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A B S T R A C T

Along with the high demand for network connectivity from both end-users and service providers, networks have
become highly complex; and so has become their lifecycle management. Recent advances in automation, data
analysis, artificial intelligence, distributed ledger technologies (e.g., Blockchain), and data plane programming
techniques have sparked the hope of the researchers’ community in exploring and leveraging these techniques
towards realizing the much-needed vision of trustworthy self-driving networks (SelfDNs). In this vein, this
article proposes a novel framework to empower fully distributed trustworthy SelfDNs across multiple domains.
The framework vision is achieved by exploiting (i) the capabilities of programmable data planes to enable
real-time in-network telemetry collection; (ii) the potential of P4 – as an important example of data plane
programming languages – and AI to (re)write the source code of network components in a fashion that the
network becomes capable of automatically translating a policy intent into executable actions that can be
enforced on the network components; and (iii) the potential of blockchain and federated learning to enable
decentralized, secure and trustable knowledge sharing between domains. A relevant use case is introduced and
discussed to demonstrate the feasibility of the intended vision. Encouraging results are obtained and discussed.
The emerging distributed and cooperative AI techniques, including
Federated Learning (FL), are envisioned to play a key role in empow-
ering fully distributed self-managing capabilities in 5G and beyond
1. Introduction

Along with the ongoing advances in the communications and net-
working technologies, highly-innovative mobile services have emerged,
involving a potential number of users and a much further higher
number of devices (e.g., Internet of Things — IoT devices). Configur-
ing these extremely-large, extremely dynamic, and extremely-complex
networks and constantly managing their lifecycle have consequently be-
come much more challenging. In this regard, human interventions have
lead to eventual errors: 80% of businesses claim to have experienced
network errors caused by human mistakes on a regular basis [1].

Along with the emergence of Automation, Data Analysis, and Arti-
ficial Intelligence (AI) techniques, research efforts have been directed
towards incorporating these techniques towards realizing the concept
of Self-driving networks (SelfDNs) [2]. SelfDNs are networks which can
monitor, analyze, and automatically maintain themselves, minimizing
the intervention of network engineers to a large extent or completely
getting rid of it. Networks can detect bugs, and define and enforce
adequate policies to repair themselves. The road towards realizing
this vision is still quite long, but the community of researchers firmly
believes that this defines a new horizon for the future of smart network
management.
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networks while meeting their stringent isolation demands and data
sharing regulations [3,4]. In fact, the FL paradigm enables knowledge
sharing between distributed entities without exposing their local data,
which allows improved learning accuracy, better data privacy preser-
vation and reduced communication cost [5]. All these benefits have
propelled the recent activities being progressed in different standard-
ization organizations and alliances for adopting distributed AI in next
generation autonomous mobile networks, including 3GPP [6,7], ETSI
ZSM [8], ETSI ENI [9], ITU-T [10,11], and O-RAN [12]. Nevertheless,
the utilization of AI, including distributed AI, to enable autonomic
capabilities unleashes new attack vectors which may impair network
performances and security if appropriate safeguard measures are not
put in place [13]. For instance, the adoption of FL paradigm in SelfDN
calls for effective mechanisms to prevent the manipulation of shared
knowledge (i.e., local model updates) and guarantee that collaborative
entities are not malicious. Blockchain, as a potential distributed ledger
technology, comes into play to meet this goal, thanks to its intrinsic
properties of decentralization, immutability, transparency, security and
privacy [5].
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Fig. 1. A typical SelfDN architecture [2].

AI is expected not only to contribute to the vision of SelfDNs, but to
also speed up its realization, particularly when intelligently leveraged
with Data Plane Programming technologies (e.g., DPP – P4). Effec-
tively, quite a number of devices in today’s networks are programmable
and P4 is a noticeable example of DPP languages, entirely orthogonal
to the underlying architecture of the network. Jointly leveraging AI
and P4 comes with numerous advantages, thanks to the variety of
telemetry data that can be collected from network components using
P4; i.e., not only information about network flows but also In-band
Network Telemetry (INT). This forms an extremely large amount of
information to be processed by AI.

Intuitively, in the context of SelfDNs, AI and DPP languages can be
used to carry out actions and add flow rules in the match/action tables
of network components with specific intents. In this paper, the intention
goes beneath this simple vision, by leveraging AI to (re)write the source
code of the devices in a fashion that the network becomes capable of
automatically creating a match/action table, compiling the new code,
and injecting it into a selected set of network components. Hereby, it is
worth highlighting recent work on code writing using AI (e.g. [14,15]),
which goes inline with the envisioned concept. This vision is further
extended by defining a novel framework to empower fully distributed
trustworthy SelfDNs across multiple domains, and this by relying on
the potentials of blockchain and FL to enable decentralized, secure and
trustable knowledge sharing.

The remainder of this article is organized in the following fashion.
Section 2 introduces the basics of SelfDNs, while Section 3 motivates
the need of empowering SelfDN in 5G and beyond networks. Section 4
provides background information related to key emerging technologies
considered in this work, namely P4 language, genetic programming, FL
and blockchain. Section 5 presents the proposed AI-powered trustwor-
thy distributed SelfDN framework, describing its key functional blocks
and highlighting the potential of the aforementioned technologies in
realizing this vision. It particularly discusses the workflow for collecting
network telemetry using P4 (i.e., as an example of DPP languages)
and how AI can be used to write a P4 code. Section 5 also introduces
our envisioned blockchain-based decentralized FL approach. Section 6
discusses a relevant use case and presents the related performance
results. The paper concludes in Section 7.

2. Self-driving network basics

A self-driving network aims to empower intelligent closed-loop
operation and management of the network. As shown in Fig. 1, the
2

main steps in the closed-loop of a SelfDN include: (1) the collection of
streaming telemetry from the network; (2) the use of Machine Learning
(ML) to extract insights and make prediction; (3) the evaluation and
decision making based on the intent specifying the desired network
behavior [2].

2.1. Intent

Intents are a key enabler of automation, which is the foundation of
self-driving networks. An intent is a high-level description of how the
network should behave, without specifying the low-level configurations
of network entities to fulfill the desired behavior. Thus, intents are
about ‘‘what is required’’ rather than ‘‘how it is achieved’’. For instance,
a network operator may specify that two devices must have the same
quantity of traffic going through them, which will be automatically
translated by the system into the deployment of a load balancer. In
another scenario, the service model of a network slice may contain
the high-level specification that the ‘‘HTTP traffic from slice X to
the Internet needs a high security level’’, which will be automatically
mapped to a service chaining of three virtual security functions (VSFs),
namely a firewall, a Deep Packet Inspection (DPI), and an Intrusion
Prevention System (IPS) [16]. While several languages have been pro-
posed to describe the intents, an ultimate goal sought by SelfDN is
to empower the automatic creation of intents from network operator’s
intentions expressed in a natural language. The contribution in [17] is
a step towards this goal. In this work, the authors leveraged Machine
Learning (ML) and feedback from the operator to extract the intent’s
main actions and target entities (e.g., network endpoints, middleboxes)
from a pure natural language.

2.2. Real-time telemetry

The operations of SelfDN are driven by telemetry data collected
from the network. To achieve the SelfDN vision, to autonomously
manage the network based on the continuous assessment of its status,
a real-time gathering of relevant telemetry data is necessary. In order
to reduce the amount of telemetry data to be collected, the type of
data and the frequency of collection need to be specified. Moreover,
a special attention should be paid to the quality of telemetry data.
In fact, inaccurate or incomplete data can have a significant impact
on the accuracy of decisions made by the SelfDN. The data quality
refers to data that are fit for use by data consumers [18]. Accuracy,
completeness, validity, timeliness and consistency are the key metrics
to quantify the data quality. Finally, a common data model needs to be
defined in order to normalize the data format, allowing its automatic
parsing and use. OpenConfig Streaming Telemetry [19] initiative aims
at defining a vendor-agnostic model for telemetry data.

2.3. Prediction

The prediction refers to the process of analyzing the streamed
telemetry data to extract hidden insights, such as network anomalies
and forecast of traffic load and service quality. To this end, mechanisms
to process and correlate a large volume of multi-dimensional and
time-varying data are required. ML is poised as an ideal candidate
to meet this goal, thanks to its capabilities to perform multi-model
learning on real-time and historical data to uncover hidden patterns
and predict the future. Among various ML techniques, Deep Learning
(DL) has recently emerged as a powerful technique having the ability
to automatically learn useful features from multi-dimensional raw data,
to capture dependencies in a spatio-temporal data space, and to scale
its performance with the volume of data. The aforementioned capa-
bilities combined with the technology development (i.e., memory and
processing power) are the key drivers behind the recent success and
popularity of DL in many application domains, including mobile and
wireless networking [20]. In fact, DL has exhibited superior potential in
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solving complex problems that are beyond the capabilities of traditional
learning approaches. However, the efficiency of emerging ML models in
delivering accurate and timely insights depends largely on the amount
and variety of correlated data, but above all, on their quality [21].
As aforementioned, the use of poor-quality data that involve repeated,
corrupted, missing, incomplete, inconsistent, or abnormal entries has a
direct impact on the inferred insights, entailing the risk of increasing
uncertainty and decreasing the reliability and optimality of decisions
made by SelfDN. Therefore, a standardized procedure and advanced
methods for cleansing and preparing data to fit for ML models are
paramount to improving both training and inference accuracy. The ISO
(International Organization for Standardization) and IEC (International
Electrotechnical Commission) joint technical committee on artificial
intelligence (ISO/IEC JTC 1/SC 42) is currently preparing a new series
of four standards ISO/IEC AWI 52591 which addresses the quality of
data for analytics and ML. The series aims, among other things, at
describing criteria for data quality and a standardized procedure for
data processing. Furthermore, ML is also recognized as a key enabler for
improving and assessing the data quality in an automated way. Indeed,
ML has proven to be an effective method for dimensionality reduction,
feature extraction, de-duplication, outliers detection and removal, and
training data valuation [22,23].

Besides data quality, model building is a vital stage to construct
ML models that can achieve higher prediction/detection accuracy. This
stage includes the selection of the appropriate learning algorithm and
the optimization of its associated hyperparameters [21]. It is worth
mentioning that hyper-parameter tuning is an expensive process re-
quiring several training, validation and testing trials in order to find
the optimal set of hyperparameters yielding the higher accuracy. Thus,
innovative methodologies are required to automate and accelerate the
design of high-performance ML models. The recently emerging Au-
toML (Automated ML) [24] and NAS (Neural Architecture Search) [25]
approaches can be leveraged to automatically design high-scale and
efficient ML models [26]. Moreover, transfer learning [21] and paral-
lelization of hyperparameter optimization methods [27] are promising
solutions to tackle the slow training issue.

Once the trained ML model is deployed, it runs the risk of becoming
outdated over the time due to drift between the model training context
and the current operating environment. In fact, the dynamicity of the
operating environment can lead to changes in distribution of input data
(i.e., data drift) and/or the target variable to predict (i.e., concept drift),
resulting in degradation of the model’s predictive performance [13].
Thus, continuous update of the deployed ML model is necessary to
cope with drift and boost the autonomous driving capabilities. Model
retraining and online learning are common strategies to deal with
model drifts [28].

2.4. Evaluation

In SelfDN, the evaluation is a non-stop operation that constantly
monitors the network status using telemetry data and extracted in-
sights, compares the current status to the intended status stated in
the intent, and takes necessary actions to restore compliance with
the specified intent. The evaluation can either be a straightforward
assessment of telemetry data (e.g., checking if the defined Service Level
Agreements (SLAs) are met) or rely on extracted insights to conduct a
root cause analysis (RCA) in order to identify the cause behind a failure,
a dysfunction, or a security incident. ML, particularly DL, is deemed to
play a pivotal role in fostering self RCA that can automatically identify
the root causes by analyzing and correlating a large amount of high-
dimensional data and provide timely and actionable feedback [13]. To
meet the scalability and timeliness requirements of SelfDN, cascaded
DL models can be leveraged to devise RCA mechanisms. It is worth

1 https://www.iso.org/committee/6794475.html.
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mentioning that cascaded DL models can be trained in parallel with
less training data [29].

Similar to the prediction stage, ensuring the data and model quality
is a key requisite to empower accurate ML-driven RCA mechanisms.

2.5. Decision-making

Leveraging the evaluation results, the decision-making sub-system
isolates the cause of the problem, and finds out the appropriate actions
to apply in order to mitigate the problem. Due to the interconnected
nature of the network and the potential problems that may stem from
applying the new actions, it is pivotal to determine the right time of
their execution. Moreover, backup and roll-back strategies need to be
established, which allows to restore the network to its status before
applying the action. Deep Reinforcement Learning (DRL) has shown to
be a promising approach to enable self-adaptive and online decision-
making in high-dimensional state–action space, which is essential for
empowering SelfDN capabilities in complex and dynamic networks
such as 5G and beyond networks [30].

3. SelfDN for 5G and beyond networks

While in the previous section we provided an overview of the
main stages composing the operation and management closed loop
of a SelfDN in general, here we specifically motivate the need of
empowering SelfDN in 5G and beyond networks and discuss the key
requirements and challenges that should be taken into account to
enable self-driving mobile networks.

5G networks are being architected as highly programmable, ex-
tremely flexible and holistically-managed infrastructures that can meet
the differentiated SLA (Service Level Agreement) requirements for dis-
tinct services and tenants [21]. Densification, softwarization, virtual-
ization, edge computing and network slicing technologies are playing
a key role in achieving this goal. Various applications and services,
including enhanced mobile broadband, machine-to-machine commu-
nication, virtual and augmented reality, among others, have emerged
demonstrating the potential of 5G in providing lower latency, higher
data rates, as well as increased connectivity and energy efficiency.
However, 5G capabilities are already envisioned to fall short to cater
to stringent performance demands in terms of delay, reliability and
efficiency of future use cases, such as holographic type communica-
tions, multi-sense networks, digital twins, and time engineered applica-
tions [31]. The foreseen limitations have spurred the recent efforts to
evolve mobile networks beyond 5G to further enhance 5G capabilities
by delivering ultra-low latency, ultra-high throughput, ultra massive
connectivity while providing features that foster sustainability, such as
ultra-low energy usage, ultra-high reliability, scalability and autonomy.
Besides using advanced radio technologies, beyond 5G networks will
pursue the shift towards a truly cloud-native, service-based architecture
with a higher degree of virtualization and network programmability,
and the support of ubiquitous intelligence [32].

The plurality of interconnected devices and services, coupled with
the increasing demands in performance, flexibility, and cost-efficiency
will inevitably pose significant complexity in managing and operating
5G and beyond networks. Thus, a shift towards SelfDN paradigm will
play a key role in managing this complexity in order to fulfill 5G and
beyond promises. Nevertheless, the realization of Self-driving mobile
networks will not only inherit the challenges related to data and
ML models quality as well as the standardization of data model and
handling procedure as discussed in the previous section, but will come
with some additional considerations that need to be taken into account.

Although 5G and beyond networks will be characterized by a large
amount of data produced by different sources (e.g., services/1u appli-
cations, network elements) from different network domains (e.g., Radio
Access Network (RAN), Core Network (CN), Transport Network (TN)),
it is challenging to have enough high-quality data available for training

https://www.iso.org/committee/6794475.html
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and validating ML models to be involved in the self-managing tasks. In
fact, the network-typical and network characteristic datasets for 5G and
beyond networks are actually scare since the roll-out of 5G networks
has just started and the beyond 5G networks are still under specifica-
tion [33]. Moreover, tighter privacy regulations (e.g., GDPR) may limit
the useful data to be collected and shared. The use of Generative Ad-
versarial Networks (GANs) and Federated Learning are two promising
directions to address this data scarcity in compliance with regulation.
GANs can be applied to efficiently create realistic synthetic network
data based on limited historical data [34]. Federated Learning is an
emerging distributed ML approach that has the advantage of learning
a global model from local data and limiting the information exchange
to the model parameters, which results in privacy-preservation and
reduced communication cost [35].

The variety of data sources and types calls more then ever for a
unified framework for handling network data. The recent initiatives
by ITU-T and ETSI ENI are concrete steps in that direction. The ITU-
T Y.3174 recommendation provides a data handling framework for
enabling ML in future networks including mobile networks [36]. The
proposed framework supports requirements related to ML data collec-
tion, ML data processing and ML data output. ESTI ENI introduces a
high-level reference framework that describes some technical methods
for generating high-quality actionable data efficiently and in a timely
manner to support data-driven intelligent networks [37].

Finally, this paradigm-shift towards network intelligentization and
full autonomy will raise new security concerns stemming from the use
of AI. Indeed, ML techniques have been proven vulnerable to several
adversarial attacks that can influence them to learn wrong models or
make erroneous decisions/predictions, which may endanger not only
the performance expectations of 5G and beyond networks but also the
people’s lives [13]. Hence, building robust ML models is paramount
to foster trust in SelfDNs. Different defenses can be adopted to enable
ML models robustness including input validation, adversarial training
and moving target defense [13]. Being aware of the importance of AI
security, the topic has recently gained attention from standardization
bodies. For instance, ISO/IEC JTC 1/SC 42 has published two technical
reports providing an overview of trustworthiness in AI [38] and an
assessment of the robustness of neural networks [39]. ETSI Industry
Specification Group on Securing Artificial Intelligence (ISG SAI2) has
released three reports on the security threats, the mitigation strategies
and the security of the data supply chain for ML-based systems and
solutions in ICT field.

4. Preliminaries

In this section, we present the preliminary concepts that are re-
quired to follow the rest of the paper, namely P4 language, genetic
programming, Federated Learning, and Blockchain.

4.1. P4 language

P4 is a domain-specific language for programming protocol-
independent packet processors [40]. It allows to express how packets
are processed by the data plane of programmable network elements
such as hardware or software switches, network interface cards (NICs),
or routers. P4 is devised to meet three main goals:

• protocol-independence, meaning that the network element should
not be tied to any particular network protocols. P4 enables the
specification of new header formats with new field names and
types;

• target-independence, which means that the P4 program is indepen-
dent of the network element details; and

2 https://www.etsi.org/committee/sai.
4
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• reconfigurability, providing the ability to reprogram the packet
processing logic of the network element at runtime.

A typical P4 packet processing pipeline includes a parser for ex-
racting the header fields, a set of match-action tables to process and
odify the extracted headers, and a deparser for reassembling the pro-

essed headers into the outgoing packet [41]. Each match-action table
atches specific keys from the header fields and computed metadata

nd invokes the corresponding actions on the packet upon matching.
he order in which the match-action tables are applied to a packet

s determined by an imperative control flow. The table entries are
ypically populated at runtime by the control plane.

P4 provides stateful memories (i.e., counters, meters and registers)
or maintaining state across multiple packets when they are traversing
he switch. The stateful memories can be global (i.e., they can be
eferenced by any match-action table) or static (i.e., bound to one
able).

.2. Genetic programming

Genetic Programming (GP) [42] is an evolutionary approach that
xtends Genetic Algorithms (GAs) for automatic writing of computer
rograms. It consists in applying GAs to a population of randomly
reated candidate programs to solve a target problem. A computer
rogram (i.e., phenotype) is encoded as a genome (i.e., genotype). The
opulation is progressively evolved over a series of generations. The
rograms in each generation are evaluated against a fitness function
nd the ones who achieve a better fitness score are selected for breeding
n the new generation using crossover and mutation operations. The
opulation evolvement process stops once the program that can solve
he problem at hand is produced; i.e., the program with a satisfactory
itness value.

.3. Federated learning

As stated in previous section, Federated learning (FL) is an emerging
istributed ML approach that aims to train a global model while pre-
erving the privacy of the distributed data. The traditional FL follows

client–server architecture in which a set of clients collaboratively
rain a global model by aggregating their locally-computed model
pdates through a central server while keeping their training data
ocalized [43,44]. Once updated, the new improved global model is
ent back to the clients and the procedure is repeated until the global
odel converges. By limiting the information exchange to the model
arameters, FL fosters the sharing of locally learned knowledge with
etter control of data privacy and reduced communication cost. These
enefits have prompted the recent growing interest in applying FL for
G and beyond networks to meet their stringent isolation demands and
ata sharing regulations [4,45]. However, the reliance of traditional FL
n a central unit poses both single point of failure and scalability issues.
hese limitations are serious obstacles to cater to the high scalability
nd reliability needs of 5G and beyond networks.

To mitigate the aforementioned issues, recent research works have
een investigating the decentralization of the FL process to enable the
ggregation of model updates in a distributed way; that is without
equiring a central server [3,46,47]. For instance, Daily et al. [48]
evise a collaborative learning strategy based on decentralized Asyn-
hronous Gradient Descent (SGD) and using gossip communication for
utual exchange of model updates. In [49], a serverless FL approach

hat uses consensus for mutual interactions is developed. The authors
n [50] propose a fully decentralized federated method that is based
n interplanetary file system (IPFS). The work in [51] introduces the
eacher–student concept whereby student models are learning from
he outputs of teacher models on auxiliary samples generated from
he locally available training data. While this approach eliminates the
xchange of model parameters, it requires the sharing of auxiliary data.

In this paper, we devise a novel method for enabling decentralized

L in SelfDN with multi-domain setting.

https://www.etsi.org/committee/sai
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4.4. Blockchain

The Blockchain technology provides a zero-trust mechanism that
allows secure transactions without relying on a trusted third party;
it achieves this by recording all the information exchanges in a set
of blocks as digitally-signed transactions [52]. The blocks are chained
together by adding in each block the hash of the previous block.
Each block is first validated using a consensus protocol among nodes
participating in the blockchain network before being added to the
chain. Blockchains can be permissionless where anyone can join the
lockchain and participate in the consensus process, or permissioned
here its participants are only authorized entities. The key features
f blockchain – decentralization, immutability, transparency, security
nd privacy – make it a potential candidate to empower zero-trust in
G and beyond networks [5].

In this paper, we leverage blockchain to foster trust in data and
ommunications in a multi-domain SelfDN.

. AI-powered trustworthy distributed SelfDNs

Software-defined, programmable networking fabric is recognized
s a key enabling technology to support 5G and beyond networks in
chieving their promises of high-level scalability and flexibility with
ower CAPEX and OPEX [21]. Going beyond 5G will be also charac-
erized by pursuing deep programmability of the network fabric both
ertically (i.e., control and data plane) and horizontally (i.e., end-to-
nd from the radio access network to edge and core network) [53]
o fulfill the stringent performance requirements. In fact, endowing
he next-generation mobile networks with data plane programming
apabilities will bring various benefits, including dynamic traffic en-
ineering at wire-speed, INT for latency-critical services, slicing and
ulti-tenancy, in-network security, and offloading of 5G VNF to data
lane [54].

In this section, we propose a novel framework that leverages the
otential of emerging technologies, namely Blockchain, Programmable
ata Planes (PDP), and AI, to empower fully distributed trustworthy
elfDN across multiple domains. Fig. 2 illustrates the high level ar-
hitecture of the proposed framework. We consider a multi-domain
DN-enabled network with PDP. We consider a multi-domain network
hat supports both control-plane and data-plane programmability using
DN and PDP, respectively. In addition to flexibility introduced by
ontrol-plane programmability, data plane programmability enables
ustomized network functions/protocols to be deployed, stateful packet
rocessing at wire speed as well as dynamic reconfiguration of the pro-
essing logic at run-time using domain-specific networking description
anguage (e.g., P4). The aforementioned capabilities make PDP a key
nabler to realize SelfDN.

In each domain, self-managing capabilities (e.g., self-configuration,
elf optimization, self-healing, self-protection) are enabled through
L-powered closed loops. The deployed closed loops leverage ML

echniques to identify/predict performance and/or security issues based
n constant processing of telemetry data produced by the data plane,
nd thus derive the corrective/preventive strategy to address the issue
n order to meet the desired performance and security levels. The cor-
ective/preventive strategy is issued as an intent that is automatically
ranslated into a set of executable actions (e.g., P4 code) to be enforced
n the programmable switches via the SDN controller. The translation
s a complex process since the set of actions will depend not only on the
ew intent but also on various other parameters, such as the currently
nforced intents and network topology. Thus, an AI-assisted solution is
equired to tame this complexity and generate optimal data-plane codes
hat are context-aware.

The effectiveness and efficiency of the deployed self-managing
losed loops is contingent on the accuracy of the incorporated ML
odels, which in its turn heavily relies on the availability of a large

mount of high-quality training data. Such data may not be available
5

in one domain and collaboration between domains is essential to
improve accuracy and enable cross-domain self-managing operations.
Nevertheless, the exchange of raw data among domains may not be
possible due to strict business, security and privacy policies and regu-
lations established to prevent leakage of sensitive information. To deal
with these restrictions while fostering fully distributed collaboration
between domains, we adopt a decentralized FL approach. This results in
increased training efficiency and allows the sharing of learning knowl-
edge without compromising data security and privacy. Furthermore,
the adoption of a fully decentralized FL enables greater communication
efficiency compared to the vanilla FL, as a central entity is not required
to exchange the model updates.

Despite its benefits in preserving data privacy, FL is proven vul-
nerable to adversarial attacks [13]. In fact, malicious participants may
launch poisoning attacks by uploading false or low-quality local model
updates to undermine the accuracy of the global model. To overcome
this challenge, we employ blockchain to enable secure and trustable
decentralized FL. The blockchain ensures the integrity of the local
model updates to prevent their manipulation. Furthermore, the quality
of the local model updates is assessed using a smart contract, allowing
to deter poisoning attacks by considering only local models with high
performance in the update of the global model.

In the remainder of this section, we discuss the potential of pro-
grammable data plane in enabling real-time in-network telemetry col-
lection, demonstrate how GP can be leveraged to automatically trans-
late an intent into a P4 code, and describe the envisioned blockchain-
based decentralized FL mechanism.

5.1. Programmable data plane for telemetry

The envisioned high dynamicity and large-scale of 5G and beyond
networks make traditional techniques to monitor network state in-
sufficient to entitle self-driving capabilities. In fact, the conventional
sampled and probe-based techniques use poll-based strategy to fetch
data through data plane, cover a limited range of data, lack the capa-
bility of aggregating data from multiple sources, and result in network
resource consumption [55]. Programmable data plane, using e.g. P4
language, comes as a solution to overcome these limitations by enabling
In-band Network Telemetry (INT), which consists in collecting and
reporting the network state at the data plane level, without needing
the involvement of the control plane [56]. Three operation modes
are distinguished for an INT application based on the level of packet
modifications, namely [56]:

• INT-XD (eXport Data) mode, known also as Postcard mode,
whereby the metadata are exported directly from the data plane
to the monitoring system without packet modification;

• INT-MX (eMbed instruct(X(ions))) mode, whereby INT instruc-
tions are incorporated in the packet header. Each receiving device
sends the metadata directly to the monitoring system based on the
embedded instructions;

• INT-MD (eMbed Data) mode, whereby both INT instructions and
metadata are embedded in the packet and forwarded to the next
hop until reaching the last network device before destination. The
last network device removes the INT instructions and aggregated
metadata from the packet and sends them to the monitoring
system.

Using P4, we can generate different types of telemetry reports,
including tracked flow reports, dropped packet reports, and congested
queue reports.

The capabilities of P4-based programmable data plane to provide
real-time telemetry with the ability to specify which information need
to be collected make it a key driver to enable SelfDN. In the next
subsection, we demonstrate how we leverage P4’s registers and INT for

real-time detection of Application-layer DDoS attacks.
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Fig. 2. High level architecture of fully distributed trustworthy SelfDN.
Fig. 3. P4 code generation process.
5.2. AI-assisted data plane code generator

To fully reap the benefits of programmable data plane in realizing
SelfDN, the network should be able to automatically generate the code
of the network devices based on intents. The flow-chart in Fig. 3
illustrates the proposed process for translating an intent into a P4
code. Once an intent is received, the code generator starts first by
checking if this intent is already enforced in the network. In such case,
a root cause analysis (RCA) is triggered to determine the actual cause
of non-fulfillment of the intent. The RCA can be carried out either
manually by the domain administrator or automatically leveraging the
potential of ML [13]. The next step consists in identifying and resolving
potential conflicts between the newly created intent and the existing
6

intents. If no conflict is detected or the conflict resolution procedure
prioritizes the newly created intent, the P4 code generation is triggered.
AI can be a potential game-changer for making automatic data plane
code generation a reality. In fact, recent works (e.g., [15,57,58]) have
demonstrated how machine learning techniques can be leveraged to
generate code source. For instance, the authors in [15] used neural
networks to write Java code. In [58], GP is used to automatically
repair buggy java programs. The work in [58] presents GP4P4, a first
proposal for automatically creating P4 code for small network func-
tions (e.g., firewall, Network Address Translation (NAT), and router)
leveraging GP. Although GP4P4 shows the feasibility of autonomous P4
code creation, it exhibits some limitations. In fact, the generated code
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𝑚

s in the form of a sequence of IF–THEN statements rather than match-
ction table (MAT) abstractions, which can largely increase the lookup
ime. Moreover, starting the code generation from evolving sequences
f basic one-line declarations in P4 increases considerably the search
pace and time for GP algorithm.

To overcome the aforementioned limitations, we propose AutoP4; a
ew GP-based P4 code generation solution that instead of starting from
cratch by evolving sequences of basic one-line declarations in P4, it
akes as a starting point sequences of MATs. It is worth mentioning
hat using a high-level abstraction like MATs reduces notably the
earch space, and consequently the code generation time. Nevertheless,
inding the optimal combination of MATs to generate the P4 code
hat satisfies the newly created intent as well as the intents that are
lready enforced on the switch with a reduced number of MATs is still a
omplex problem. To solve this problem, we adopt GP to automatically
enerate P4 code. Thus, a genome in the population represents the set
f MATs in the candidate P4 program to satisfy the specified intents. A
enome is encoded as a binary string of 0’s and 1’s, whereby a binary
it is set to 1 to indicate that the corresponding MAT is selected and to
to denote that the MAT is removed.

As illustrated in Fig. 4, an intent is expressed as a conditional
tatement that relates the changes (i.e., output) to be performed on
he packet to the conditions (i.e., input) that should be fulfilled by
ts metadata and header fields. The intent in Fig. 4 states that if the
acket is coming from port 1 and its source IP address is 10.0.0.1, the
acket should be forwarded through port 2 after changing its source
ddress to 172.16.0.1. This intent represents the implementation of a
AT function. To facilitate the assessment of intent satisfaction by a
enome, we describe each MAT by a pseudo-code that represents the
hanges to be applied on a packet when it traverses this MAT. Fig. 4
hows an example of the P4 code of NAT (Network Address Translation)
unction and the corresponding pseudo-code. Furthermore, we define
wo arrays 𝑡𝑎𝑏𝑖𝑛 and 𝑡𝑎𝑏𝑜𝑢𝑡 that contains the values of the packet’s
etadata and packet fields instantiated from the intent’s input and

utput, respectively. An intent is satisfied by a genome if providing the
ntent’s 𝑡𝑎𝑏𝑖𝑛 as an input to this genome, we get the intent’s 𝑡𝑎𝑏𝑜𝑢𝑡 as an
utput. As shown in Fig. 4, the Genome 1, composed of two MATs for

NAT and routing functions, satisfies the intent in the example. This is
the case also for Genome 2. However, Genome 3 fails to fulfill the intent.
7

The population is progressively evolved over a series of generations
until a termination criterion is met. In each generation, the GP process
evaluates each genome against a fitness function, defined as:

𝑓𝑡 = 1
𝑚

𝑚
∑

𝑘=1
𝑣𝑒𝑟𝑓 (𝑖𝑛𝑡𝑒𝑛𝑡𝑘) (1)

where 𝑚 is the total number of intents to satisfy by a genome. 𝑣𝑒𝑟𝑖𝑓
(𝑖𝑛𝑡𝑒𝑛𝑡𝑘) is equal to 1 if the 𝑘th intent is satisfied; otherwise, it is
set to 0. Thus, the fitness score assigned to each genome represents
the proportion of intents satisfied by the genome relative to the total
number of intents that need to be satisfied. The two genomes with the
highest fitness scores are selected for breeding in the new generation
by first applying the crossover operator to the selected genomes, then
the mutation operator. The GP process terminates when it produces a
genome that can satisfy all intents (i.e., its fitness score is equal to 1)
or when the maximum number of iterations is reached. The P4 code
corresponding to the genome with the highest fitness and the lowest
number of MATs is generated and pushed on the network device.

5.3. Blockchain-based decentralized federated learning in SelfDN

To foster collaboration between domains for enhanced learning
accuracy while preserving data privacy, we adopt a fully decentralized
FL approach. Let consider a training task (e.g., anomaly detection,
resource allocation) that is carried out cooperatively by a set of 𝑁
domains {1,2,… ,𝑁}. Each domain 𝑖 uses its own dataset 𝑖 =
{(𝑥𝑘, 𝑦𝑘)}

𝑛𝑖
𝑘=1 to train its local model (e.g., a DL network), where 𝑥𝑘, 𝑦𝑘

nd 𝑛𝑖 are, respectively, the features vector, the label and the number
f training samples. Let  denotes the global input space which satisfies
= ∪𝑁

𝑖=1𝑖 and || =
∑𝑁

𝑖=1 𝑛𝑖 = 𝑁 . The goal of the cooperative learning
s to minimize the following objective function

𝑖𝑛
𝜔

{

𝐹 (𝜔) ≜ 1
𝑁

𝑁
∑

𝑖=1

∑

(𝑥𝑘 ,𝑦𝑘)∈𝑖

𝑓 (𝜔; (𝑥𝑘, 𝑦𝑘))
}

(2)

where 𝐹 (.) denotes the global loss function and 𝑓 (.; .) is the local loss
function (e.g., mean-squared error) on one data sample. 𝜔 represents
the global weight vector.

The local model updates (i.e., weights) 𝜔𝑖 of the domain 𝑖 are
uploaded to the blockchain for integrity assurance and a notification
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is broadcast to inform the involved domains about the availability of
new updates. A permissioned blockchain (e.g., Hyperledger Fabric) is
considered to guarantee not only security and privacy, but also to
provide performance in terms of network throughput and latency. It
is worth noting that a permissioned blockchain is accessible only by
authorized entities, allowing to form a consortium blockchain.

The blockchain is also leveraged to counteract poisoning attacks
against FL models. To this end, and similar to [59], we use smart
contracts to assess the quality of model updates and automatically
identify malicious participants in the learning process. The smart con-
tract is created by the initiator of the training task (e.g., a domain
administrator) and includes a validation dataset and an evaluation
criterion (e.g., accuracy performance). The 𝑉 𝑒𝑟𝑖𝑓𝑦_𝑈𝑝𝑑𝑎𝑡𝑒𝑠_𝑄𝑢𝑎𝑙𝑖𝑡𝑦()
function of the smart contract is invoked each time the updates of
a local model are uploaded to the blockchain. It allows to assess
the local model quality against the validation dataset to decide its
trustworthiness. A local model is considered trustable if the evaluation
accuracy is above a desired threshold. The use of smart contract for
model quality verification brings in a higher transparency which is
essential to trust the participant domain.

Upon receiving a model update notification from 𝑗 , a domain 𝑖
proceeds as follows:

• If 𝑖 is training its local model, it broadcasts a pause message to
inform the other domains that an update is ongoing in order to
wait its new model before performing the aggregation. A timer
𝑇𝑝𝑎𝑢𝑠𝑒 is then triggered at the destination.

• If this update notification is the first since the last aggregation
operation, 𝑖 triggers a timer 𝑇𝑛𝑜𝑡𝑖𝑓 to wait for more updates
before starting the aggregation process.

• Once the waiting timers expire, 𝑖 retrieves the model updates
that are qualified trustable by the smart contract and computes
the global model locally using the Federated Averaging (FedAvg)
technique.

. Case study - DoS attack detection and mitigation at data plane

This section presents a practical study that demonstrates a self
etection and mitigation of Denial of Service (DoS) attacks leveraging
he INT capability of PDPand the potential of deep learning, and using
he AutoP4 generator to automatically generate the P4 code needed
o enforce the mitigation policy. It is worth mentioning that the main
im of this study is to show the feasibility of implementing a fully
utonomous self-defense closed-loop that integrates intelligence at both
nomaly detection stage and mitigation policy generation stage.

.1. Testbed architecture

Fig. 5 illustrates the test-bed setup. We used ten (10) virtual ma-
hines (VMs) hosted on the same physical server. The first VM (Ser-
ices) hosts a streaming service and a web server, each of them de-
loyed on a container. The second VM (Controller) acts as the brain
f the system, with the capabilities of analyzing the received telemetry
ata and deciding the actions to enforce. The Controller relies on a DL
odel built using Multi-Layer Perceptron (MLP) algorithm to identify

pplication-layer DDoS attacks [60]. The MLP network consists of one
nput layer, two hidden layers with 64 neurons each, and a two-class
oftmax output layer. The model takes as an input the flow features
xtracted from the collected from the network traffic and provides as
n output the traffic class; that is, legitimate traffic or DDoS traffic.
t is trained on the DDoS dataset we created in [60] and achieved
n accuracy of 99.65%. Two VMs are used to simulate, respectively,
hree legitimate clients accessing the streaming service through the web
erver and four attackers performing a high-rate HTTP-based flooding
8

ttack against the server web to make it inaccessible. The DDoS attack
is launched using Hulk3 tool. The aforementioned VMs are connected
hrough six P4-enabled BMv2 [61] switches, each of them deployed
n a separate VM. We used Linux bridges to link the VMs’ network
nterfaces directly to the switches.

Our goal is to first detect whether a DDoS attack is occurring or not
ased on the analysis of the telemetry received from switches. Upon
ttack detection, the system issues a new mitigation policy in the form
f intent. The mitigation policy corresponds to adding a new firewall
ule to drop packets from the attacker. If the firewall function is already
eployed on the switch, the controller populates the firewall table with
he new drop rule; otherwise, a new P4 code is first generated using GP
n order to add the firewall function to the switch.

.2. Telemetry data

A key metric to detect the high-rate HTTP-based flooding attack is
he large number of packets sent by the attacker in a short period of
ime. To this end, we created a register (𝐹 𝑙𝑜𝑤_𝐶𝑜𝑢𝑛𝑡) on the switch

to save the number of packets for each network flow. It is worth
mentioning that a network flow is defined by the set of packets sharing
the same 5-tuple (SRC IP, DST IP, Proto, SRC Port, DST Port), where
RC IP, DST IP, Proto, SRC Port and DST Port denote the source IP
ddress, the destination IP address, the protocol, the source port and
he destination port, respectively.

We defined two strategies to read the telemetry data. In the first
trategy, called Classical Telemetry, the information in 𝐹 𝑙𝑜𝑤_𝐶𝑜𝑢𝑛𝑡 reg-
ster is read periodically by the Controller. The collection period is
et to 10𝑠 in our case study. The shortcoming of the first strategy is
hat the information is collected even if no security issue is happening.
o overcome this limitation, the second strategy adopts INT telemetry
pproach, where the Controller is notified only if an abnormal flow
s detected. To this end, we added two other registers (𝑇 𝑖𝑚𝑒_𝑅𝑒𝑔

and 𝐹 𝑙𝑜𝑤_𝑅𝑒𝑔) and a set of actions in the ingress step of the packet
processing in order to check if the number of packets received over a
period of time exceeds the defined threshold. Algorithm 1 illustrates the
actions code. In the conducted study, the Controller is notified when the
time interval during which 100 packets have been received is less than
300 ms. Once notified, the Controller requests and monitors the content
of 𝐹 𝑙𝑜𝑤_𝐶𝑜𝑢𝑛𝑡 register over a period of time. If the Controller notices
that the number of packets is considerably increasing, it will take the
decision to drop the packets received from (SRC IP, SRC Port). The new
intent is enforced on the switch as explained above.

Algorithm 1 Updating Registers when receiving packets.
1: if (𝒑𝒂𝒄𝒌𝒆𝒕.𝒊𝒑𝒗𝟒) then
2: 𝐹 𝑙𝑜𝑤_𝐶𝑜𝑢𝑛𝑡[𝑝𝑎𝑐𝑘𝑒𝑡.𝑖𝑑] ++;
3: if (𝐹 𝑙𝑜𝑤_𝐶𝑜𝑢𝑛𝑡[𝑝𝑎𝑐𝑘𝑒𝑡.𝑖𝑑] == 1) then
4: 𝑇 𝑖𝑚𝑒_𝑅𝑒𝑔[𝑝𝑎𝑐𝑘𝑒𝑡.𝑖𝑑] = 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝();
5: end if
6: if (𝐹 𝑙𝑜𝑤_𝐶𝑜𝑢𝑛𝑡[𝑝𝑎𝑐𝑘𝑒𝑡.𝑖𝑑] > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑃𝑎𝑐𝑘𝑒𝑡) then
7: 𝐹 𝑙𝑜𝑤_𝐶𝑜𝑢𝑛𝑡[𝑝𝑎𝑐𝑘𝑒𝑡.𝑖𝑑] = 0;
8: if (𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑇 𝑖𝑚𝑒_𝑅𝑒𝑔[𝑝𝑎𝑐𝑘𝑒𝑡.𝑖𝑑] < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑡𝑖𝑚𝑒) then
9: 𝐹 𝑙𝑜𝑤_𝑅𝑒𝑔 ++;

10: if (𝑆𝐸𝑁𝐷_𝑀𝑠𝑔 == 𝑓𝑎𝑙𝑠𝑒) then
11: ⊳ forward the packet to the controller to specific

application port
12: set_packet(packet, IP_CONT, PORT_CONT);
13: 𝑆𝐸𝑁𝐷_𝑀𝑠𝑔 = 𝑡𝑟𝑢𝑒;
14: end if
15: end if
16: end if
17: end if

3 https://github.com/grafov/hulk.

https://github.com/grafov/hulk
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Fig. 5. Testbed architecture.
Fig. 6. Number of packets traversing the BMv2 switch when web server is under DoS
attack.

6.3. Performance evaluation

To assess the performance of the INT strategy compared to the
Classical Telemetry strategy, we investigated their impact on the number
of packets traversing the switch, and the number of telemetry reports
sent to the Controller. Furthermore, the efficiency of the GP algorithm
is evaluated in terms of the time needed to generate the P4 code.

6.3.1. INT vs. classical telemetry
We consider a scenario with one attacker who launches a DoS attack

against the web server during a video streaming session started by a
legitimate client. The attack is launched at minute 5 and stopped at
minute 7. Fig. 6 shows the number of packets traversing the BMv2
switch before and during the attack is launched and after its mitigation.
It is observed that after detecting the attack and deploying the firewall
code on the switch by the Controller, the traffic load goes back to
normal.

Fig. 7 displays the number of telemetry reports sent by the BMv2
switch to the Controller, before and during the DoS attack and after
its mitigation. The Classical Telemetry strategy sends a report each
10 seconds, regardless if an anomaly is detected or not. In fact, the
controller receives 36 packets each minute; the switch 𝑆6 connecting
directly to the controller sends 6 packets/min and forwards 30 packets
9

Fig. 7. Number of telemetry reports sent by BMv2 switch to the controller.

from the other switches, 𝑆4 also sends 6 packets/min and forwards
12 packets from 𝑆1 and 𝑆2. Meanwhile, the INT strategy reports the
telemetry data only when the web server is under attack. This allows to
considerably reduce the communication overhead entailed by telemetry
data collection, making the INT strategy more desirable in large-scale
networks.

6.3.2. INT-based mirroring vs. classical mirroring
To show the advantage of combining INT and DL in timely detecting

and mitigating the DDoS attack while reducing the communication
overhead between the data plane and the control & management plane,
we evaluate the number of packets forwarded to the Controller and the
mitigation time of the DDoS attack considering two strategies, namely:
(i) classical mirroring where all network traffic flowing from/to the
web server is continuously mirrored to the Controller; (ii) INT-based
mirroring where only network traffic from suspicious sources to the web
server is forwarded to the Controller. A source is deemed suspicious
(i.e., potential attacker) if the number of packets received from this
source over a period of time exceeds the defined threshold as defined
by the INT. In both scenarios, the mirrored traffic is analyzed by the
MLP model to confirm that the DDoS attack is ongoing; in which case a
‘‘traffic blocking’’ intent is automatically translated into the correspond-
ing P4 code by the AutoP4 Generator and enforced on the closest switch
to the attacker(s). Fig. 8 depicts the results obtained with three (3)
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Fig. 8. INT-based mirroring vs. classical mirroring with three legitimate clients and four DDoS attackers.
legitimate clients and four (4) attackers launching simultaneous Hulk
ttack against the web server at 59 s.

The results demonstrate the superiority of INT-based mirroring over
lassical mirroring with regard to the number of packets exported to the
ontroller either when only legitimate traffic is received by the web
erver or during the attack period. In fact, INT-based mirroring strat-
gy triggers the mirroring only when a suspicious traffic is observed
nd limits the forwarded traffic to the one considered suspicious. By
oing so, the communication overhead between the data plane and the
ontroller is greatly reduced. Furthermore, the depicted results show
he effectiveness of INT-based mirroring strategy in quickly detecting
nd mitigating the DDoS attack compared to the classical mirroring
trategy. This can be explained by the fact that the selected mirroring
erformed by the INT-based mirroring strategy reduced the analysis
ime and improved the detection accuracy.

.3.3. P4 code generation time
We assessed the efficiency of AutoP4 generator in terms of the

earch time required by the GP algorithm to create the MATs pipeline
or satisfying a given set of intents. The experiments were conducted
sing a set of 50 MATs that allow to implement different network
unctions (e.g., firewall, NAT, router, and load balancer). Fig. 9 plots
he average search time as a function of the number of intents that need
o be satisfied. The search time is measured considering different sizes
f the initial population. Each point in the plots is the average of 100

independent runs carried out on a machine with 4-cores Intel’s 1.6 GHz
PU and 16 GB RAM.

The results reveal that the proposed GP algorithm succeeds in
enerating the P4 code in a reasonable time, i.e., in the order of tens
o few hundreds of milliseconds, even when a high number of intents
s considered. These results corroborate our claim that using a high-
evel abstraction like MATs as initial population will notably reduce
he code generation time compared to evolving sequences of one-line
eclarations in P4. Furthermore, the results show that the increase in
he population size allows to decrease the search time to some extent.
n fact, increasing the number of individuals in the initial population
mproves the algorithm evolvability and hence increases the chance
f finding the solution. Nevertheless, exceeding the given limit (40
ndividuals in our case) will lead to higher computational load due
o the increased search space. Thus, defining a reasonable size of the
opulation is vital for the algorithm convergence.

. Conclusion

This article introduced the emerging concept of Self-Driving Net-
orks (SelfDN). It presented a novel framework to empower fully
istributed trustworthy SelfDNs across multiple domains. To achieve
10

ts vision, the framework leverages the potential of programmable data
Fig. 9. Time that GP takes to generate a genome respecting all intents.

plane for enabling real-time In-band telemetry (INT); AI for automatic
(re)writing of network device code; and blockchain and Federated
Learning for enabling decentralized, secure and trustable knowledge
sharing among domains. As a proof of concept, we demonstrated the
effectiveness of INT, Deep Learning and P4 in autonomously detecting
and mitigating the application-layer DDoS attacks at data plane level.
In the light of the obtained results, we believe that leveraging AI for
code writing will be a game-changer for achieving the SelfDN vision.
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