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AbstrAct

This article proposes an approach to enhance 
users’ experience of video streaming in the con-
text of smart cities. The proposed approach 
relies on the concept of MEC as a key factor in 
enhancing QoS. It sustains QoS by ensuring that 
applications/services follow the mobility of users, 
realizing the “Follow Me Edge” concept. The pro-
posed scheme enforces an autonomic creation 
of MEC services to allow anywhere anytime data 
access with optimum QoE and reduced latency. 
Considering its application in smart city scenari-
os, the proposed scheme represents an import-
ant solution for reducing core network traffic and 
ensuring ultra-short latency through a smart MEC 
architecture capable of achieving the 1 ms laten-
cy dream for the upcoming 5G mobile systems. 

IntroductIon
Over the years, technology has served humanity 
by providing sustainable technical solutions to the 
social problems faced by society. In recent years, 
the research communities have been working on 
optimizing the technological infrastructure and 
maximizing the efficiency of services for citizens 
to meet their changing needs for smarter living. 
Society has evolved, and in the present era of 
smartphones, we have a new concept, the smart 
city,” which is increasingly gaining in importance. 
Smart cities are expected to improve the quality 
of life for their citizens, leveraging advanced infor-
mation and communications technologies (ICT). 
Smart cities are also expected to provide their cit-
izens with a variety of innovative services, ranging 
from education and healthcare to augmented and 
immersive reality; for example, for the support of 
tourism. Indeed, deployed services in smart cities 
will involve not only smartphones and tablets, but 
also utility meters, washing machines, thermostats, 
refrigerators, sensors for environmental monitor-
ing, and so on; in short, the different components 
of the Internet of Things (IoT) ecosystem. 

The next generation mobile systems, com-
mercially known as fifth generation (5G), aims 
to accelerate the development of smart cities, by 
not only increasing the data delivery rates but also 
accommodating the expected high numbers of 
IoT devices to be used by smart city services and 
applications [1, 2]. Besides, thanks to its elasticity 
and agility, 5G will be able to support numerous 
smart services, which cannot be supported by cur-

rent network architectures [3, 4]. This includes 
immersive reality and tactical applications, and 
services with highly strict requirements in terms of 
ultra-short latency and high responsiveness.

5G systems will rely on technologies such 
as Network Function Virtualization (NFV), Soft-
ware Defined Networking (SDN), and cloud 
computing to attain system’s flexibility and true 
elasticity [1, 4]. Among these technologies, 
cloud computing has tremendously advanced 
enabling diverse services. However, it remains 
limited against emerging applications (e.g., tac-
tile Internet and augmented reality) that require 
ultra-short latency. Cloud is also limited against 
computation-intensive applications running on 
power/CPU-constrained user equipment (e.g., 
mobile gaming) that need to partially run their 
computation in the cloud while ensuring response 
times (i.e., for other parts of the code running on 
the user equipment) in the range of milliseconds. 
These limitations are principally due to the central-
ized cloud computing architecture. Mobile edge 
computing (MEC), interchangeably known as fog 
computing (originating from the cloudlet concept 
[5]), represents a vital solution to these limitations. 
Indeed, it reforms the cloud hierarchy by pushing 
computing resources in the proximity of mobile 
users (i.e., at the mobile network edge). There 
are high expectations for MEC and 5G, when effi-
ciently integrated, to improve the quality of life of 
residents in smart cities. This underpins the focus 
of this article, wherein we show how MEC will 
enable emerging services for smart cities, focus-
ing on an augmented reality use case involving 
streaming of high definition (HD) video, which 
is for the support of tourism in smart cities. The 
overall objective is to demonstrate how high qual-
ity of service (QoS) can be maintained regardless 
of the mobility of users through the use of MEC, 
more particularly through the concept of Follow 
Me Edge (FME — similar in spirit to the Follow Me 
Cloud concept [1, 6]). FME ensures that the ser-
vice constantly follows the user and that the user 
is always serviced from the closest edge. As dis-
cussed later, the fundamental observations made 
about the envisioned use case are highly applica-
ble to other services requiring ultra-short latency, 
such as immersive reality and tactical applications.

The remainder of this article is organized as 
follows. The following section presents the state 
of the art. Then we describe our proposed FME 
framework along with the supporting mecha-
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nisms. For the sake of performance evaluation, 
in the next section we portray the experimental 
setup and discuss the obtained results. The arti-
cle concludes in the final section with a summary 
recapping the main findings.

stAtE of thE Art
The key idea beneath MEC is to place storage 
and computation resources at the network edge, 
in the proximity of users. Accordingly, data pro-
cessing can be pushed from far remote cloud to 
the edge. By processing data locally and accel-
erating data streams through various techniques 
(i.e., caching and compression), MEC reduces 
the traffic bottleneck toward the core network. 
Besides, it helps shorten end-to-end latency, 
enabling the offload of important computation 
load from power-constrained user equipment to 
the edge. As discussed in the executive briefing 
of the European Telecommunications Standards 
Institute (ETSI) MEC initiative,1 edge computing 
shall enable new computation-intensive services 
and shall yield promising business models. It also 
represents a fault resilient solution for its decen-
tralized architecture [7]. 

Given its potential, MEC has been gaining lots 
of momentum among industries and within the 
researcher community [8]. Im-portant standardiza-
tion activities have been initiated. Indeed, to stan-
dardize the specifications of MEC across mobile 
operators and vendors in the value chain, ETSI 
formed a new ISG group in 2014 and came up 
with different industry specifications.2 The spec-
ifications highlight the different service scenar-
ios whereby MEC can be beneficial. For video 
streaming services, it was recommended to apply 
intelligent video acceleration schemes using video 
analytics and video management applications 
within MEC. The research work in [9] proposes 
a two-hop network whereby edge architecture 
enhances data transfer rate and throughput for 
video streaming compared to remote cloud. The 
work in [10] exploits network assisted adaptive 
streaming applications for multimedia content 
delivery inside MEC to enhance Quality of Expe-
rience (QoE). The research study in [11] proposes 
an architecture with distributed parallel edges to 
increase QoE for content delivery. The research 
work in [12] makes use of edges as caches along 
with proxies to store media content. It also enforc-
es computation offloading to increase the lifetime 
of mobile devices. In [7], edges function inde-
pendently as small-scale data centers on their own 
and are used for video caching and streaming.

In all the above research work, MEC is deemed 
to be a promising solution for handling video ser-
vices. Its limitations in terms of resource control and 
orchestration have also been highlighted as import-
ant challenges. In smart city scenarios, users’ mobil-
ity and the need for dynamic service migration add 
to these challenges. Most research works on the 
latter consider traditional cloud environments [1, 6]. 
In [13], migration of edges has been proposed using 
a Markov decision process approach to determine 
optimal solutions for service placement.

To the best of the authors’ knowledge, mobility 
support and migration of service in terms of video 
content delivery have not been considered yet. In 
the remainder of this article, we describe and show-
case an innovative deployment scenario on how 

a user’s experience on video streaming can be 
enriched using MEC in spite of the user’s mobility.

folloW ME EdgE
usE cAsEs

To support tourism in smart cities, many use 
cases, involving video streaming from the edge, 
could be considered. In the following, we con-
sider two representative use cases, one implying 
edge migration:

Use Case 1: Robert from England visits Helsinki 
for the first time. He visits the white church, likes 
it, takes a video of it, comments on it in his native 
language (i.e., English), and streams it to an edge 
placed near the white church. Some time later, Eric, 
also from England and a member of Robert’s social 
network (e.g., Facebook), visits the same church 
and receives an invitation to view Robert’s gener-
ated video and hear what Robert said about the 
location. Eric may further comment on the video, 
indicating whether he liked it, or post a new video 
about the location. In this use case, videos about a 
certain attractive location are cached at edges in 
the vicinity of that location and streamed to people 
visiting that location when there is interest or when 
there is linkage with the video publisher. Mapping 
the most popular videos with Google Streetview 
may also be considered. The video streaming as 
well as the relevant operations (comment, like/
dislike, etc.) take place at the corresponding edges 
near the visited sites.

Use Case 2: Robert visits the city of Hamburg. 
To explore the city, he takes a sightseeing bus. He 
uses interactive glasses that recognize historical 
monuments (e.g., tourist attractions) and accord-
ingly receives introductory video about these mon-
uments in the format of high definition (HD) video. 
The video can be streamed from either a remote 
cloud or the edge. As the path to the remote cloud 
involves multiple hops, some being nearly con-
gested, high resolutions of the video cannot be 
guaranteed unless it is streamed from the edge. Fur-
thermore, to prevent jitter and the associated degra-
dation in QoE, the video must always be streamed 
from the nearest edge to Robert. In this use case, 
Robert’s user equipment receives a portion of the 
video from the nearest edge A. As the bus gets far 
away from edge A and closer to edge B, the video 
along with the streaming virtual network function 
are migrated to edge B, and the remaining portion 
of the video streams to Robert from edge B. This 
edge migration occurs in a manner transparent to 
Robert, who continues enjoying the video without 
any disruption in the video stream and with no deg-
radation in the perceived QoE.

While the above use cases focus on video 
streaming services, similar use cases with the same 
requirements can be derived for augmented real-
ity services. In this work, we consider using light-
weight virtualization technologies (i.e., container), 
and introduce container migration to meet the 
above mentioned use cases, with more focus on 
the edge mobility aspect of use case 2.

fME ArchItEcturE

The proposed architecture is based on the two-tier 
principle, wherein the cloud service provider (CSP) 
gives access, through an appropriate application 
programming interface (API) [14], to a content 
provider or a third party over-the-top (OTT) service 
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to use the cloud resource to deploy its application. 
The cloud has its own orchestrator to manage the 
cloud infrastructure and its resources. An addition-
al component is considered: the cloud controller 
(CC). Considering the business functionality, CC 
is involved in maintaining the service level agree-
ment (SLA) with the OTT providers and mobile net-
work operators (MNOs). The agreement deals with 
access rights and policies on the entity’s authority. 
The edge server (ES) belongs to the MNO’s net-
work, where it is managed and controlled by the 
edge orchestrator (EO). Every MNO has its own 
EO, managing its own set of ES clusters. Figure 1 
depicts inter/intra-MNO edge network. The dot-
ted lines represent the agreement level connection 
among CSP, MNO, EO, and ES.

The ES is hosted on virtual machines on top 
of the existing server hardware residing in the 
MNO’s edge network node. The ES has its own 
compute and storage. The compute node is 
responsible for hosting container-based applica-
tions on the edge. The storage is used to keep 
images of the application containers. For an intra-
edge network, additional shared storage is need-
ed to ensure live migration of containers between 
edge compute nodes. Linux-based containers 
(LCs) can be employed to make the system light-
weight and help in easily deploying service pack-
ages. LCs run applications/services provided from 
the edge, while EO is in charge of deploying, con-
trolling, and migrating containers.

Referring to use case 2, when Robert connects 
to ES A to watch an HD video introducing Ham-
burg, he may initially be served from the backend 
cloud. As stated earlier, this may incur jitter and may 
limit the video resolution. To cope with this issue, 
the EO may instantiate a container on the connect-
ed ES compute node with built-in streaming and 
transcoding virtualized functionality [14, 15]. Sub-
sequently, it may store the relative content from the 
backend cloud into the ES’s local storage. Robert 
will then be served the HD version of the video 
stream from the ES. Considering the case of HTTP-
based video streaming, the EO can fetch the entire 
media content on one go or may fetch only a cer-
tain number of video chunks at a time. Consequent-
ly, as the content will be served from one hop away, 
the user’s perceived quality is expected to greatly 
improve. For applications involving OTT services, 

the established SLA may help in performing this task 
with a pre-agreed negotiation between the OTT pro-
vider and the MNO. In this case, the EO inside the 
MNO will get access rights from the OTT service 
at the beginning of the process. The EO will then 
create the replica and bring the service to the edge.

Although the content is now served from the 
nearest edge, after some time the connection 
with the mobile user may begin experiencing deg-
radation as the length of the path to the served 
MEC increases. To maintain the same quality, it 
is vital that the content moves along the phys-
ical mobility of users in an FME fashion [6]. To 
realize the FME vision, the EO needs to keep 
updated information about its resources and the 
user locations. The latter may be obtained using 
the MEC’s active device location tracking func-
tionality, based on which a user’s velocity and 
direction may be derived. Taking this into consid-
eration, the EO may estimate the latency between 
the user and the current edge, and compare it 
with the latency between the same user and the 
target edge. Once deemed appropriate, the EO 
may trigger live migration of the container in a 
proactive manner. This will consist of migrating 
the video streaming service along with its con-
tents. Upon successful container migration, the 
user may then be served from the new ES, which 
will ensure low latency access to the content. The 
above described migration process will be repeat-
ed along the track whenever required.

Migration can happen using various tech-
niques. In the case of live video streaming, service 
continuity and bare minimum disruption are of 
prime concern. To perform seamless live migra-
tion, the service state has to be maintained in 
order to ensure that no data is lost. This is achieved 
by transferring the entire memory content of the 
running instance (i.e., container) from the source 
ES to the target ES. The source ES keeps track 
of which memory blocks are modified while the 
transfer is in progress. Once this initial transfer 
is complete, the changes that have occurred in 
the meantime are transferred again. This contin-
ues until the newly built instance becomes exactly 
identical to the old one. This ensures that after the 
migration process is complete, the video starts 
from the exact point rather than overlapping. 
Indeed, in the case of mishandled memory, data 
loss happens. This incurs overlap in video play-
time, where the user may have to watch the same 
content again (from the span when the migra-
tion started). Moreover, the migration duration 
should not be too long. If the duration is too long, 
it might be that by the end of the migration either 
the user has moved away from the ES location 
or the played video is almost over. To overcome 
these constraints, separate shared storage has to 
be considered. Normally migration takes place by 
copying memory blocks. Thus, if the blocks are 
dumped at a shared location attached to the new 
ES, service transfer becomes faster than in the 
case considering local storage. Although async 
mode configuration of shared storage is even fast-
er than sync mode, we propose the use of sync 
mode to maintain data integrity. In sync mode the 
data saved in the storage location is confirmed 
before processing the next request from the ES. In 
async mode, the requests are processed without 
proper confirmation. It yields better response time 

Figure 1. The envisioned mobile edge computing architecture.
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but at the cost of possible data corruption, which 
may introduce a glitch in the played video. 

So far, the proposed scheme deals with latency 
reduction and mobility within the network of the 
same MNO/edge. If the user moves out of the net-
work of an edge provider to the edge of another 
provider, the SLA shall be used. The SLA should 
enforce an integrated architecture where the EO 
handover, shared storage concept, and service 
migration are considered. In this case, the source 
EO may hand over the control to the target EO 
(in a separate MNO’s network) and permit service 
migration. If it is not possible, then during the MNO 
crossover phase, the content will be served from the 
back-end cloud temporarily until the new EO again 
caches the service in its own compute node.

It is worth noting that smart caching and migra-
tion can considerably enhance the overall system 
performance and reduce the migration cost [16]. 
The caching concept can be enhanced further by 
considering the remaining duration of the video. 
If there is no possibility to store the whole content 
(due to storage space), only the next few chunks 
of the remaining video may be cached. Moreover, 
if the video is almost at the end (i.e., the remaining 
play time less than the migration time), the contain-
er/service migration may be simply omitted.

PErforMAncE EvAluAtIon
Figure 2 portrays the testbed environment we have 
built to simulate edge-based video streaming and 
its mobility considering use case 2. The testbed is 
built using one Ubuntu 14.04.3 LTS desktop and 
two laptops with the same host operating system. 
Virtualbox is used to implement the testbed on a 
desktop workstation machine. The desktop machine 
hosts three virtual machines (VMs) inside the vir-
tual box environment. VM1 is used as a gateway 
for the entire network to access the Internet. VM2 
is used to simulate the cloud environment deploy-
ing a Devstack-based cloud, which provides all-in-
one (i.e., controller, compute, network, and storage 
on the same node) with an Ubuntu instance run-
ning inside it. The Ubuntu cloud instance hosts an 
HTTP live streaming (HLS) server. The ffmpeg open 
source server, for both streaming and transcoding, 
are built in separate VMs. The media contents (HLS 
fragments) are generated using ffmpeg transcod-
ing servers, and are then streamed using an ffmpeg 
streaming server (hosted in a separate VM). The 
floating IP address of the instance was chosen from 
the same IP subnet range of the edge cluster, so 
the ES can access the data from the cloud VM. The 
CC function was omitted, as the SLA level imple-
mentation was not considered in the testbed. VM3 
was configured using Proxmox VE and acts as edge 
cluster controller — EO. VM3 also includes a DHCP 
server with authentication. To automate the orches-
tration process, a script is used to:
• Monitor the session changeover of the cli-

ents from one edge to the other using the 
authentication server logs

• Handle the container migration
The entire cluster of edges is formed by inte-

grating two additional VMs (i.e., VM4 and VM5) 
with the EO. VM4 and VM5 are hosted inside lap-
tops to emulate ESs. The connectivity between the 
VMs is extended using an Ethernet switch. VM4 
and VM5 use the same virtual environment as the 
EO. To ensure that the laptops (VM4 and VM5) 

act as edge access points, the wireless LAN inter-
face was configured using Host-apd in IEEE 802.11 
master mode. The container is created inside VM4. 
We use Openvz containers for the testbed. The 
containers are built with Ubuntu cloud minimal 
image using Nginx as the web server. Nginx is con-
figured to serve as reverse proxy to the back-end 
cloud HLS server with caching and streaming func-
tionality. It is worth recalling that the objective of 
these tests is to validate the use of MEC to ensure 
high-quality HD video streaming service to mobile 
users. Therefore, the focus of these tests is on 
caching content and live delivery of the multimedia 
content closer to the user at the edge.

To perform the test, one container is instantiat-
ed in Edge1 with all the features explained above. 
When a user (using a smartphone or laptop) con-
nects to the network through SSID, the user is 
assigned an IP from the same IP subnet pool of the 
ES. The user connectivity log along with the MACID 
of the user are saved in a database of the EO. The 
user launches a browser and starts browsing the 
video, using the URL of the streaming sever hosted 
at the container. To implement minimum securi-
ty, the user is given authorization to only browse 
data from the container. Upon connecting for the 
first time, the container forwards the request to the 
cloud VM, and the multimedia content is served 
from the back-end cloud. Simultaneously, it caches 
the relevant media contents and stores them for 
further use to the container. For the next requests to 
the same video, the container makes use of its own 
streaming functionality to serve the user by using 
cached contents regardless of the fact that the cloud 
is accessible or not. Accordingly, this implements the 
concept of bringing the content closer to the user 
and making the backend core free from the traffic.

To simulate mobility, laptops are placed at a 
distance from a multihop network. During the 
video playback, the user device is deliberately 
moved from the first edge toward the second 
edge connected to the next hop in the network. 
The user automatically connects to Edge2. As 
soon as the wireless connectivity handover takes 
place, the logs are generated inside the EO. Upon 

Figure 2. Envisioned testbed setup.
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detecting the client’s connectivity, the script in 
charge of automating the service migration gath-
ers the client info (i.e., MACID), compares it to 
the database, identifies the same client’s move-
ment to a new edge, and subsequently triggers 
the live migration of the container from the old 
ES to the next one to which the client is directly 
connected. For Openvz, the live content delivery 
is done using checkpoint/restore in userspace 
(CRIU). It performs vz-dump (memory block 
dump) to save the state and uses rsync (i.e., incre-
mental file transfer utility) to transfer the file to the 
target location. It performs a dual-level operation 
to prevent data loss. First, pre-copy starts from 
the point at which the migration is initiated. Once 
completed, the container initialization is started 
in the new edge along with post-copy. Here-
in, post-copy represents transfer of the residual 
amount of changes that occurred in the memory 
block during this small interval. As service auto-
start is already enabled, once this data transfer 
operation is done, the container is automatical-
ly started in the target edge, and the old one is 
released. The user remains unaware of this fact 
and enjoys normal streaming. Throughout the 
migration time, the container IP address remains 
the same, ensuring no service downtime (i.e., the 
session remains active) during this span.

For service migration, the test is performed 
with two types of storage. In the first type, the 
whole operation is performed using local stor-
age (i.e., service migration within a federated 
edge network). The vz-dump files are first cop-
ied to the local storage, then synched with the 
target ES node, the container is initialized in that 
target node, and after post-copy the migration is 
completed. However, this method causes high 
delays. To achieve better performance with min-
imum response, the second type is implement-
ed. A network file system (NFS) server is used as 
shared storage for the operation. The NFS server 
is installed inside the EO, and the shared space 
is defined for the cluster nodes. The shared stor-
age is used only for vz-dump files. During migra-

tion, the copied memory files are stored in the 
shared location. As the target node can access 
the shared location directly, it reduces the content 
delivery to the edge, resulting in faster response.

In Fig. 3, we plot the migration duration of one 
container for three different conditions:
• With streaming online mode — streaming in 

use and the client watching the video
• Without streaming offline mode — stream-

ing in use and the client is not watching the 
video with no changes in the memory blocks

• Blank container with two different types of ES
The migration latency is plotted considering 

local storage. The migration latency of a blank con-
tainer is plotted to showcase how much added 
services impact the migration time. From the 
results, we can observe that when video streaming 
is not active, the content migration takes less time 
compared to the case when the video is being 
streamed. Moreover, for an ES with higher RAM 
capacity, the migration duration is shorter. This is 
attributable to the fact that copying memory pages 
takes less time with higher RAM, leading to a slight 
decrease in the overall duration.

Figure 4 plots the migration duration when 
considering various ways to share the storage 
among edges. The test is performed with two dif-
ferent sizes of containers, one small and anoth-
er big, to investigate if container size affects 
migration duration. We clearly remark that the 
container size merely affects the migration laten-
cy. Besides, we observe that shared-sync mode 
achieves shorter latency in comparison to local 
mode. Furthermore, the shared storage, if con-
figured in shared-async mode, reduces the dura-
tion of the migration closer to 10 s. In this last 
mode, the video experienced a single glitch of 
1∼2 s. We explain this by the fact that data cor-
ruption took place during async mode, resulting 
in reduced quality of experience (QoE) [17]. The 
results obtained through this evaluation reveal 
that the storage type and memory capacity have 
high impact on the migration latency.

conclusIon And futurE rEsEArch 
dIrEctIons

In this article, we propose a framework that lever-
ages MEC to support diverse applications in smart 
city scenarios. To always ensure high QoE, the 
Follow Me Edge concept is introduced. Accord-
ing to this concept, services move across edge 
servers as per the movement of their respective 
users. The proposed framework is validated using 
a real-life testbed. Edge mobility was tested using 
different storage types, different container sizes, 
and different edge resources.

Interesting results were obtained, suggest-
ing migration latency depends on the differ-
ent techniques used. The obtained results also 
demonstrate that short migration latency does 
not necessarily guarantee high QoE. It becomes 
apparent that the complexity of the system aris-
es as a trade-off between short migration laten-
cy at the cost of possible data loss. Based on 
the obtained results, it can be concluded that a 
mechanism to select the right combination of 
techniques to be used for efficiently migrating a 
service is of vital importance. This defines one of 
the authors’ future research directions in this area.

Figure 3.  Live migration time using local storage: a) with streaming online 
mode; b) without streaming offline mode; c) blank container.
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Figure 4. Live migration latency: a) local storage; b) shared sync storage; c) 
shared async storage.

a

20

0

Ti
m

e 
(s

)

b c

40

60

80

100

120
Big
Small


