𝜣 =
{𝜃𝑛}𝑛∈𝑵𝑺

. 𝑾 is the weighted adjacency matrix of 

𝑮𝑺  whose weight is defined as the sum of 𝜙  of 

edges between every two nodes. 𝑹  is a row 

vector representing 𝜙 of each node. 

𝜣 = 𝑹 × (𝑾 + 𝑾𝑇) (4) 

DeepDefrag Algorithm 
The overall structure of DeepDefrag is shown in 
Fig. 2, where the core components lie in: 

⚫ Interface Design 
(1) State: The optical substrate state includes 

the time-varying remaining computing and 
bandwidth resources. For each TVNR, its state 
includes the time-varying requirements and the 
0/1 flag of whether the virtual node or virtual link 
is about to be embedded by breadth-first search. 
When one TVNR has been completed, the flags 
of unscheduled TVNRs’ first virtual nodes are set 
to 1. TVNRs are divided into batches in order of 
arrival, and each batch is concatenated into a 
disconnected graph—the batch TVNRs state. The 
action mask state is used to dynamically mask 
inappropriate actions: 1) When continuing the 
embedding of the current TVNR, only the nodes 
with sufficient resources for the next step in the 
current action area are allowed, and the rest are 
masked. 2) When selecting the next TVNR, only 
the nodes that can host the first virtual node of 
each unscheduled TVNR are allowed. (2) Action: 
The action space is a flattened 2-D matrix, in 

which each row represents the action area of 
each TVNR, and the columns are 𝑵𝑺. (3) Reward: 
When a virtual node is embedded along with 
several virtual links, the reward 𝑟 set as Eq. (5) is 
fed back. The additional cost of VONE is the 
weighted sum of the number of newly activated 
CPU 𝜔𝑛 and lightpaths 𝜔𝑒, where 𝛼, 𝛽 are their 
respective energy consumption (i.e., 2500 W and 
1500 W[12]). The feedback from the temporal 
fragment metric 𝜓 of the selected CPU 𝑛𝑖 and the 
selected lightpaths 𝑬𝑖 will promote the matching 

of fragment resources. The optimization of 𝜣 will 
promote the integration of ST-RF and then 
reduce the additional cost of future TVNRs. 
𝑟 = −(𝛼𝜔𝑛 + 𝛽𝜔𝑒 + 𝜓𝑛𝑖

𝜃𝑛𝑖
+ Max ({𝜓𝑒}𝑒∈𝑬𝑖

)) (5) 

⚫ EGAT-Enabled Agent 
For the efficient graph state extraction of the 

optical substrate and the batch TVNRs with the 
features of nodes and edges as time-series, we 
propose to introduce EGAT into the RL agent for 
better optimization. EGAT especially strengthens 
the contribution of edge features to the attention 
scores of adjacent nodes[11] as shown in Fig. 2(a). 
Specifically, EGAT modifies the attention 
mechanism of the widely used GAT[13-15] by 
concatenating the edge message 𝑭𝑗𝑖 to the node 

message 𝑯𝑖 and its adjacent node message 𝑯𝑗. 

The attention score 𝜺𝑗𝑖 of node 𝑗 to node 𝑖 is then 

calculated as Eq. (6), and the messages of nodes 
and edges are updated as Eq. (7)(8), where 𝒩𝑖 is 
neighborhood of node 𝑖, 𝑨 is a trainable matrix. 

𝜺𝑗𝑖 = Softmax(𝑭𝑖𝑗) (6) 

𝑭𝑗𝑖
′ = LeakyReLU(𝑨[𝑯𝑖||𝑭𝑗𝑖||𝑯𝑗]) (7) 

𝑯𝑖
′ = 𝜎(∑𝑗∈𝒩𝑖

𝜺𝑗𝑖𝑯𝑗) (8) 

Respectively, after multiple rounds of 
message updates by EGAT, the nodes’ 
messages of the optical substrate and the batch 
TVNRs are concatenated after averaging and fed 
into hidden layers. The action with the highest 
output probability after masking is chosen. 

⚫ AG-Assisted Environment 
After the node’s embedding by the RL agent, 

AG, a model that can route in the cross-layer 
optical network[10], is introduced into the RL 
environment for solving two sub-problems: 1) 
when and how to establish new lightpaths; 2) how 
to route within a combination of exciting and new 
lightpaths. An AG example is shown in Fig. 2(b). 
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Fig. 2: The overall structure of DeepDefrag. (a) EGAT-Enabled Agent; (b) AG-Assisted Environment. 



We trained the RL agent of DeepDefrag with 
Proximal Policy Optimization (PPO)[16]. The agent 
includes two sets of EGAT models for the optical 
substrate and the batch TVNRs, which both 
adopt 4 EGAT layers with 3 attention heads and 
32 hidden features. The following are 3 hidden 
layers with (128, 128, 90) hidden neurons 
respectively. The parameters of AG are set to 
minimize the number of established lightpaths[2]. 

Experimental Setup and Results 
To verify the performance and feasibility of 
DeepDefrag, we built a cross-layer optical 
network testbed reported in our previous work[17], 
including nine hybrid optical-electrical switching 
nodes as shown in Fig. 3(a)(b). ROADM is 
bidirectionally interconnected with three 10 Gbps 
wavelengths. Correspondingly, six 10 Gbps 
optical transceivers are deployed between each 
ROADM and the line ports of E-Switch. The client 
ports of E-Switch are connected to the traffic 
generator and analyzer, which is responsible for 
generating variable traffic of virtual links after 
being processed by the simulated 10 TFLOPS 
CPU nodes. Topologies of TVNRs are randomly 
generated directed acyclic graphs with 2-5 virtual 
nodes. The virtual nodes and virtual links’ 
resource requirements in 4-hour of each TVNR 
are generated by multiplying the same time-
varying characteristic by random factors. The 
batch size is set to 10. 

Fig. 3(c) shows the convergence of 
DeepDefrag with agents enabled by EGAT, GAT, 
and traditional convolutional neural network 
(CNN). The CNN agent can hardly converge as 
it’s hard to extract the graph state from the 
dynamical adjacency matrix of the optical 
substrate. Compared with GAT, the EGAT agent 
achieves better convergence due to its enhanced 
capability to perceive edge features. To verify the 

core highlight of DeepDefrag, we compared 
DeepDefrag with Random, First-Fit, FIFO-RL 
(TVNRs are sequentially embedded by EGAT-
RL), and CO-RL (co-optimizing scheduling and 
embedding batch TVNRs by EGAT-RL without 
fragments feedback). With the convergence of 
the above algorithms, the costs of VONE for 10 
TVNRs are shown in Fig. 3(d). FIFO-RL can only 
achieve local optimization because the 
scheduling sequence of TVNRs cannot be 
adjusted. Both CO-RL and DeepDefrag can 
converge to the optimal cost, but the further 
convergence of DeepDefrag shown in the 
subgraph of Fig. 3(c) can achieve better 
defragmentation with longer training, which is 
illustrated in Fig. 3(e) that DeepDefrag has better 
ST-RF availability 𝜣 than CO-RL. As can be seen 
in Fig. 3(f), 12.3% cost reduction compared with 
CO-RL for 20 TVNRs is achieved by DeepDefrag, 
the key reason for which is the better availability 
𝜣 of ST-RF brought by defragmentation. Finally, 
DeepDefrag reduces the cost by 13.5% and 7.6% 
respectively compared with FIFO-RL and CO-RL 
for 50 TVNRs. 

Conclusions 
We proposed DeepDefrag for VONE of TVNRs. 
The experimental results validated that 
DeepDefrag has better performance in reducing 
the cost of activated computing nodes and 
lightpaths by co-optimizing scheduling and 
embedding with fragment matching. 13.5% cost 
reduction can be achieved by DeepDefrag 
compared with FIFO-RL for 50 TVNRs. 

Acknowledgements: This work is supported by 
the National Nature Science Foundation of China 
Projects (61871051, 61971055), the BUPT 
Innovation and Entrepreneurship Support 
Programs (2022-YC-T006, 2022-YC-A004).  

0 10000 20000 30000
-4.4

-4.0

-3.6

-3.2

-2.8
 EGAT-RL
 GAT-RL
 CNN-RL

E
p
is

o
d

e
 R

e
w

a
rd

Training Epsiodes×
1

0
3

×
1
0
3

Cost of VONE

2.4kW

Further 
Convergence

DeepDefrag - 10 TVNRs

15000 20000 25000 30000

-2.87

-2.86

-2.85

-2.84

-2.83

0 10000 20000 30000
2.0

2.5

3.0

3.5

4.0

4.5

C
o

s
t 

o
f 

V
O

N
E

 (
k
W

)

Training Epsiodes

 Random

 First-Fit

 FIFO-RL

 CO-RL

 DeepDefrag

Local Optimization

Converge to the Same Cost10 TVNRs

10 20 30 40 50

-5

5

15

-10

0

10

20

Number of TVNRs

T
h

e
 A

v
a

ila
b

ili
ty

 o
f 

S
T

-R
F  CO-RL

 DeepDefrag

Original Data Max-Min Value

Mean Value  Mean Value ± 0.5 SD

Optical Spectrum 
Analyzer

Traffic Generator & Analyzer
ROADM

E-Switch

Optical Spectrum 
Analyzer

6

TVNRs

(a) (b) (c)

Network 
Management & Controller

10 20 30 40 50
0

1

2

3

4

5

6

7

8

equal

C
o

s
t 

o
f 

V
O

N
E

 (
k
W

)

Number of TVNRs

 Random  Node/Lightpath

 First-Fit  Node/Lightpath

 FIFO-RL  Node/Lightpath

 CO-RL  Node/Lightpath

 DeepDefrag  Node/Lightpath

↘13.5%

↘12.3%

(d) (e) (f)  
Fig. 3: (a) DeepDefrag testbed; (b) Topology; (c) Convergence process of DeepDefrag with EGAT/GAT/CNN agent; (d) Cost of 

VONE vs. training epsiodes; (e) The availability of ST-RF vs. the number of TVNRs; (f) Cost of VONE vs. the number of TVNRs. 



References 
[1]  B. Lei and G. Zhou, "Exploration and practice of 

Computing Power Network(CPN) to realize convergence 
of computing and network," in 2022 Optical Fiber 
Communications Conference and Exhibition (OFC), pp. 
1-3, 2022, DOI: 
https://doi.org/10.1364/OFC.2022.M4A.2. 

[2]  J. Zhang, Y. Ji, M. Song, H. Li, R. Gu, Y. Zhao, and J. 
Zhang, "Dynamic virtual network embedding over 
multilayer optical networks," Journal of Optical 
Communications and Networking, vol. 7, no. 9, pp. 918-
927, 2015, DOI: https://doi.org/10.1364/JOCN.7.000918. 

[3]  M. Lu, Y. Gu, and D. Xie, "A Dynamic and Collaborative 
Multi-Layer Virtual Network Embedding Algorithm in 
SDN Based on Reinforcement Learning," IEEE 
Transactions on Network and Service Management, vol. 
17, no. 4, pp. 2305-2317, 2020, DOI: 
https://doi.org/10.1109/TNSM.2020.3012588. 

[4]  Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, "Automatic Virtual 
Network Embedding: A Deep Reinforcement Learning 
Approach With Graph Convolutional Networks," IEEE 
Journal on Selected Areas in Communications, vol. 38, 
no. 6, pp. 1040-1057, 2020, DOI: 
https://doi.org/10.1109/JSAC.2020.2986662. 

[5]  H. Yu, T. Taleb, J. Zhang, and H. Wang, "Deterministic 
Latency Bounded Network Slice Deployment in IP-Over-
WDM Based Metro-Aggregation Networks," IEEE 
Transactions on Network Science and Engineering, vol. 
9, no. 2, pp. 596-607, 2022, DOI: 
https://doi.org/10.1109/TNSE.2021.3127718. 

[6]  H. Liu, M. Wen, Y. Chen, C. Tang, J. Hu, and H. Chen, 
"Virtual optical network embedding of time-varying traffic 
in elastic optical networks," Optics Communications, vol. 
508, p. 127693, 2022, DOI: 
https://doi.org/10.1016/j.optcom.2021.127693. 

[7]  S. Ding, S. K. Bose, and G. Shen, "Spectrum trading 
between virtual optical networks with time-varying traffic 
in an elastic optical network," Journal of Optical 
Communications and Networking, vol. 12, no. 3, pp. 24-
37, 2020, DOI: https://doi.org/10.1364/JOCN.377462. 

[8]  H. Yu, F. Musumeci, J. Zhang, M. Tornatore, L. Bai, and 
Y. Ji, "Dynamic 5G RAN slice adjustment and migration 
based on traffic prediction in WDM metro-aggregation 
networks," Journal of Optical Communications and 
Networking, vol. 12, no. 12, pp. 403-413, 2020, DOI: 
https://doi.org/10.1364/JOCN.403829. 

[9]  H. Yu, T. Taleb, and J. Zhang, "Deterministic 
Latency/Jitter-aware Service Function Chaining over 
Beyond 5G Edge Fabric," IEEE Transactions on Network 
and Service Management, Early Access, 2022, DOI: 
https://doi.org/10.1109/TNSM.2022.3151431. 

[10]  H. Zhu, H. Zang, K. Zhu, and B. Mukherjee, "A novel 
generic graph model for traffic grooming in 
heterogeneous WDM mesh networks," IEEE/ACM 
Transactions On Networking, vol. 11, no. 2, pp. 285-299, 
2003, DOI: https://doi.org/10.1109/TNET.2003.810310. 

[11]  Z. Wang, J. Chen, and H. Chen, "EGAT: Edge-Featured 
Graph Attention Network," in 30th International 
Conference on Artificial Neural Networks (ICANN), pp. 
253–264, 2021, DOI: https://doi.org/10.1007/978-3-030-
86362-3_21. 

[12]  Y. Xiao, J. Zhang, and Y. Ji, "Energy-efficient DU-CU 
deployment and lightpath provisioning for service-
oriented 5G metro access/aggregation networks," 
Journal of Lightwave Technology, vol. 39, no. 17, pp. 
5347-5361, 2021, DOI: 
https://doi.org/10.1109/JLT.2021.3069897. 

[13]  P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. 
Lio, and Y. Bengio, "Graph attention networks," in 2018 
International Conference on Learning Representations 
(ICLR), pp. 1-12, 2018, DOI: 
https://doi.org/10.48550/arXiv.1710.10903. 

[14]  Y. Shao, R. Li, Z. Zhao, and H. Zhang, "Graph Attention 
Network-based DRL for Network Slicing Management in 
Dense Cellular Networks," in 2021 IEEE Wireless 

Communications and Networking Conference (WCNC), 
pp. 1-6, 2021, DOI: 
https://doi.org/10.1109/WCNC49053.2021.9417321. 

[15]  H. Ma, J. Zhang, and Y. Ji, "Graph Sequence Attention 
Network-Enabled Reinforcement Learning for Time-
Aware Robust Routing in OSU-Based OTN," in 2022 
Optical Fiber Communication Conference and Exhibition 
(OFC), pp. 1-3, 2022, DOI: 
https://doi.org/10.1364/OFC.2022.Th2A.18. 

[16]  J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. 
Klimov, "Proximal policy optimization algorithms," arXiv 
preprint arXiv:1707.06347, 2017, DOI: 
https://doi.org/10.48550/arXiv.1707.06347. 

[17]  Z. Chen, J. Zhang, B. Zhang, R. Wang, H. Ma, and Y. 
Ji, "ADMIRE: Demonstration of Collaborative Data-
Driven and Model-Driven Intelligent Routing Engine for 
IP/Optical Cross-Layer Optimization in X-Haul 
Networks," in 2022 Optical Fiber Communications 
Conference and Exhibition (OFC), pp. 1-3, 2022, DOI: 
https://doi.org/10.1364/OFC.2022.M3F.4. 

 


