
Attention-Weighted Federated Deep Reinforcement
Learning for Device-to-Device Assisted

Heterogeneous Collaborative Edge Caching

Xiaofei Wang, Senior Member, IEEE, Ruibin Li, Student Member, IEEE, Chenyang Wang, Student Member, IEEE,
Xiuhua Li, Member, IEEE, Tarik Taleb, Senior Member, IEEE, and Victor C. M. Leung, Life Fellow, IEEE

Abstract—In order to meet the growing demands for multime-
dia service access and release the pressure of the core network,
edge caching and device-to-device (D2D) communication have
been regarded as two promising techniques in next generation
mobile networks and beyond. However, most existing related
studies lack consideration of effective cooperation and adaptabil-
ity to the dynamic network environments. In this paper, based on
the flexible trilateral cooperation among user equipment, edge
base stations and a cloud server, we propose a D2D-assisted
heterogeneous collaborative edge caching framework by jointly
optimizing the node selection and cache replacement in mobile
networks. We formulate the joint optimization problem as a
Markov decision process, and use a deep Q-learning network to
solve the long-term mixed integer linear programming problem.
We further design an attention-weighted federated deep rein-
forcement learning (AWFDRL) model that uses federated learn-
ing to improve the training efficiency of the Q-learning network
by considering the limited computing and storage capacity, and
incorporates an attention mechanism to optimize the aggregation
weights to avoid the imbalance of local model quality. We prove

Part of this work was presented at the IEEE Wireless Communications
and Networking Conference (WCNC), Seoul, Korea, Apr. 6-8, 2020, which
is cited as [1]. This work is supported in part by the National Key R & D
Program of China through Grants No. 2018YFC0809803, 2019YFB2101901
and 2018YFF0214700, China NSFC GD Joint Fund U1701263, National
NSFC through Grants No. 62072332, 61902044, 62002260, 61672117 and
62072060, Chongqing Research Program of Basic Research and Frontier
Technology (Grant No. cstc2019jcyj-msxmX0589), Fundamental Research
Funds for the Central Universities (Grant No. 2020CDJQY-A022), the Eu-
ropean Union’s Horizon 2020 Research and Innovation Program through the
MonB5G Project under Grant No. 871780, the Academy of Finland 6Genesis
project under Grant No. 318927, the Academy of Finland CSN project under
Grant No. 311654, Chinese National Engineering Laboratory for Big Data
System Computing Technology at Shenzhen University, and Canadian Natural
Sciences and Engineering Research Council. (Corresponding author: Xiuhua
Li.)

X. Wang, R. Li and C. Wang are with the College of Intelligence and
Computing, Tianjin University, Tianjin, 300072 China (e-mail: {xiaofeiwang,
leeruibin, chenyangwang}@tju.edu.cn).

X. Li is with the Key Laboratory of Dependable Service Computing
in Cyber Physical Society (Chongqing University), Ministry of Education,
China, and with the School of Big Data & Software Engineering, Chongqing
University, Chongqing, 401331 China (e-mail: lixiuhua1988@gmail.com).

T. Taleb is with the Department of Communications and Networking,
School of Electrical Engineering, Aalto University, 02150 Espoo, Finland,
Information Technology and Electrical Engineering, Oulu University, 90570
Oulu, Finland, and the Department of Computer and Information Security,
Sejong University, Seoul, 05006 South Korea (e-mail: Tarik.Taleb@aalto.fi).

V. C. M. Leung is with the College of Computer Science & Software Engi-
neering, Shenzhen University, Shenzhen, 518060 China, and the Department
of Electrical and Computer Engineering, The University of British Columbia,
Vancouver, V6T 1Z4 Canada (e-mail: vleung@ieee.org).

the convergence of the corresponding algorithm, and present
simulation results to show the effectiveness of the proposed
AWFDRL framework in reducing average delay of content access,
improving hit rate and offloading traffic.

Index Terms—Edge caching, device to device, attention-
weighted federated learning, deep reinforcement learning.

I. INTRODUCTION

Currently, the wide utilization of Internet of Things (IoT)
has brought rocket-increasing service requirements for existing
mobile networks (i.e., 4G), which results in the rapid growth
of mobile data traffic [1], [2]. Advances in sensing and
artificial intelligence (AI) techniques have enabled innovative
intelligent applications for improving people’s daily life [3].
However, these applications are highly dependent on the com-
putation, storage and communication resources [4]. The low
latency for content access and diverse application requirements
may not be satisfied if the contents are fetched from remote
data centers (e.g., cloud server). To address these issues, it
is necessary to introduce advanced networking architectures
and new data transmission techniques towards next generation
mobile networks and beyond (i.e., 5G/B5G). Particularly,
mobile edge caching (MEC) has been regarded as a promising
technique to relieve the burden of backhaul traffic for network
operators [5]. In the MEC system, popular contents can be
cached in proximity to the edges of networks, e.g. base stations
(BSs) and user equipment (UE) (or mobile devices)1, which
reduces massive duplicated traffic of content deliveries via
backhaul networks and shortens the transmission delay. Mean-
while, by combining device to device (D2D) communications
[6], the network performances on traffic offloading and delay
reduction can be further improved.

In terms of MEC, two key issues, i.e., node selection and
cache replacement, need to be properly investigated. Partic-
ularly, when UEs generate content requests, we should first
decide which nodes (i.e., UEs, BSs or the cloud server) are
responsible for their requests and how to fetch the contents [7].
Then we should consider to design a proper cache replacement
framework to adapt to the dynamic network environments [8].
Most existing caching systems rely on such rule-based cache

1In this paper, we use the terms mobile device and user equipment
interchangeably.

replacement schemes as First In First Out (FIFO) [9], Least
Recently Used (LRU), Least Frequently Used (LFU), or their
variants [10]–[12]. Meanwhile, to tackle the cache replacement
problem, some learning techniques have been employed such
as long short-term memory (LSTM) [13] and reinforcement
learning methods [14] like deep Q-learning network (DQN)
[15] [16]. However, most of them are in lack of effective coop-
eration and adaptability to the dynamic network environments.
Moreover, some existing learning-based methods require users
to send their personal data to the central server, which may
cause serious issues of user privacy and security. Indeed, even
transmitting the anonymous data can still put user privacy at
risk, considering that the attackers can recover the anonymous
information by comparing it with other data [17]. Federated
learning (FL) is a promising technique to address this issue2.

Thus, in this paper, we are motivated to exploit the frame-
work design of heterogeneous collaborative edge caching by
jointly optimizing the node selection and cache replacement
in D2D assisted mobile networks, and consider the flexible
trilateral collaboration among UEs, BSs and the cloud server.
We formulate the joint optimization problem as a Markov
decision process (MDP), and propose an attention-weighted
federated deep reinforcement learning (AWFDRL) framework
to address the problem. Particularly, it uses DQN to address
the formulated long-term mixed integer linear programming
(LT-MILP) problem [19], and employs FL to improve the
training process by considering the limited computing capacity
as well as the user privacy. Most importantly, we employ an
attention mechanism [20] to control the model weights in the
FL aggregation step, which can address the imbalance issue of
local model quality. It distributes different aggregation weights
to different quality models. There are many factors that can
affect the attention weights and model quality. We divide them
into three categories as: 1) user-related factors such as user
preference and personal habit; 2) device-related factors such
as CPU capacity and RAM size which may effect the training
batch size and replay memory size; 3) model-related factors
such as model staleness and performance loss which can be
calculated during the training process. The main contributions
of this paper can be summarized as:

• We investigate the issue of D2D assisted heterogeneous
collaborative edge caching in mobile networks. Partic-
ularly, we model the whole edge caching process by
formulating an LT-MILP problem, and use the DQN
model to control the decision process of joint node
selection and cache replacement dynamically based on
the network state and historical information.

• We propose the AWDFRL framework, an improved FL
framework which can train the DQN model in a dis-
tributed manner through keeping the data in the local

2Privacy is a potential advantage of FL as it transmits the local model
information (like model parameters) rather than the source data. These
parameters do not contain privacy information of the raw training data, and
the updates of the global model can be executed without transmitting the
metadata over the complex network [18]. However, privacy is not the focus
of this paper.

UEs and address the issue of model aggregation among
heterogeneous UEs. Most importantly, we employ an
attention mechanism to control the model weights in
the FL aggregation step, which can solve the imbalance
problem of local model quality. In addition, we derive the
expectation convergence of AWFDRL.

• Simulation results show that compared with existing
methods, the proposed AWFDRL framework can effec-
tively reduce average delay, improve hit rate, and offload
traffic. Moreover, it also outperforms the existing FL
framework in term of average reward.

The remainder of this paper is organized as follows. Sec.
II summarizes the related work. We introduce the system
model in Sec. III, and formulate the problem in Sec. IV. We
propose the AWFDRL framework and provide the convergence
analysis in Sec. V. Simulation results are provided in Sec. VI.
Finally, Sec. VII concludes this paper.

II. RELATED WORK

FL is a promising method to train the neural network param-
eters while keeping the training data in the local devices [21].
There are several studies focusing on FL for edge computing.
For instance, in [22], FL and DQN were used to address the
issue of the computation task offloading. The study in [23]
used a FL model to optimize the content caching problem. In
[24], the FL model and DQN model were combined to solve
the problem of joint computing, caching and communication in
Edge-AI. However, there still exists an important issue in these
models, i.e., aggregation efficiency. Particularly, these models
only considered simple average aggregation of local model
parameters, which was not effective since different devices
might have different model performances. Besides, since some
local devices might train an abnormal model, giving these
models with the same aggregation weight would cause serious
bias to the global model.

Moreover, there are also some studies about asynchronous
FL in recent years. In [25], the authors generalized a normal
FL method by allowing the episode to vary according to
the characteristics of the network, which can improve the
robustness of the FL. Also, considering the user-related factors
such as user privacy, transmission delay and network status,
the studies in [26], [27] adopted a differentially private asyn-
chronous FL scheme to address the security issue. In [28],
[29], model-related factors like staleness were considered to
optimize the system design and training process of FL. The
study in [30] showed that the parameters in the shallow and
deep layers in the models could be updated asynchronously
in order to decrease the amount of data to be transmitted
between the server and clients. The blockchain technique was
considered in [31] to improve the secure data sharing in FL.
Meanwhile, the study in [32] proposed the asynchronous FL
with dual-weight correction. Particularly, the dual weights
were calculated based on the device-related factors like data
size and model-related factors like parameter weights, and
using this model could better adjust to the unrestricted char-
acteristics of edge nodes.

Fig. 1. Illustration of the network architecture of D2D assisted heterogeneous
collaborative edge caching.

III. SYSTEM MODEL

In this section, we introduce the system modeling of D2D
assisted heterogeneous collaborative edge caching. Particu-
larly, we introduce the corresponding network architecture
in Sec. III-A. Sec. III-B models the content popularity and
user preferences. Sec. III-C and Sec. III-D introduce the D2D
sharing pattern, and the content transmission and delay model,
respectively. Some key modeling parameters and notations are
summarized in Table I.

A. Network Architecture

An illustration of the network architecture of D2D assisted
heterogeneous collaborative edge caching is shown in Fig. 1,
which includes three types of heterogeneous cache nodes, i.e.,
the cloud server, BSs and UEs. In the considered network,
there are F = {1, 2, ...,F} popular contents in total that users
may access, and their sizes are denoted by (sf)1×F. Let U =
{1, 2, ..., U} denote the index set of UEs, and each UE is
equipped with a cache of limited storage cu. To simplify the
model, we consider the cooperation case of two neighboring
BSs in the network: the local BS (denoted by BSs) serving the
UEs, and a neighboring BS (denoted by BSn) which is close to
and connected with BSs. Particularly, both BSs are equipped
with a cache of limited storage cb, and BSn can deliver the
cached contents to BSs through optical cables. We assume
that the cache size of the cloud server is sufficiently large so
that it can cache all the contents in the F . The cloud server
connects with all the BSs via the backhaul links. For each UE,
we denote xu,f = 1 if UE u has content f in its cache list;
otherwise, xu,f = 0. If content f is cached in BSs or BSn,
we denote xs,f = 1 or xn,f = 1, respectively; otherwise, we
denote xs,f = 0 or xn,f = 0. Denote Xu,Xs,Xn as the cache
states of UE u, BSs and BSn, respectively.

TABLE I
MODELING PARAMETERS AND NOTATIONS.

Notation Definition
F,F Total number and set of contents
U,U Number and set of UEs
sf Size of content f

BSs Local BS
BSn Neighboring BS
cu Cache size of UEs
cb Cache size of BSs

Xu,Xs,Xn Cache state
Ω Content popularity
pfu,~p Preference of user u for content f
Ru D2D communication rate of user u

Reqt Request state as time t
rDu,t, r

B
u,t, rCo, rC Data rate between different link

dLu,t, d
D
u,t, d

B
u,t, d

Co
u,t, d

C
u,t Transmission delay

BD, BB Bandwidth between UE and nodes
L, µ, σu, G Variables introduced by assumptions

ηt Learning rate
Γ Term to quantify the aggregation operation

F, Fu Loss function of global model and local model
wu Attention weight during aggregation phase
Ku Evaluation indicators

M̃u,mu Mini-batch from replay memory buffer and its size
Mu,Mu Replay memory buffer of u and its size
θut ,Θt Local model parameter and global model parameter

sut The state of UE u at time t
au
t The action of UE u at time t
π Cache policy
βf

u,t Indicator on that UE u fetches content f from node v
gDt , g

B
t Transmit power between UE and other UE, BS

B. Content Popularity and User Preference Model

1) Content Popularity: Generally, the content popularity is
modeled as the MZipf distribution [33]

ωf =
(Of + τ)−β∑
i∈F (Oi + τ)−β

, ∀f ∈ F , (1)

where Of , τ ≥ 0, and β denote the rank of content f in
the descending order of content popularity, plateau factor, and
skewness factor, respectively. Denote Ω = (ωf)1×F. Besides,
we assume that the content popularity changes slowly during
a relatively long period.

2) User Preference: Denote pfu as the probability that UE
u prefers to access content f , which can be expressed as

pfu =
Ru,f
Ru

, ∀u ∈ U ,∀f ∈ F , (2)

where Ru,f denotes the number of requests for content f from
UE u, and Ru denotes the total number of content requests
from UE u during the considered time period. Particularly,∑
f∈F p

f
u = 1 for ∀u ∈ U holds.

C. D2D Sharing Pattern

We model the D2D sharing pattern mainly based on the
physical domain and social domain as shown in Fig. 2. The
details of these domains are discussed as below.

1) Physical Domain: Due to the physical constraints such
as signal attenuation [34], only a subset of UEs that are
sufficiently close (e.g., with the detectable signal strength) can
be feasible relay candidates for UE u in order to establish

Fig. 2. Illustration of communication graph based on social domain and
physical domain.

the corresponding D2D links. Thus, we introduce the physical
graph GP , {U , EP }, where U is the vertex set of all UEs
and EP , {(u, v) : epuv = 1,∀u, v ∈ U} is the edge set. Here,
epuv = 1 holds if and only if UE v is a feasible relay for UE
u; otherwise, we set epuv = 0.

2) Social Domain: Intuitively, considering the selfish nature
of human beings, mobile users with stronger social relationship
are more willing to share their own content directly. This
phenomenon is called social trust [35]. Based on this, we
introduce the social graph GS which also contains the vertex
set U and edge set ES . Here, the edge set is given by
ES , {(u, v) : esuv = 1,∀u, v ∈ U}. When two users have
close social relationship such as friends and family members,
we set esuv = 1; otherwise, we set esuv = 0. We can get this
relationship from the social network, and assume that UE u
can communicate with UE v only when esuv = 1.

3) Communication Graph: Based on the physical graph and
the social graph, we can get the communication graph GC ,
{U , EC}, where EC , {(u, v) : ecuv = 1,∀u, v ∈ U} is the
edge set and we calculate ecuv = epuv ·esuv . Particularly, ecuv = 1
holds if and only if there is a path (the length of which is less
than a threshold l) between UE u and and UE v in the physical
graph as well as the social graph.

4) D2D Sharing Probability: We use tanimoto coefficients
[36] among different users to measure the D2D sharing
probability. Based on the user preference, we can calculate
the tanimoto coefficient between UE u and UE v as

rtan
uv =

~pu · ~pv
||~pu||2 + ||~pv||2 − ~pu · ~pv

,∀u, v ∈ U , (3)

where ~pu = (pfu)1×F,∀u ∈ U . We define rtan
uu = 0 for

the pair (u, u). After getting the rtan
uv , we calculate the D2D

sharing probability between u and v as Ruv = rtan
uv e

c
uv , and

denote Ru = (Ruv)
1×U . Finally, we normalize Ru by setting

Ruv∑
v∈U Ruv

→ Ruv, u ∈ U ,∀v ∈ U .

Fig. 3. Illustration of content request path through different cache nodes.

D. Content Transmission and Delay Model

There are several ways to fetch contents as shown in Fig.
3. The concept of time slots is used to divide the considered
time period into T episodes of δ (in seconds), denoted by
T = {1, 2, . . . , T}. For each time slot t ∈ T , UE u will send
a request ru,t to access a content (say content fu,t), and we
denote Reqt = {r1,t, r2,t, ..., rU,t} to describe the request state
at time t. Each way to fetch contents is shown as follows:
• Case 1: If the content requested by UE u is cached in

its cache list, then the content can be satisfied locally. As
a result, the corresponding delay of fetching the content,
denoted by dLu,t, can be regarded as zero.

• Case 2: If the request cannot be satisfied through the
local cache list, UE u can seek help from surrounding
users that can establish direct D2D links. According to
[6], the corresponding transmission rate can be calculated
as rDu,t = BD log(1 + gDt |hDu,t|2), where BD, gDt , and
hDu,t denote the corresponding channel bandwidth, trans-
mit power, and a ratio function of the channel gain to
background noise power σb, respectively. Thus, the D2D
transmission delay for UE u to fetch the content through
D2D communication at time slot t can be calculated as
dDu,t =

sfu,t

rDu,t
, where sfu,t is the size of content fu,t.

• Case 3: UE u can also send the request to the local BS
(i.e., BSs) for fetching the content. The corresponding
data rate can be calculated as rBu,t = BB log(1 +
gBt |hBu,t|2), where BB , gBt , and hBu,t denote the corre-
sponding channel bandwidth, transmit power, and a ratio
function of the channel gain to background noise power
σb, respectively. The corresponding delay of fetching the
content can be calculated as dBu,t =

sfu,t

rBu,t
.

• Case 4: The neighboring BSn is also a candidate node,
and UE u can fetch the content from BSn with some
additional delay if the content is in the cache list of Bn.
Suppose that the average data rate between the BSs is a
constant, denoted by rCo. The total delay of fetching the
content through BS cooperation can be calculated dCou,t =

dBu,t +
sfu,t

rCo
.

• Case 5: Finally, if the request cannot be satisfied in the
above ways, BSs will forward the request to the cloud
and fetch the content with a long delay. Suppose that the
average data rate between BSs and the cloud server is a
constant, denoted by rC . The total delay of fetching the
content through the cloud can be calculated as dCu,t =

dBu,t +
sfu,t

rC
.

Note that dLu,t < dDu,t < dBu,t < dCou,t < dCu,t generally holds in
practical systems [37].

IV. PROBLEM FORMULATION

In this section, we formulate the joint problem of node
selection and cache replacement in a UE as a Markov decision
process (MDP). Particularly, the UE’s state and action are
introduced in Sec. IV-A and Sec. IV-B, respectively. Sec.
IV-C calculates the system reward. Finally in Sec. IV-D, the
objective of UEs is to find an optimal policy to optimize
the expected long-term reward which is defined as a value
function.

A. UE State

The state of UE u at time slot t can be described as
sut = [Ωt, ~pu, rDu,t,Xu,t, If], where Ωt, rDu,t and Xu,t denote
the content popularity, D2D link rate and cache state at time
slot t, respectively. Besides, If is the indicator on which node
caches the requested content f .

B. UE Action

After receiving the state sut , UE u will decide where to
fetch the content through the above methods and which content
should be replaced in its cache list. The action of UE u at time
slot t can be described as aut = [βfu,v,t,X

f
u,t], where βfu,v,t is

the indicator that whether UE u obtains content f from node
v (e.g., other UEs, local or neighboring BSs, or the cloud
server), and Xfu,t denotes that whether content f is replaced
from the cache list of UE u.

C. System Reward

Our objective is to maximize the D2D sharing traffic while
minimizing the delay to fetch the content. Thus, two aspects
are taken into account to formulate the system reward function,
namely, the gain function of D2D sharing traffic and the cost
function of content access delay.

1) D2D Sharing Gain: For each pair of UEs, if UE u does
not have the content (i.e., xu,f = 0) and UE v does (i.e.,
xv,f = 1), UE u can get the requested content f from UE v
with the probability Ru,v . Thus, the content sharing gain via
D2D communication between UE u and UE v at time slot t
can be calculated as sfu,t

Ru,v . Then the total D2D sharing
gain of UE u at time slot t can be calculated as

C1
u,t =

∑
v∈U

sfu,t
Ru,v xv,f (1− xu,f),∀u ∈ U ,∀t ∈ T . (4)

2) Content Fetch Gain: Since UE u can only be shared
with a content by another UE at one time slot, we introduce
an average queue delay dQu , which is directly proportional to
the corresponding served UEs. Then we define the content
fetch gain [37] as

C2
u,t =



ψe−d
L
u,t , Local Cache

ψe−(dQu +dDu,t), D2D Communication

ψe−d
B
u,t , Communication to Bs

ψe−d
Co
u,t , BS −BS Cooperation

ψe−d
C
u,t , Cloud Service

,

(5)
where ψ is an introduced parameter, and the negative expo-
nential function with respect to the delay is adopted to realize
the objective of minimizing the content fetch delay.

Thus, based on the above definitions, we calculate the
system reward as

C(sut , a
u
t) = λ1C

1
u,t + λ2C

2
u,t,∀u ∈ U ,∀t ∈ T , (6)

where λ1 +λ2 = 1, 0 ≤ λ1, λ2 ≤ 1 are two introduced weight
factors.

D. Value Function

We define the cache policy π as the mapping from the cur-
rent state to a series of actions, e.g., π(a|sut) is the possibility
of taking action a when the state is sut under the policy π,
and aut = maxa∈Aπ(a|sut). The objective of UEs is to find
an optimal policy to optimize the expected long-term reward
(defined as a value function) [15], which can be expressed as

V (s) = E
[∞∑
t=0

γt−1C(sut , a
u
t)|su0 = s

]
, (7)

where γ ∈ [0, 1] is a discounted factor. According to the
Bellman Equation [15], the value function in (7) can also be
expressed as

V (s) =
∑
a∈A

π(a|s)
{
C(s, a) + γ

∑
s′
Pr{s′|(s, a)} · V (s′)

}
,

(8)
where a is the action we take at state s and s′ is the possible
state after we execute action a. Each UE is expected to learn an
optimal cache policy π∗ ∈ Π. The D2D assisted heterogeneous
edge caching problem in terms of joint node selection and
cache replacement can be formulated to maximize the value
function as

max
π∈Π

V (s)

s.t.
∑
f∈F

xu,f sf ≤ cu,∀u ∈ U ,

xu,f ∈ {0, 1},∀u ∈ U ,∀f ∈ F .

(9)

The above problem in (9) is a long-term mixed integer linear
programming (LT-MILP), which has been proven to be NP-
hard [38]. Particularly, if the numbers of UEs and contents
are large-scale in the system, the dimension of the state space
will be very high. To address this problem, traditional iterative
approaches [19] generally have extremely high computation

complexity, which will be a significant disadvantage limiting
their practical applications in caching systems. Therefore, it is
necessary to introduce intelligent learning-based methods in
the system.

V. FRAMEWORK DESIGN OF AWFDRL

To address the above problem, we propose the AWFDRL
framework including three main phases, i.e., model release
phase, local DQN model training phase and weighted fed-
erated aggregation phase. Particularly, the details of the i-th
round training and the whole flow in the proposed AWFDRL
framework are introduced in Sec. V-A. Meanwhile, Sec. V-B
and Sec. V-C describe the details of the local training and
model aggregation process, respectively. Finally in Sec. V-D,
we derive the expectation convergence of the AWFDRL.

A. Whole Process

The whole process of the i-th round training in the proposed
AWFDRL framework is shown in Fig. 4.

1) Model release phase: In the model release phase, there
contains two steps which is the left part of round i in Fig.
4. In the step 1, UEs associate with the local BS and report
their state like whether they can participate in the training or
not. After receiving these information, the local BS executes
the model release step by sending the global model of the last
round to local agents.

2) Local training phase: In the local DQN model training
phase, each local agent receives the global model parameters
Θt from the local BS. Then each UE u starts to train its local
DQN model θut according to the global model parameters and
its local data. The details of the training process are shown in
the Sec. V-B.

3) Aggregation phase: There are two steps in this phase
which is the right part of round i in Fig. 4. Firstly, after E
local training rounds, each UE collects its training evaluation
indicators (e.g., average reward, average loss, and hit rate)
during the training phase, and sends them to the local BS with
the local model parameter θut which is step 4. Then, in step 5,
the BS calculates each agent’s aggregation weights based on
the training evaluation indicators. Particularly, we employ the
attention mechanism to provide different devices with different
aggregation weights. Then we aggregate different local DQN
parameters with the attention weights, instead of aggregating
them equally or calculating weights simply based on the data
size. The details of the aggregation process are discussed in
the Sec. V-C.

B. Local DQN Model Training

The local DQN model is utilized to evaluate the policies
based on the action-value function Q(sut , aut). According to
the relationship between the value function and action-value
function, we have

Q(sut , a
u
t) = C(sut , a

u
t) + γ

∑
sut+1∈S

Pr{sut+1|sut , aut }V (sut+1).

(10)

Since Q(sut , aut) cannot be directly obtained due to con-
tinuous action space, we apply deep neural network to ap-
proximate Q(sut , aut) and update parameters by using the
history experience stored in replay memory buffer Mu. So
we have Q(sut , aut ;θut) ≈ Q(sut , aut). The iterative formula of
Q function can be expressed as

Q(sut , aut ;θut) = Q(sut , aut ;θut) + α

(
C(sut , aut)

+γ ·maxaut+1
Q(sut+1, aut+1; θ̂ut)

−Q(sut , aut ;θut)

)
,

(11)

where α ∈ [0, 1) is an introduced parameter, θut is a parameter
of evaluation network, and θ̂ut is a parameter of target network.
Two networks are utilized to reduce the relevance between
action choosing and model training. We employ the gradient
descent (GD) method for updating the parameters. The loss
function of DQN model is expressed as

Fu(θut) =
∑

(sui ,a
u
i)∈M̃u

(yi −Q(sui , a
u
i ;θut))2, (12)

where yi = C(sui , aui)+γmaxaui+1
Q(sui+1, aui+1; θ̂ut), and M̃u

is a mini-batch of Mu. Then the update of parameter θut can
be expressed as

θut+1 = θut − ηt∇(Fu(θut)), (13)

where ηt is a learning rate.
The whole process of the local DQN training is shown in

Algorithm 1 and Fig. 5. For a UE, it runs E episodes during
the local DQN training phase. In each episode, UE sends a
request ru,t. If the requested content is in the local cache list,
the request can be satisfied immediately, and this episode ends
(Lines 1-4). Otherwise, the UE collects the current state sut
(Label 1 in Fig. 5) and chooses an action aut based on the eval-
uation Q-Network (Labels 2-3). After executing the selected
action, the DQN agent can obtain the immediate reward and
new state (Lines 5-11). Then it constructs a transition Tt and
stores it into the replay memory buffer (Lines 12-13, Label
4-5). Finally, the DQN agent samples a random mini-batch of
transitions from Mu, and uses it to update the evaluation Q-
network. The target Q̂ network will be updated by assigning
θut to θ̂ut periodically (Lines 14-16, Labels 6-7). Besides, we
calculate the size of replay memory of UE u as Mu = |Mu|,
and the mini-batch size of UE u as mu = |M̃u|, respectively.
The computation complexity for UE u mainly includes two
parts: collecting transitions and back propagation. For UE u,
the complexity of collecting transitions is O(Mu); and the
complexity of training parameters with back propagation and
gradient descent is O(abE mu), where a and b denote the layer
number and the number of units in each layer, respectively.
Therefore, we can calculate the total computation complexity
for all UEs as O

(∑
u∈U (Mu + abE mu)

)
.

Fig. 4. The whole process of the t-th round training in the proposed AWFDRL framework.

Fig. 5. Illustration of the local DQN Training Process.

C. Weighted Federated Aggregation

As a leading method in FL, Federated Averaging (FedAvg)
[18] performs gradient descent algorithm in parallel on a small
subset of the total devices, and then averages the sequences
only once in a while. It employs simple weight average
integration based on the data size of the distributed trained
model parameters. However, by considering the difference
among UEs’ computing capacity, data quality as well as the
model performance, it is not reasonable to integrate each local
model equally and we need to consider its weighted form
(i.e., weighted federated aggregation). In this model, we use
the reward C(sut , aut) and some device-related indicators as
the measurement to evaluate the local model’s contribution to
the global model. The update process of weighted federated
aggregation is shown in Fig. 6.

Algorithm 1 Local DQN Model Training Process.
Iteration: (Training Process)
1: for episode t = 1 to E do
2: UE u send a request ru,t for content f .
3: if The cache state xu,f = 1 then
4: End episode.
5: else
6: Receive the caching state

sut = [Ωt, ~pu, rDu,t,Xu,t, If].
7: Select action aut = arg max

A
Q(sut , aut ;θθθut).

8: Execute action aut .
9: Obtain immediate reward ct = C(sut , aut).

10: Observe the new state sut+1.
11: Construct Tt = [sut , aut , ct, sut+1].
12: Store the transition Tt into Mu.
13: Randomly sample a mini-batch M̃u from Mu.
14: Update evaluation Q network θut with ∇(Fu(θut)).
15: Update target Q̂ network parameter θ̂ut periodically.
16: end if
17: end for

Problem formulation: The corresponding problem of
weighted federated aggregation can be formulated as

min
θ,p

{
F (Θt) ,

∑
u∈U

wuFu(θut)

}
, (14)

where wu is an introduced weight factor for UE u to measure
the contribution of local model to the global model. For UE
u, we calculate the weight wu with average reward, average

Fig. 6. The weighted federated aggregation process.

loss, training data, episode number, batch size as well as
hit rate.
• Average reward: The average reward Cu for UE u is

calculated by averaging all the local reward C(sut , aut)
during E local updates.

• Average loss: Average loss Lu for each UE is calculated
by averaging the loss function Fu(θut) output during E
local training process.

• Training data size: Mu is the size of the replay memory,
for those devices which have more memory resources,
they can store more training data into the replay memory.

• Episode number: Different UEs may train different batch
numbers of local episodes (denoted by (Eu)1×U) during
one local training step. Besides, each Eu is a multiple of
E.

• Batch size: mu is mini-batch size of u, for those which
have more computing capacity, they can train more data
during one local training process.

• Hit rate: The average hit rate hu during E time slots.
These above evaluation indicators can be described as

Ku = [Cu, Lu,Mu, Eu,mu, hu]. In our model, we employ the
attention mechanism which has received great success in some
fields such as natural language processing [39] and computer
vision [40]. Particularly, the evaluation indicator vector Ku and
the UE u’s local model parameters θut are modeled as the key
and the value in the attention mechanism, respectively. The
target of our model is to get a more powerful agent who can
get more reward, less loss and higher hit rate, so we design
the query as

Q = [max
u

(Cu),min
u

(Lu),max
u

(Mu),max
u

(Eu),

max
u

(mu),max
u

(hu)].
(15)

The inputs of the BS consist of query Q, keys Ku with
dimension of dk, and values θut . We calculate the dot products
of the query with all keys, divide each by

√
dk, and use a

softmax function for obtaining the weights on the values. For
the weight factor wu, we have

wu = Attention(Q,Ku) = softmax(
QKT

u√
dk

),∀u ∈ U . (16)

D. Convergence Analysis
Assumptions: We make the following assumptions on the

functions (Fu)1×U . Assumptions 1 and 2 are standard; typical
examples are the l2-norm regularized linear regression. It can
also be used in neural network model. And Assumptions 3
and 4 have been made based on [41].

1) (Fu)1×U are all L-smooth: for all x1 and x2, Fu(x1) ≤
Fu(x2) + (x1 − x2)T∇Fu(x2) + L

2 ||x1 − x2||22.
2) (Fu)1×U are all µ-strongly convex: for all x1 and x2,

Fu(x1) ≥ Fu(x2)+(x1−x2)T∇Fu(x2)+ µ
2 ||x1−x2||22.

3) With mini-batch M̃u, the variance of stochastic gradi-
ents in each UE is bounded by E||∇Fu(θut , M̃u) −
∇Fu(θut)||2 ≤ σ2

u for u ∈ U .
4) The expected squared norm of stochastic gradients is

uniformly bounded by E||∇Fu(θut ,M̃u)||2 ≤ G2,∀u ∈
U ,∀t ∈ T .

Robustness of aggregation: We use F ∗ and F ∗u to represent
the optimal value of F (Θt) and Fu(θut), respectively. The
term Γ is used to quantify the effect of aggregation operation
as

Γ = F ∗ −
∑
u∈U

wuF
∗
u +

1

6L

∑
u∈U

w2
uσ

2
u. (17)

For those who have more computing capacity, experience
pool, training batch and better training data, the difference
between F ∗u and F ∗ is theoretically less than other UEs, and
the variance of stochastic gradients σ2

u is also smaller than
others. By considering these divergences, we model a more
complicated weight factor wu in (16). The UEs with better
optimal value will get more weight in the aggregation process,
so the term Γ will be less than those who just average local
parameter or those who just consider the data size of local
data. With a less Γ, we will get a better convergence bound.
Actually, we can consider Γ as a function of the aggregation
weight wu.

To derive our results, it is necessary to use the useful
lemmas as follow. The proofs of these lemmas can be seen
in the Appendix B.

Lemma 1 (Convergence of one step local training).
Assumptions 1 and 2 holds. If ηt ≤ 1

4L , we have

E||θt+1 −Θ∗||2 ≤ (1− ηtµ)E||θt −Θ∗||2 + η2
tE||gt − ĝt||2

+6Lη2
t κ+ 2E

∑
u∈U

wu||θt − θut ||2,

(18)

where Θ∗ is the optimal global parameters and κ = F ∗ −∑U
u=1 wuF

∗
u which is the first term in Γ. With this lemma

holds, we can guarantee that the difference between the locally
trained parameters and the optimal parameters will not be too
large. Meanwhile, it also ensures that with the increase of
the number of training, the local parameters converge to the
optimal parameters.

Lemma 2 (Stability of local training sampling). If As-
sumption 3 holds, we can obtain

E||gt − ĝt||2 ≤
∑
u∈U

w2
uσ

2
u. (19)

With this lemma holds, we can ensure the stability and
effectiveness of local training sampling. It means that we can
achieve the same optimal result as training with the all original
data.

Lemma 3 (Boundness of the aggregation parameter). If
Assumption 4 holds, ηt is non-increasing and ηt ≤ 2ηt+E for
all t ≥ 0. We have

E
[∑
u∈U

wu||θt − θut ||2
]
≤ 4η2

t (E − 1)2G2. (20)

With this lemma, we can guarantee the boundness of the
aggregation phase, which means that the difference between
the local parameters and aggregation parameters will decrease
as the training period increase. Finally, we can get stable
aggregation parameters.

Convergence Analysis: Let the AWFDRL algorithm termi-
nate after T iterations and return ΘT as the global model. We
assume that T can be divisible by E so that we can always
get the output ΘT .

Theorem 1. Let Assumptions 1 to 4 hold and L, µ, σu, G be
defined therein. Choose ϑ = max{8Lµ , E} and the learning
rate η = 2

µ(ϑ+t) . Then AWFDRL satisfies

E[F (ΘT)]− F ∗ ≤ H(
1

T
)

(
12LΓ + 16(E − 1)2G2

+
(ϑ+ 1)µ2

2
||Θ1 −Θ∗||2

)
,

(21)

where
H(

1

T
) =

L

µ2(ϑ+ T)
. (22)

Proof of Theorem 1: Please see the Appendix C.
In addition to the problem-related constants (L, µ, σu, G) in

(21), the two most important variables are E and Γ. Particu-
larly E can control the convergence rate of the AWFDRL,
neither over-small nor over-large setting of E is good for
the convergence. Γ show the robustness of our model as we
set different weight coefficient wu. We can infer that as the
local training environment becomes more heterogeneous, the
difference among the models trained by different equipments
will become increasingly larger. Aggregating these various
levels of local model with equal weight will cause the good-
performance local model polluted by the poor-performance
model. With the attention weights in (16), we can improve the
model’s robustness Γ under heterogeneous training equipment
environment.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
AWFDRL framework based on simulation results.

A. Parameter Setting

For simulation purpose, we consider 10,000 contents in the
network, and the content sizes range from 5MB to 10MB.
The number of UEs varies from 100 to 450. Besides, we
set the cache sizes of each UE and BS as 300MB and 2GB

for default, respectively. Meanwhile, the cloud server stores
all the contents. Each UE runs a DRL agent with a two-
layer neural network locally. We consider different scenarios
in terms of computing instances and data sizes of UEs by
deploying different replay memory capacities, ranging from
1000 to 2000. Moreover, for one aggregation step, different
UEs train different episodes which range from 100 to 200.
We consider the channel model as: the path loss (dB) is
36.8 + 36.7 log(d), where d is the distance in meter; the log-
normal shadowing parameter and antenna gain is 7 dB and
5 dBi, respectively; the small-scale fading is Rayleigh fading
with unit variance. The channel bandwidth is 20 MHz and the
background noise power is -95 dBm. Besides, we set the replay
memory capacity as [1000,2000], aggregation step as 100,
local episode time as [100,200], mini-batch size [128,256],
learning rate as 0.05, and reward decay as 0.9. According to
the MZipf distribution [33], the content popularity is set with
the corresponding factors (τ, β) = (−0.95, 0.5), and shown in
Fig. 7(a).

B. Baseline Schemes and Performance Metrics

To evaluate the performance of the proposed AWFDRL
framework under different user preferences, we consider the
following baseline schemes as:

1) FIFO [9]: The earliest stored content is replaced by the
new one.

2) LRU [10]: The least recently used content is replaced by
the new one.

3) LFU [10]: The least frequently used content is replaced
firstly.

4) LFU with Dynamic Aging (LFUDA) [42]: A variant
of LFU that aims to address the cache pollution issue
by employing a cache age counter to punish the access
frequency of old contents.

5) Greedy Dual Size with Frequency (GDSF) [42]: Re-
place the content with the smallest key value for a certain
utility (cost) function. The utility function is calculated
based on the content size and access frequency.

6) Federated Averaging (FedAvg) [41]: Run the DQN
model in each UE and aggregate the local model with
aggregation weight calculated by data size during the
trainig process.

7) FedProx: [25] A generalization and re-parametrization of
FedAvg. It improves FedAvg by allowing the episode to
vary according to the characteristics of the network.

8) Optimal method (OPT) [37]: Evict the content which
has the largest next-access time. However, the OPT
algorithm is not implementable since it needs future
information in adavance.

To evaluate the schemes, we use the following performance
metrics as: 1) hit rate (satisfied by the local cache, D2D
sharing or BSs); 2) average delay; and 3) traffic offload ratio
(satisfied by the local cache, D2D sharing or BSs).

(a) Content popularity (b) Line graph of attention weights (c) Stack graph of attention weights

Fig. 7. Content popularity and the changes of different agents’ attention weights.

(a) Hit rate (b) Average delay (c) Traffic offload ratio

Fig. 8. Performance comparison in the case study.

C. Case Study

We give a simple case here to reveal the changes of
attention weights and model performance. In this case,
we consider four UEs, and set the experience pool sizes
of these UEs as [2000, 1500, 1500, 1500], the episode
numbers as [200, 150, 150, 100], and the batch sizes as
[256, 256, 128, 128].

Based on the parameter settings and (16), we can obtain
each UE’s attention weight in the aggregation phase. The
changes of different DRL agents’ attention weights are shown
in Fig. 7(b). During the training process, Agent 1 takes
the highest weight (around 28%) in the aggregation phase,
while Agent 4 takes the least weight (around 22%). It is
mainly because Agent 1 has the most powerful computing
capacity. Meanwhile, we can see that the results fluctuate
due to different sizes of the training data. In order to show
different weights intuitively, we also put them into a stack
graph as shown in Fig. 7(c) where the maximum value of
the y-coordinate is 1. From Fig. 7(c), we can see that the
blue part (Agent 1) is the widest and the red part (Agent 4)
is the narrowest, which means that Agent 1 has the greatest
impact on the global model. In Fig. 8, the solid line means
the average hit rate, average delay, traffic offload ratio of
all agents, respectively; the upper and lower boundaries of
the shadow region represent the maximum and minimum of
different indicators in different sub-graphs. We can see that
after 20 training rounds, all agents converge to a relative stable

hit rate (59%), average delay (1.55 second) and traffic offload
ratio (53%).

D. Effects of Different User Preferences

We consider Random and Gaussian preferences of users as
shown in Fig. 9. Particularly in Fig. 9(a), the user preference is
set randomly, which indicates that the user has no preference
for a specific content and would like to access all the contents.
In Fig. 9(b), we initialize a list based on the Gaussian distri-
bution X ∼ N (1, 1) and then assign it as the user preferences
for contents to simulate that users prefer content 4500-6500.

Fig. 10 shows the effects of different user preferences on the
AWFDRL scheme and the aforementioned baseline schemes.
From Fig. 10(a)-(c), when users have random preferences,
the proposed AWFDRL scheme outperforms the first five
baseline schemes by the improvements of 10%-15%, 50-
80ms and 5%-18% in terms of hit rate, average delay and
traffic offload ratio, respectively. It is mainly because that
the proposed AWFDRL scheme chooses the evicted contents
more intelligently based on the user preference and global
content popularity. Meanwhile, our method also outperforms
other learning-based methods such as FedAvg and FedProx
in all performance metrics. Specially, as the cache size of
UEs increases, the input state size of the local DQN agent
also increases, which makes it hard to train and aggregate the
global model for simple FL methods like FedAvg. FedProx
improves FedAvg by allowing the agent to run the different

(a) Random preference

(b) Gaussian preference

Fig. 9. Random and Gaussian preferences of users.

numbers of local episodes. Actually, we can regard FedProx
as a special case of our proposed AWFDRL since we also take
the local episodes into the consideration when we aggregate
the global model. Moreover, compared with the OPT scheme,
AWFDRL has only a 10% loss gap of hit rate, 50ms gap of
average delay and 8% gap of traffic offload ratio. From Fig.
10(d)-(f), when users have Gaussian preferences, the proposed
AWFDRL scheme outperforms the first five baseline schemes
by the improvements of 10%-20%, 80-120ms and 5%-18%
in terms of hit rate, average delay and traffic offload ratio,
respectively. Also, the hit rate and traffic offload ratio are
larger whereas the average delay is less compared with those
with random preferences. That is mainly because the evicted
contents can be more easily chosen when the user preference
is known in advance. Besides, it is observed that the proposed
AWFDRL scheme greatly outperforms other schemes, which
can be explained by that the AWFDRL scheme can choose
the offload node based on the network state and UE state.

E. Effects of Different Numbers of UEs

Fig. 11 shows the performance comparison of different
caching schemes under different numbers of UEs. Here, the
number of UEs ranges from 100 to 450 (which is the maximum
value that a general 4G BS can serve simultaneously). From
Fig. 11(a), the proposed AWFDRL outperforms the first five
baseline schemes by the improvements of 10%-20% on hit rate
and has only a 5%-12% loss gap of hit rate compared with
OPT scheme. From Fig. 11(b), the proposed AWFDRL scheme
achieves the lowest average delay compared with all the

baseline schemes. Meanwhile, from Fig. 11(c), it is observed
that the traffic offload ratio increases along with the increase of
the number of UEs since the UEs have more desirable selected
nodes to fetch the requested contents. Moreover, when the
number of UEs is sufficiently large, the AWFDRL scheme
offloads 80% traffic in the network. From Fig. 11, AWFDRL
always outperforms FedAvg and FedProx in all performance
metrics. Moreover, the gap between AWFDRL and FedAvg
increases as the number of UEs increases. It is because when
there are a large number of UEs, the difference between
the various local models is very huge and aggregating these
various local models with simple weights calculated by data
size cannot get a well-performed global model.

F. Comparison of Different Training Methods

As the rewards C(sut , aut) are calculated based on the D2D
sharing gain and content delay cost, the larger average reward
value is, the more traffic offload and the lower average delay
we will get during the training process. So we compare
AWFDRL, FedAvg and FedProx in term of average reward
under different episode numbers, experience pool sizes, batch
sizes and cache sizes, which shows the model performance
under different parameter settings. The corresponding simula-
tion results are shown in Fig. 12(a)-12(d). From Fig. 12(a),
as the episode number increases, the average reward in each
considered method increases since the training model is more
intelligent with a larger episode number. From Fig. 12(b),
when the experience pool size of the agent increases, the
average reward in each considered method also increases as
the agent can store more history transitions and learn more
from the history actions. Meanwhile, from Fig. 12(c), as the
batch size increases from 32 to 256, the agent gets more data
during the training process and gets more average reward.
However, it will take more time to finish the local training
phase with larger batch sizes and episode numbers. Besides,
from Fig. 12(d), when the user cache size increases, the
average reward in each considered method increases. It is
caused by the improvement of hit rate, average delay and
traffic offload. Particularly, it is observed that the AWFDRL
scheme always outperforms the baseline training methods on
the average reward under all user cache sizes and episode
numbers.

Moreover, to evaluate the model performance in different
heterogeneous environments, we compare AWFDRL, FedAvg
and FedProx in four cases. In each case, we consider four
UEs. In case 1, we set the same parameters (i.e., experience
pool size, episode number, batch size for all UEs) in these
two training methods. In case 2, we set different experience
pool sizes [2500, 2000, 2000, 1500] for the UEs. In case 3,
we set different experience pool sizes as the same in case
2, and different episode numbers [200, 150, 150, 100]. In case
4, we also set different batch sizes for different UEs as
[256, 256, 128, 128]. The simulation environment is increas-
ingly heterogeneous from case 1 to case 4. The corresponding
simulation results are shown in Fig. 12(e). We can see that
as the simulation environment becomes increasingly heteroge-

Fig. 10. Performance comparison of different caching schemes under different user preferences.

Fig. 11. Performance comparison of different caching schemes under different numbers of UEs.

neous, the FedAvg method will get less average reward (0.267
in case 4). The Average Reward of FedProx is stable which is
about 0.27. However, compared with the others, the proposed
AWFDRL is less affected and achieves more average reward
(0.275 in case 4). Moreover, the proposed AWFDRL scheme
outperforms the FedAvg and FedProx methods in all four
cases, and the gaps between FedAvg and AWFDRL become
larger when the simulation environment tends to be more
heterogeneous. It is because that with the attention weights,
UEs with more powerful computing capacity in the AWFDRL
scheme can get larger weights in the aggregation phase; then
after the training, AWFDRL reduces the impacts of poorly

trained model on the global model and guarantees that the
global model can achieve the high average award. For instance,
Fig. 12(f) shows the training round average reward of case
4, and it demonstrates that during the training process, the
proposed AWFDRL achieves the faster convergence of average
reward (10 training rounds) than FedAvg (25 training rounds)
and FedProx (20 training rounds).

VII. CONCLUSION

In this paper, we have investigated the issue of D2D-
assisted heterogeneous collaborative edge caching in mobile
networks, and formulated the problem of joint node selection

(a) Average reward in different episode numbers (b) Average reward in different experience pool
sizes

(c) Average reward in different batch sizes

(d) Average reward in different cache sizes (e) Average reward in different cases (f) Round Average reward of case 4

Fig. 12. Performance demonstration of average reward.

and cache replacement as an LT-MILP. In particular, we have
employed the DQN model to control the joint decision process
dynamically based on the network state and historical infor-
mation. To efficiently solve this problem, we have proposed
the AWDFRL framework, an improved FL framework which
trains the DQN model in a distributed manner by keeping the
data in the local UEs while addressing the issue of the model
aggregation among heterogeneous UEs. Most importantly, we
have employed the attention mechanism to control the model
weights in the FL aggregation step, which can address the
imbalance issue of local model quality. We have derived
the expectation convergence of AWFDRL. Simulation results
have been presented to show that compared with the existing
schemes, the proposed AWFDRL framework can effectively
improve hit rate, reduce average delay and offload traffic.
Moreover, the proposed AWFDRL framework has been shown
to outperform the existing FL methods such as FedAvg and
FedProx in term of average reward, due to the attention
mechanism.

APPENDIX

A. Definition

Let TE be the set of aggregation steps (TE = {nE|n =
1, 2, ...}). If t + 1 ∈ TE , the system run aggregation step.
Then we define

θut+1 =

{
θut − ηt∇Fu(θut ,M̃u) if t+ 1 /∈ TE ,∑
u∈U wuθ

u
t if t+ 1 ∈ TE .

(23)

We define θt =
∑
u∈U wuθ

u
t for all t. If t ∈ TE , we can

get θt = Θt, otherwise, we cannot get θt. Moreover, we have
ĝt =

∑
u∈U wu∇Fu(θut) and gt =

∑
u∈U wu∇Fu(θut ,M̃u).

Therefore, θt+1 = θt − ηtgt and Egt = ĝt.

B. Proof of Lemma

1) Proof of Lemma 1: Notice that we have θt+1 = θt −
ηtgt, then

||θt+1 −Θ∗||2 = ||θt − ηtgt −Θ∗ − ηtĝt + ηtĝt||2
= ||θt −Θ∗ − ηtĝt||2︸ ︷︷ ︸

A1

+η2
t ||ĝt − gt||2

+ 2ηt〈θt −Θ∗ − ηtĝt, ĝt − gt〉︸ ︷︷ ︸
A2

.

(24)

Note that EA2 = 0. We next focus on bounding of A1.
Again we split A1 into three terms as

||θt−Θ∗−ηtĝt||2 = ||θt−Θ∗||2−2ηt〈θt −Θ∗, ĝt〉︸ ︷︷ ︸
B1

+ η2
t ||ĝt||2︸ ︷︷ ︸
B2

.

(25)
From the L-smoothness of Fu(·), if follows

||∇Fu(θut)||2 ≤ 2L(Fu(θut)− F ∗u). (26)

By the convexity of || · ||2 and (26), we have

B2 =η2
t ||ĝt||2 ≤ η2

t

∑U
u=1 wu||∇Fu(θut)||2

≤ 2Lη2
t

∑U
u=1 wu(Fu(θut)− F ∗u).

(27)

Note that

B1 = −2ηt
∑U
u=1 wu〈θt − θut ,∇Fu(θut)〉

−2ηt
∑U
u=1 wu〈θut −Θ∗,∇Fu(θut)〉.

(28)

By Cauchy-Schwarz inequality and AM-GM inequality, we
have

− 2〈θt − θut ,∇Fu(θut)〉 ≤ 1

ηt
||θt − θut ||2 + ηt||∇Fu(θut)||2.

(29)
Based on the µ-strong convexity of fi(·), we obtain

−2〈θut −Θ∗,∇Fu(θut)〉 ≤ −(Fu(θut)−Fu(Θ∗))−µ
2
||θut −Θ∗||2.

(30)
Based on (25), (26), (28), (29), (30), we have

A1 = ||θt −Θ∗ − ηtĝt||2
≤ ||θt −Θ∗||2 + 2Lη2

t

∑
u∈U wu(Fu(θut)− F ∗u)

+ηt
∑
u∈U wu

(
1
ηt
||θt − θut ||2 + ηt||∇Fu(θut)||2

)
−2ηt

∑U
u=1 wu

(
Fu(θut)− Fu(Θ∗) + µ

2 ||θ
u
t −Θ∗||2

)
= (1− µηt)

∑
u∈U wu||θt −Θ∗||2

+
∑
u∈U wu||θt − θut ||2 + C,

(31)
where C = 4Lη2

t

∑
u∈U wu(Fu(θut) − F ∗u) −

2ηt
∑
u∈U wu(Fu(θut)− Fu(Θ∗)).

Then we need to find the bound of C. We define ϑt =
2ηt(1 − 2Lηt). Since ηt ≤ 1

4L , ηt ≤ ϑt ≤ 2ηt. Then we can
divide C into two terms as

C = −2ηt(1− 2Lηt)
∑
u∈U wu(Fu(θut)− F ∗u)

+2ηt
∑
u∈U wu(Fu(Θ∗)− F ∗u)

= −ϑt
∑
u∈U

wu(Fu(θut)− F ∗)

+(2ηt − ϑt)
∑
u∈U

wu(F ∗ − F ∗u)

= −ϑt
∑
u∈U

wu(Fu(θut)− F ∗)︸ ︷︷ ︸
D

+4Lη2
t κ.

(32)

To bound the term D, we have∑
u∈U

wu(Fu(θut)− F ∗) =
∑
u∈U

wu(Fu(θut)− Fu(θt))

+
∑
u∈U

wu(Fu(θt − F ∗))

≥
∑
u∈U

wu〈∇Fu(θt),θ
u

t − θt〉

+(F (θt)− F ∗)

≥ −
∑
u∈U

wu

[
ηtL(Fu(θt)− F ∗u)

+ 1
2ηt
||θut − θt||2

]
+ (F (θt)− F ∗),

(33)
where these two inequality are derived from the convexity of
Fu(·), and from (26) and AM-GM inequality, respectively.

Therefore, we have

C = ϑt
∑
u∈U

wu

[
ηtL(Fu(θt)− F ∗u) + 1

2ηt
||θut − θt||2

]
−ϑt(F (θt)− F ∗) + 4Lη2

t κ

= ϑt(ηtL− 1)
∑
u∈U

wu(Fu(θt)− F ∗u)

+(4Lη2
t + ϑtηtL)κ+ ϑt

2ηt

∑
u∈U

wu||θut − θt||2

≤ 6Lη2
t κ+

∑
u∈U

wu||θut − θt||2,

(34)
where in the last inequality, we utilize the following facts: (1)
ηtL− 1 ≤ − 3

4 ≤ 0 and
∑
u∈U wu(Fu(θt)− F ∗u) = F (θt)−

F ∗ ≥ 0 (2) κ ≥ 0 and 4Lη2
t +ϑtηtL ≤ 6η2

tL and (3) ϑt

2ηt
≤ 1.

By substituting C into A1, we get

A1 = ||θt −Θ∗ − ηtĝt||2
≤ (1− µηt)||θt −Θ∗||2 + 2

∑
u∈U

wu||θut − θt||2+

6Lη2
t κ.

(35)
Using (35) and taking expectation on both sides of (24),

we can erase the randomness from stochastic gradients. The
whole proof is complete.

2) Proof of Lemma 2: If Assumption 3 holds, the variance
of the stochastic gradients in UE u is bounded by σ2

u,

then we have E||gt − ĝt||2 = E
wwww ∑
u∈U

wu(∇Fu(θut ,M̃u) −

∇Fu(θut))

wwww2

=
∑
u∈U

w2
uE||∇Fu(θut ,M̃u) − ∇Fu(θut)||2 ≤∑

u∈U
w2
uσ

2
u.

3) Proof of Lemma 3: Since AWFDRL requires information
exchange every E steps. Therefore, for any t ≥ 0, there exists
a t0 ≤ t, such that t− t0 ≤ E − 1 and θut0 = θt0 for all u =
1, 2, ..., U . Also, we use the fact that ηt is non-increasing and
ηt ≤ 2ηt for all t− t0 ≤ E − 1, then we have

∑
u∈U

wuE||θt −

θut ||2 =
∑
u∈U

wuE||(θut − θt0)− (θt − θt0)||2 ≤
∑
u∈U

wu(E −

1)2η2
tG

2 ≤ 4η2
t (E − 1)2G2.

C. Proof of Theorem 1
Proof. Let ∆t = E||θt−Θ∗||2. With Lemmas 1-3, we have

∆t+1 ≤ (1− ηtµ)∆t + η2
tH(Γ, E), (36)

where H(Γ, E) = 6LΓ + 8(E − 1)2G2.
For a diminishing step size, ηt = β

t+ϑ for some β ≥ 1
µ and

ϑ ≥ 0 such that η1 ≤ min{ 1
µ ,

1
4L} and ηt ≤ 2ηt+E . We will

prove ∆t ≤ v
ϑ+t where v = max{β

2H(Γ,E)
βµ−1 , (ϑ+ 1)∆1}.

We prove it by induction. At first, the definition of v
guarantees that it holds for t = 1. When the conclusion also
holds for time slot t, we have

∆t+1 ≤ (1− ηtµ)∆t + η2
tH(Γ, E)

≤
(

1− βµ
t+ϑ

)
v
t+ϑ + β2H(Γ,E)

(t+ϑ)2

= t+ϑ−1
(t+ϑ)2 v +

[
β2H(Γ,E)

(t+ϑ)2 −
βµ−1
(t+ϑ)2 v

]
≤ v

t+ϑ+1 .

(37)

Then by considering the strong convexity of F (·), we have

E[F (θt)]− F ∗ ≤
L

2
∆t ≤

L

2

v

ϑ+ t
. (38)

Specifically, if choosing β = 2
µ , we have ηt = 2

µ
1
ϑ+t and

E[F (θt)]− F ∗ ≤ L
2(ϑ+t) ·

(
4H(Γ,E)

µ2 + (ϑ+ 1)∆1

)
≤ L

µ2(ϑ+t) (2H(Γ, E) + ϑ+1
2 ∆1),

(39)
where θt is ΘT in (21) when the algorithm terminates.

REFERENCES

[1] R. Li, Y. Zhao, C. Wang, X. Wang, V. C. M. Leung, X. Li, and T. Taleb,
“Edge Caching Replacement Optimization for D2D Wireless Networks
via Weighted Distributed DQN,” in Proc. IEEE WCNC, pp. 1-6, May
2020.

[2] H. Sheng, Y. Zheng, W. Ke, D. Yu, X. Cheng, W. Lv, and Z.
Xiong, “Mining Hard Samples Globally and Efficiently for Person Re-
identification,” IEEE Internet of Things Journal, pp. 1-1, Mar. 2020.

[3] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan and X. Chen,
“Convergence of Edge Computing and Deep Learning: A Comprehen-
sive Survey,” IEEE Commun. Surv. Tutor., vol. 22, no. 2, pp. 869-904,
Second Quarter 2020.

[4] X. Wang, X. Li, S. Pack, Z. Han, and V. C. M. Leung, “STCS: Spatial-
Temporal Collaborative Sampling in Flow-aware Software Defined Net-
works,” IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 999-1013, Jun.
2020.

[5] S. Deng, H. Zhao, J. Yin, S. Dustdar, and A. Y. Zomaya, “Edge Intelli-
gence: the Confluence of Edge Computing and Artificial Intelligence,”
IEEE Jounal of Internet of Things, pp. 1-1, Apr. 2020.

[6] H. Tang, and Z. Ding, “Mixed Mode Transmission and Resource
Allocation for D2D Communication,” IEEE Trans. Wirel. Commun., vol.
15, no. 1, pp. 162-175, Jan. 2016.

[7] G. Cao, L. Yin, and R. Das, “Cooperative cache-based data access in
ad hoc networks,” Computer, vol. 37, no. 2, pp. 32-39, Aug. 2004.

[8] C. Zhang, H. Pang, J. Liu, et al., “Toward Edge-Assisted Video Content
Intelligent Caching With Long Short-Term Memory Learning,” IEEE
Access, vol. 7, pp. 152832 - 152846, Oct. 2019.

[9] L. Tang, Q. Huang,W. Lloyd, S.Kumar, and K. Li, “Ripq: Advanced
photo caching on flash for Facebook,” in Proc. ACM FAST, Feb. 16-19,
2015, pp. 373-386.

[10] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and H. C.
Li, “An analysis of Facebook photo caching,” in Proc. ACM SOSP, Nov.
2013, pp. 167-181.

[11] S. Podlipnig and L. Böszörmenyi, “A survey of Web cache replacement
strategies,” ACM Comput. Surv., vol. 35, no. 4, pp. 374-398, Dec. 2003.

[12] J. Wang, “A survey of Web caching schemes for the Internet,” SIG-
COMM Comput. Commun. Rev., vol. 29, no. 5, pp. 36-46, Oct. 1999.

[13] H. Pang, J. Liu, X. Fan and L. Sun, “Toward smart and cooperative
edge caching for 5g networks: A deep learning based approach,” in
Proc. IEEE/ACM IWQoS, Jun. 2018, pp. 1-6.

[14] F. Xu, F. Yang, S. Bao and C. Zhao, “DQN Inspired Joint Comput-
ing and Caching Resource Allocation Approach for Software Defined
Information-Centric Internet of Things Network,” IEEE Access, vol. 7,
pp. 61987-61996, May 2019.

[15] H. Van, A. Guez, D. Silver, “Deep reinforcement learning with double
q-learning,” in Proc. AAAI, Mar. 2016.

[16] W. Jiang, G. Feng, S. Qin, and Y. Liu, “Multi-agent reinforcement
learning based cooperative content caching for mobile edge networks,”
IEEE Access, vol. 7, pp. 61856-6167, May 2019.

[17] L. Sweeney. “Simple demographics often identify people uniquely,”
2000.

[18] B. McMahan, E. Moore, D. Ramage, et al., “Communication-efficient
learning of deep networks from decentralized data,” in Proc. AISTATS,
vol. 54, pp. 1273-1282, 2016.

[19] G. Qiao, S. Leng, S. Maharjan, et al., “Deep reinforcement learning for
cooperative content caching in vehicular edge computing and networks,”
IEEE Internet Things J., vol. 7, no. 1, pp. 247-257, Jan. 2019.

[20] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
in Proc. NIPS, Dec. 2017, pp. 5998-6008.

[21] J. Konečný, B. McMahan, X. Yu, et al. “Federated learning:
Strategies for improving communication efficiency,” arXiv preprint
arXiv:1610.05492, 2016.

[22] S. Shen, Y. Han, X. Wang, et al., “Computation Offloading with Multiple
Agents in Edge-Computing–Supported IoT,” ACM Trans. Sens. Netw.,
vol. 16, no. 1, pp.1-27, Dec. 2019.

[23] Z. Yu, J. Hu, G. Min, et al., “Federated learning based proactive content
caching in edge computing,” in Proc. IEEE GLOBECOM, Dec. 2018,
pp. 1-6.

[24] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-Edge
AI: Intelligentizing Mobile Edge Computing, Caching and Communica-
tion by Federated Learning,” IEEE Netw. Mag., vol.33, no.5, pp.156-165,
2019.

[25] T. Li, A. Sahu, M. Zaheer, et al., “Federated optimization in heteroge-
neous networks,” arXiv preprint arXiv:1812.06127, 2020.

[26] Y. Li, S. Yang, X. Ren, et al., “Asynchronous Federated Learn-
ing with Differential Privacy for Edge Intelligence,” arXiv preprint
arXiv:1912.07902. Dec. 2019.

[27] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Differentially
Private Asynchronous Federated Learning for Mobile Edge Computing
in Urban Informatics,” IEEE Trans. Ind. Inform., vol. 16, no. 3, pp.
2134-2143, Mar. 2020.

[28] K. Bonawitz, H. Eichner, W. Grieskamp, et al., “Towards Federated
Learning at Scale: System Design,” arXiv preprint arXiv:1902.01046.
Feb. 2019.

[29] C. Xie, S. Koyejo, I. Gupta, “Asynchronous Federated Optimization,”
arXiv preprint arXiv:1903.03934. Mar. 2019.

[30] Y. Chen, X. Sun and Y. Jin, “Communication-Efficient Federated Deep
Learning With Layerwise Asynchronous Model Update and Temporally
Weighted Aggregation,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1 -
10, Dec. 2019.

[31] Y. Lu, X. Huang, K. Zhang, S. Maharjan and Y. Zhang, ”Blockchain
Empowered Asynchronous Federated Learning for Secure Data Sharing
in Internet of Vehicles,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp.
4298-4311, Apr. 2020.

[32] X. Lu, Y. Liao, P. Lio, and P. Hui, “Privacy-Preserving Asynchronous
Federated Learning Mechanism for Edge Network Computing,” IEEE
Access, vol. 8, pp. 48970-48981, Mar. 2020.

[33] H. Mohamed, and S. Osama, “Traffic modeling and proportional partial
caching for peer-to-peer systems,” IEEE-ACM Trans. Netw., vol. 16, no.
6, pp. 1447-1460, Dec. 2008.

[34] X. Li, X. Wang, J. Wan, et al., “Hierarchical edge caching in device-
to-device aided mobile networks: Modeling, optimization, and design,”
IEEE J. Sel. Areas Commun., vol. 36, no. 8, pp. 1768-1785, Aug. 2018.

[35] T. Govier, Social trust and human communities. McGill-Queen’s Press-
MQUP, 1997.

[36] C. Selvi, E. Sivasankar, ”A Novel Singularity Based Improved Tanimoto
Similarity Measure for Effective Recommendation Using Collaborative
Filtering,” in International Conference on Cloud Computing, Data
Science & Engineering (Confluence), pp. 256-262, Noida, 2018.

[37] X. Wang, C. Wang, X. Li, V. C. M. Leung, T. Taleb, “Federated
Deep Reinforcement Learning for Internet of Things with Decentralized
Cooperative Edge Caching,” IEEE Internet Things J., pp. 1-1, April
2020.

[38] G. Kleinberg and E. Tardos, “Algorithm Design,” Cornell Univ., Ithaca,
NY, USA, 2004.

[39] B. Dzmitry, C. Kyunghyun, and B. Yoshua, “Neural Machine Trans-
lation by Jointly Learning to Align and Translate,” arXiv preprint
arXiv:1409.0473, 2014;

[40] K. Xu, J. Ba, R. Kiros, et al., “Show, attend and tell: Neural image
caption generation with visual attention,” in Proc. ICML, Jun. 2015, pp.
2048-2057.

[41] X. Li, K. Huang, W. Yang, et al., “On the convergence of fedavg on
non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[42] M. Arlitt, L. Cherkasova, J. Dilley, et al., “Evaluating content manage-
ment techniques for web proxy caches,” in Proc. ACM SIGMETRICS
Performance Evaluation Review, vol. 27, no. 4, pp. 3-11, Mar. 2000.

Xiaofei Wang (S’06, M’13, SM’18) is currently
a Professor with the Tianjin Key Laboratory of
Advanced Networking, School of Computer Science
and Technology, Tianjin University, China. He got
master and doctor degrees in Seoul National Univer-
sity from 2006 to 2013, and was a Post-Doctoral Fel-
low with The University of British Columbia from
2014 to 2016. Focusing on the research of social-
aware cloud computing, cooperative cell caching,
and mobile traffic offloading, he has authored over
100 technical papers in the IEEE JSAC, the IEEE

TWC, the IEEE WIRELESS COMMUNICATIONS, the IEEE COMMUNI-
CATIONS, the IEEE TMM, the IEEE INFOCOM, and the IEEE SECON.
He was a recipient of the National Thousand Talents Plan (Youth) of China.
He received the “Scholarship for Excellent Foreign Students in IT Field” by
NIPA of South Korea from 2008 to 2011, the “Global Outstanding Chinese
Ph.D. Student Award” by the Ministry of Education of China in 2012, and
the Peiyang Scholar from Tianjin University. In 2017, he received the “Fred
W. Ellersick Prize” from the IEEE Communication Society.

Ruibin Li (S’20) received his B.S degrees in School
of Computer Science and Technology, College of
Intelligence and Computing at Tianjin University,
Tianjin, China, in 2019. He is currently pursuing the
M.S. degree in the School of Computer Science and
Technology, College of Intelligence and Computing
at Tianjin University, Tianjin, China. His current
research interests include edge caching, distributed
federated learning optimization, reinforcement learn-
ing, edge intelligence and deep learning.

Chenyang Wang (S’18) received his B.S and
M.S. degrees in computer science and technology
from Henan Normal University, Xinxiang, Henan
province, in 2013 and 2017, respectively. He is
currently pursuing the Ph.D. degree in the School
of Computer Science and Technology, College of
Intelligence and Computing at Tianjin University,
Tianjin, China. His current research interests include
edge computing, big data analytics, reinforcement
learning, and deep learning. He received the “Best
Student Paper Award” of the 24th International Con-

ference on Parallel and Distributed Systems by IEEE Computer Society in
2018.

Xiuhua Li (S’12, M’19) received the B.S. degree
from the Honors School, Harbin Institute of Technol-
ogy, Harbin, China, in 2011, the M.S. degree from
the School of Electronics and Information Engineer-
ing, Harbin Institute of Technology, in 2013, and the
Ph.D. degree from the Department of Electrical and
Computer Engineering, The University of British
Columbia, Vancouver, BC, Canada, in 2018. He
joined Chongqing University through One-Hundred
Talents Plan of Chongqing University in 2019. He is
currently a tenure-track Assistant Professor with the

School of Big Data & Software Engineering, and the Dean of the Institute of
Intelligent Software and Services Computing associated with Key Laboratory
of Dependable Service Computing in Cyber Physical Society (Chongqing
University), Education Ministry, China. His current research interests are
5G/6G mobile Internet, mobile edge computing and caching, big data analytics
and machine learning.

Tarik Taleb received the B.E. degree (with dis-
tinction) in information engineering and the M.Sc.
and Ph.D. degrees in information sciences from
Tohoku University, Sendai, Japan, in 2001, 2003,
and 2005, respectively. He is currently a Professor
with the School of Electrical Engineering, Aalto
University, Espoo, Finland. He is the founder and the
Director of the MOSA!C Lab, Espoo, Finland. He
is a part-time Professor with the Center of Wireless
Communications, University of Oulu, Oulu, Finland.
He was an Assistant Professor with the Graduate

School of Information Sciences, Tohoku University, in a laboratory fully
funded by KDDI until 2009. He was a Senior Researcher and a 3GPP
Standards Expert with NEC Europe Ltd., Heidelberg, Germany. He was then
leading the NEC Europe Labs Team, involved with research and development
projects on carrier cloud platforms, an important vision of 5G systems. From
2005 to 2006, he was a Research Fellow with the Intelligent Cosmos Research
Institute, Sendai. He has also been directly engaged in the development and
standardization of the Evolved Packet System as a member of the 3GPP
System Architecture Working Group. His current research interests include
architectural enhancements to mobile core networks (particularly 3GPP’s),
network softwarization and slicing, mobile cloud networking, network func-
tion virtualization, software defined networking, mobile multimedia streaming,
intervehicular communications, and social media networking.

Prof. Taleb was a recipient of the 2017 IEEE ComSoc Communications
Software Technical Achievement Award in 2017 for his outstanding contri-
butions to network softwarization and the Best Paper Awards at prestigious
IEEE-flagged conferences for some of his research work. He was a corecipient
of the 2017 IEEE Communications Society Fred W. Ellersick Prize in 2017,
the 2009 IEEE ComSoc Asia–Pacific Best Young Researcher Award in 2009,
the 2008 TELECOM System Technology Award from the Telecommunica-
tions Advancement Foundation in 2008, the 2007 Funai Foundation Science
Promotion Award in 2007, the 2006 IEEE Computer Society Japan Chapter
Young Author Award in 2006, the Niwa Yasujirou Memorial Award in 2005,
and the Young Researcher’s Encouragement Award from the Japan Chapter
of the IEEE Vehicular Technology Society in 2003. He is a member of the
IEEE Communications Society Standardization Program Development Board.
He is/was on the Editorial Board of the IEEE TRANSACTIONS ON WIRE-
LESS COMMUNICATIONS, IEEE Wireless Communications Magazine, the
IEEE JOURNAL ON INTERNET OF THINGS, the IEEE TRANSACTIONS
ON VEHICULAR TECHNOLOGY, IEEE COMMUNICATIONS SURVEYS
AND TUTORIALS, and a number of Wiley journals.

Victor C. M. Leung (S’75, M’89, SM’97, F’03) is
a Distinguished Professor of Computer Science and
Software Engineering at Shenzhen University. He is
also an Emeritus Professor of Electrical and Com-
puter Engineering and the Director of the Laboratory
for Wireless Networks and Mobile Systems at the
University of British Columbia (UBC). His research
is in the broad areas of wireless networks and
mobile systems. He has co-authored more than 1300
journal/conference papers and book chapters. Dr.
Leung is serving on the editorial boards of the IEEE

Transactions on Green Communications and Networking, IEEE Transactions
on Cloud Computing, IEEE Access, IEEE Network, and several other journals.
He received the IEEE Vancouver Section Centennial Award, 2011 UBC Killam
Research Prize, 2017 Canadian Award for Telecommunications Research,
and 2018 IEEE TCGCC Distinguished Technical Achievement Recognition
Award. He co-authored papers that won the 2017 IEEE ComSoc Fred W.
Ellersick Prize, 2017 IEEE Systems Journal Best Paper Award, 2018 IEEE
CSIM Best Journal Paper Award, and 2019 IEEE TCGCC Best Journal Paper
Award. He is a Fellow of IEEE, the Royal Society of Canada, Canadian
Academy of Engineering, and Engineering Institute of Canada. He is named
in the current Clarivate Analytics list of Highly Cited Researchers.

