
IEEE Communications Magazine • March 201738 0163-6804/17/$25.00 © 2017 IEEE

AbstrAct

This article proposes an approach to enhance
users’ experience of video streaming in the con-
text of smart cities. The proposed approach
relies on the concept of MEC as a key factor in
enhancing QoS. It sustains QoS by ensuring that
applications/services follow the mobility of users,
realizing the “Follow Me Edge” concept. The pro-
posed scheme enforces an autonomic creation
of MEC services to allow anywhere anytime data
access with optimum QoE and reduced latency.
Considering its application in smart city scenari-
os, the proposed scheme represents an import-
ant solution for reducing core network traffic and
ensuring ultra-short latency through a smart MEC
architecture capable of achieving the 1 ms laten-
cy dream for the upcoming 5G mobile systems.

IntroductIon
Over the years, technology has served humanity
by providing sustainable technical solutions to the
social problems faced by society. In recent years,
the research communities have been working on
optimizing the technological infrastructure and
maximizing the efficiency of services for citizens
to meet their changing needs for smarter living.
Society has evolved, and in the present era of
smartphones, we have a new concept, the smart
city,” which is increasingly gaining in importance.
Smart cities are expected to improve the quality
of life for their citizens, leveraging advanced infor-
mation and communications technologies (ICT).
Smart cities are also expected to provide their cit-
izens with a variety of innovative services, ranging
from education and healthcare to augmented and
immersive reality; for example, for the support of
tourism. Indeed, deployed services in smart cities
will involve not only smartphones and tablets, but
also utility meters, washing machines, thermostats,
refrigerators, sensors for environmental monitor-
ing, and so on; in short, the different components
of the Internet of Things (IoT) ecosystem.

The next generation mobile systems, com-
mercially known as fifth generation (5G), aims
to accelerate the development of smart cities, by
not only increasing the data delivery rates but also
accommodating the expected high numbers of
IoT devices to be used by smart city services and
applications [1, 2]. Besides, thanks to its elasticity
and agility, 5G will be able to support numerous
smart services, which cannot be supported by cur-

rent network architectures [3, 4]. This includes
immersive reality and tactical applications, and
services with highly strict requirements in terms of
ultra-short latency and high responsiveness.

5G systems will rely on technologies such
as Network Function Virtualization (NFV), Soft-
ware Defined Networking (SDN), and cloud
computing to attain system’s flexibility and true
elasticity [1, 4]. Among these technologies,
cloud computing has tremendously advanced
enabling diverse services. However, it remains
limited against emerging applications (e.g., tac-
tile Internet and augmented reality) that require
ultra-short latency. Cloud is also limited against
computation-intensive applications running on
power/CPU-constrained user equipment (e.g.,
mobile gaming) that need to partially run their
computation in the cloud while ensuring response
times (i.e., for other parts of the code running on
the user equipment) in the range of milliseconds.
These limitations are principally due to the central-
ized cloud computing architecture. Mobile edge
computing (MEC), interchangeably known as fog
computing (originating from the cloudlet concept
[5]), represents a vital solution to these limitations.
Indeed, it reforms the cloud hierarchy by pushing
computing resources in the proximity of mobile
users (i.e., at the mobile network edge). There
are high expectations for MEC and 5G, when effi-
ciently integrated, to improve the quality of life of
residents in smart cities. This underpins the focus
of this article, wherein we show how MEC will
enable emerging services for smart cities, focus-
ing on an augmented reality use case involving
streaming of high definition (HD) video, which
is for the support of tourism in smart cities. The
overall objective is to demonstrate how high qual-
ity of service (QoS) can be maintained regardless
of the mobility of users through the use of MEC,
more particularly through the concept of Follow
Me Edge (FME — similar in spirit to the Follow Me
Cloud concept [1, 6]). FME ensures that the ser-
vice constantly follows the user and that the user
is always serviced from the closest edge. As dis-
cussed later, the fundamental observations made
about the envisioned use case are highly applica-
ble to other services requiring ultra-short latency,
such as immersive reality and tactical applications.

The remainder of this article is organized as
follows. The following section presents the state
of the art. Then we describe our proposed FME
framework along with the supporting mecha-

Mobile Edge Computing Potential in
Making Cities Smarter

Tarik Taleb, Sunny Dutta, Adlen Ksentini, Muddesar Iqbal, and Hannu Flinck

EnAblIng MobIlE And WIrElEss tEchnologIEs for sMArt cItIEs

The authors propose an
approach to enhance
users’ experience of video
streaming in the context
of smart cities. The pro-
posed approach relies on
the concept of MEC as a
key factor in enhancing
QoS. It sustains QoS by
ensuring that applica-
tions/services follow the
mobility of users, realizing
the “Follow-me-Edge”
concept.

Tarik Taleb and Sunny Dutta are with Aalto University; Tarik Taleb is also with Sejong University; Adlen Ksentini is with Eurecom Institute;
Muddesar Iqbal is with London South Bank University; Hannu Flinck is with Nokia Bell Labs.

Digital Object Identifier:
10.1109/MCOM.2017.1600249CM

IEEE Communications Magazine • March 2017 39

nisms. For the sake of performance evaluation,
in the next section we portray the experimental
setup and discuss the obtained results. The arti-
cle concludes in the final section with a summary
recapping the main findings.

stAtE of thE Art
The key idea beneath MEC is to place storage
and computation resources at the network edge,
in the proximity of users. Accordingly, data pro-
cessing can be pushed from far remote cloud to
the edge. By processing data locally and accel-
erating data streams through various techniques
(i.e., caching and compression), MEC reduces
the traffic bottleneck toward the core network.
Besides, it helps shorten end-to-end latency,
enabling the offload of important computation
load from power-constrained user equipment to
the edge. As discussed in the executive briefing
of the European Telecommunications Standards
Institute (ETSI) MEC initiative,1 edge computing
shall enable new computation-intensive services
and shall yield promising business models. It also
represents a fault resilient solution for its decen-
tralized architecture [7].

Given its potential, MEC has been gaining lots
of momentum among industries and within the
researcher community [8]. Im-portant standardiza-
tion activities have been initiated. Indeed, to stan-
dardize the specifications of MEC across mobile
operators and vendors in the value chain, ETSI
formed a new ISG group in 2014 and came up
with different industry specifications.2 The spec-
ifications highlight the different service scenar-
ios whereby MEC can be beneficial. For video
streaming services, it was recommended to apply
intelligent video acceleration schemes using video
analytics and video management applications
within MEC. The research work in [9] proposes
a two-hop network whereby edge architecture
enhances data transfer rate and throughput for
video streaming compared to remote cloud. The
work in [10] exploits network assisted adaptive
streaming applications for multimedia content
delivery inside MEC to enhance Quality of Expe-
rience (QoE). The research study in [11] proposes
an architecture with distributed parallel edges to
increase QoE for content delivery. The research
work in [12] makes use of edges as caches along
with proxies to store media content. It also enforc-
es computation offloading to increase the lifetime
of mobile devices. In [7], edges function inde-
pendently as small-scale data centers on their own
and are used for video caching and streaming.

In all the above research work, MEC is deemed
to be a promising solution for handling video ser-
vices. Its limitations in terms of resource control and
orchestration have also been highlighted as import-
ant challenges. In smart city scenarios, users’ mobil-
ity and the need for dynamic service migration add
to these challenges. Most research works on the
latter consider traditional cloud environments [1, 6].
In [13], migration of edges has been proposed using
a Markov decision process approach to determine
optimal solutions for service placement.

To the best of the authors’ knowledge, mobility
support and migration of service in terms of video
content delivery have not been considered yet. In
the remainder of this article, we describe and show-
case an innovative deployment scenario on how

a user’s experience on video streaming can be
enriched using MEC in spite of the user’s mobility.

folloW ME EdgE
usE cAsEs

To support tourism in smart cities, many use
cases, involving video streaming from the edge,
could be considered. In the following, we con-
sider two representative use cases, one implying
edge migration:

Use Case 1: Robert from England visits Helsinki
for the first time. He visits the white church, likes
it, takes a video of it, comments on it in his native
language (i.e., English), and streams it to an edge
placed near the white church. Some time later, Eric,
also from England and a member of Robert’s social
network (e.g., Facebook), visits the same church
and receives an invitation to view Robert’s gener-
ated video and hear what Robert said about the
location. Eric may further comment on the video,
indicating whether he liked it, or post a new video
about the location. In this use case, videos about a
certain attractive location are cached at edges in
the vicinity of that location and streamed to people
visiting that location when there is interest or when
there is linkage with the video publisher. Mapping
the most popular videos with Google Streetview
may also be considered. The video streaming as
well as the relevant operations (comment, like/
dislike, etc.) take place at the corresponding edges
near the visited sites.

Use Case 2: Robert visits the city of Hamburg.
To explore the city, he takes a sightseeing bus. He
uses interactive glasses that recognize historical
monuments (e.g., tourist attractions) and accord-
ingly receives introductory video about these mon-
uments in the format of high definition (HD) video.
The video can be streamed from either a remote
cloud or the edge. As the path to the remote cloud
involves multiple hops, some being nearly con-
gested, high resolutions of the video cannot be
guaranteed unless it is streamed from the edge. Fur-
thermore, to prevent jitter and the associated degra-
dation in QoE, the video must always be streamed
from the nearest edge to Robert. In this use case,
Robert’s user equipment receives a portion of the
video from the nearest edge A. As the bus gets far
away from edge A and closer to edge B, the video
along with the streaming virtual network function
are migrated to edge B, and the remaining portion
of the video streams to Robert from edge B. This
edge migration occurs in a manner transparent to
Robert, who continues enjoying the video without
any disruption in the video stream and with no deg-
radation in the perceived QoE.

While the above use cases focus on video
streaming services, similar use cases with the same
requirements can be derived for augmented real-
ity services. In this work, we consider using light-
weight virtualization technologies (i.e., container),
and introduce container migration to meet the
above mentioned use cases, with more focus on
the edge mobility aspect of use case 2.

fME ArchItEcturE

The proposed architecture is based on the two-tier
principle, wherein the cloud service provider (CSP)
gives access, through an appropriate application
programming interface (API) [14], to a content
provider or a third party over-the-top (OTT) service

The key idea behind

MEC is to place stor-

age and computation

resources at the

network edge, in the

proximity of users.

Accordingly, data pro-

cessing can be pushed

from a far remote

cloud to the edge. By

processing data locally

and accelerating data

streams through vari-

ous techniques, MEC

reduces the traffic bot-

tleneck toward the core

network.

1 https://portal.etsi.org/por-
tals/0/tbpages/mec/docs/
mec_executive_brief_v1_28-
09-14.pdf

https://portal.etsi.org/por-
tals/0/tbpages/mec/docs/
mobile-edge_computing_-_
introductory_technical_
white_paper_v1_18-09-14.
pdf

IEEE Communications Magazine • March 201740

to use the cloud resource to deploy its application.
The cloud has its own orchestrator to manage the
cloud infrastructure and its resources. An addition-
al component is considered: the cloud controller
(CC). Considering the business functionality, CC
is involved in maintaining the service level agree-
ment (SLA) with the OTT providers and mobile net-
work operators (MNOs). The agreement deals with
access rights and policies on the entity’s authority.
The edge server (ES) belongs to the MNO’s net-
work, where it is managed and controlled by the
edge orchestrator (EO). Every MNO has its own
EO, managing its own set of ES clusters. Figure 1
depicts inter/intra-MNO edge network. The dot-
ted lines represent the agreement level connection
among CSP, MNO, EO, and ES.

The ES is hosted on virtual machines on top
of the existing server hardware residing in the
MNO’s edge network node. The ES has its own
compute and storage. The compute node is
responsible for hosting container-based applica-
tions on the edge. The storage is used to keep
images of the application containers. For an intra-
edge network, additional shared storage is need-
ed to ensure live migration of containers between
edge compute nodes. Linux-based containers
(LCs) can be employed to make the system light-
weight and help in easily deploying service pack-
ages. LCs run applications/services provided from
the edge, while EO is in charge of deploying, con-
trolling, and migrating containers.

Referring to use case 2, when Robert connects
to ES A to watch an HD video introducing Ham-
burg, he may initially be served from the backend
cloud. As stated earlier, this may incur jitter and may
limit the video resolution. To cope with this issue,
the EO may instantiate a container on the connect-
ed ES compute node with built-in streaming and
transcoding virtualized functionality [14, 15]. Sub-
sequently, it may store the relative content from the
backend cloud into the ES’s local storage. Robert
will then be served the HD version of the video
stream from the ES. Considering the case of HTTP-
based video streaming, the EO can fetch the entire
media content on one go or may fetch only a cer-
tain number of video chunks at a time. Consequent-
ly, as the content will be served from one hop away,
the user’s perceived quality is expected to greatly
improve. For applications involving OTT services,

the established SLA may help in performing this task
with a pre-agreed negotiation between the OTT pro-
vider and the MNO. In this case, the EO inside the
MNO will get access rights from the OTT service
at the beginning of the process. The EO will then
create the replica and bring the service to the edge.

Although the content is now served from the
nearest edge, after some time the connection
with the mobile user may begin experiencing deg-
radation as the length of the path to the served
MEC increases. To maintain the same quality, it
is vital that the content moves along the phys-
ical mobility of users in an FME fashion [6]. To
realize the FME vision, the EO needs to keep
updated information about its resources and the
user locations. The latter may be obtained using
the MEC’s active device location tracking func-
tionality, based on which a user’s velocity and
direction may be derived. Taking this into consid-
eration, the EO may estimate the latency between
the user and the current edge, and compare it
with the latency between the same user and the
target edge. Once deemed appropriate, the EO
may trigger live migration of the container in a
proactive manner. This will consist of migrating
the video streaming service along with its con-
tents. Upon successful container migration, the
user may then be served from the new ES, which
will ensure low latency access to the content. The
above described migration process will be repeat-
ed along the track whenever required.

Migration can happen using various tech-
niques. In the case of live video streaming, service
continuity and bare minimum disruption are of
prime concern. To perform seamless live migra-
tion, the service state has to be maintained in
order to ensure that no data is lost. This is achieved
by transferring the entire memory content of the
running instance (i.e., container) from the source
ES to the target ES. The source ES keeps track
of which memory blocks are modified while the
transfer is in progress. Once this initial transfer
is complete, the changes that have occurred in
the meantime are transferred again. This contin-
ues until the newly built instance becomes exactly
identical to the old one. This ensures that after the
migration process is complete, the video starts
from the exact point rather than overlapping.
Indeed, in the case of mishandled memory, data
loss happens. This incurs overlap in video play-
time, where the user may have to watch the same
content again (from the span when the migra-
tion started). Moreover, the migration duration
should not be too long. If the duration is too long,
it might be that by the end of the migration either
the user has moved away from the ES location
or the played video is almost over. To overcome
these constraints, separate shared storage has to
be considered. Normally migration takes place by
copying memory blocks. Thus, if the blocks are
dumped at a shared location attached to the new
ES, service transfer becomes faster than in the
case considering local storage. Although async
mode configuration of shared storage is even fast-
er than sync mode, we propose the use of sync
mode to maintain data integrity. In sync mode the
data saved in the storage location is confirmed
before processing the next request from the ES. In
async mode, the requests are processed without
proper confirmation. It yields better response time

Figure 1. The envisioned mobile edge computing architecture.

Edge server (ES) A

Compute

Hardware Storage
Shared
storage

C

MNO 2
MNO 1 Edge orchestrator (EO) Edge orchestrator (EO)

Backend cloud
Cloud orchestrator

Cloud controller (CC)

Edge server (ES) B

Compute

Hardware Storage

C

Edge server (ES) C

Compute

Hardware Storage

C

IEEE Communications Magazine • March 2017 41

but at the cost of possible data corruption, which
may introduce a glitch in the played video.

So far, the proposed scheme deals with latency
reduction and mobility within the network of the
same MNO/edge. If the user moves out of the net-
work of an edge provider to the edge of another
provider, the SLA shall be used. The SLA should
enforce an integrated architecture where the EO
handover, shared storage concept, and service
migration are considered. In this case, the source
EO may hand over the control to the target EO
(in a separate MNO’s network) and permit service
migration. If it is not possible, then during the MNO
crossover phase, the content will be served from the
back-end cloud temporarily until the new EO again
caches the service in its own compute node.

It is worth noting that smart caching and migra-
tion can considerably enhance the overall system
performance and reduce the migration cost [16].
The caching concept can be enhanced further by
considering the remaining duration of the video.
If there is no possibility to store the whole content
(due to storage space), only the next few chunks
of the remaining video may be cached. Moreover,
if the video is almost at the end (i.e., the remaining
play time less than the migration time), the contain-
er/service migration may be simply omitted.

PErforMAncE EvAluAtIon
Figure 2 portrays the testbed environment we have
built to simulate edge-based video streaming and
its mobility considering use case 2. The testbed is
built using one Ubuntu 14.04.3 LTS desktop and
two laptops with the same host operating system.
Virtualbox is used to implement the testbed on a
desktop workstation machine. The desktop machine
hosts three virtual machines (VMs) inside the vir-
tual box environment. VM1 is used as a gateway
for the entire network to access the Internet. VM2
is used to simulate the cloud environment deploy-
ing a Devstack-based cloud, which provides all-in-
one (i.e., controller, compute, network, and storage
on the same node) with an Ubuntu instance run-
ning inside it. The Ubuntu cloud instance hosts an
HTTP live streaming (HLS) server. The ffmpeg open
source server, for both streaming and transcoding,
are built in separate VMs. The media contents (HLS
fragments) are generated using ffmpeg transcod-
ing servers, and are then streamed using an ffmpeg
streaming server (hosted in a separate VM). The
floating IP address of the instance was chosen from
the same IP subnet range of the edge cluster, so
the ES can access the data from the cloud VM. The
CC function was omitted, as the SLA level imple-
mentation was not considered in the testbed. VM3
was configured using Proxmox VE and acts as edge
cluster controller — EO. VM3 also includes a DHCP
server with authentication. To automate the orches-
tration process, a script is used to:
• Monitor the session changeover of the cli-

ents from one edge to the other using the
authentication server logs

• Handle the container migration
The entire cluster of edges is formed by inte-

grating two additional VMs (i.e., VM4 and VM5)
with the EO. VM4 and VM5 are hosted inside lap-
tops to emulate ESs. The connectivity between the
VMs is extended using an Ethernet switch. VM4
and VM5 use the same virtual environment as the
EO. To ensure that the laptops (VM4 and VM5)

act as edge access points, the wireless LAN inter-
face was configured using Host-apd in IEEE 802.11
master mode. The container is created inside VM4.
We use Openvz containers for the testbed. The
containers are built with Ubuntu cloud minimal
image using Nginx as the web server. Nginx is con-
figured to serve as reverse proxy to the back-end
cloud HLS server with caching and streaming func-
tionality. It is worth recalling that the objective of
these tests is to validate the use of MEC to ensure
high-quality HD video streaming service to mobile
users. Therefore, the focus of these tests is on
caching content and live delivery of the multimedia
content closer to the user at the edge.

To perform the test, one container is instantiat-
ed in Edge1 with all the features explained above.
When a user (using a smartphone or laptop) con-
nects to the network through SSID, the user is
assigned an IP from the same IP subnet pool of the
ES. The user connectivity log along with the MACID
of the user are saved in a database of the EO. The
user launches a browser and starts browsing the
video, using the URL of the streaming sever hosted
at the container. To implement minimum securi-
ty, the user is given authorization to only browse
data from the container. Upon connecting for the
first time, the container forwards the request to the
cloud VM, and the multimedia content is served
from the back-end cloud. Simultaneously, it caches
the relevant media contents and stores them for
further use to the container. For the next requests to
the same video, the container makes use of its own
streaming functionality to serve the user by using
cached contents regardless of the fact that the cloud
is accessible or not. Accordingly, this implements the
concept of bringing the content closer to the user
and making the backend core free from the traffic.

To simulate mobility, laptops are placed at a
distance from a multihop network. During the
video playback, the user device is deliberately
moved from the first edge toward the second
edge connected to the next hop in the network.
The user automatically connects to Edge2. As
soon as the wireless connectivity handover takes
place, the logs are generated inside the EO. Upon

Figure 2. Envisioned testbed setup.

VM3 - Edge
orchestrator
(EO)
eth0 192.168.1.2

Monitoring
& migration
controller

VirtualBox5.0
VM1 - Gateway
eth0 10.0.2.15
eth1 192.168.1.1
VM2-Backend
cloud
eth0 192.168.1.5

VM4 - Edge server (ES)A

101 IP : 192.168.1.20
OpenVZ container
Running Nginx

IP:192.168.1.220
Browser:>
http://192.168.1.20:8080/testplay/index4.html

Internet
forwarding

HLS streaming
server

DHCP &
authentication
server

CO

eth0

p1p1

NAT

Ubuntu
LTS
desktop

B
r
i
d
g
e
d

Internet
130.233.145.0

130.233.145.246

192.168.1.201

192.168.1.0/2
br0

br0

eth0 192.168.1.4

eth0 192.168.1.5

VirtualBox 5.0
VM5 -Edge server (ES)B

HostAPD script
br0>bridged with eth0 and wlan1

Ubuntu LTS

192.168.1.2

192.168.1.211

wlan1

wlan1

VirtualBox5.0

Ubuntu LTS
HostAPD

br0>bridged with

IEEE Communications Magazine • March 201742

detecting the client’s connectivity, the script in
charge of automating the service migration gath-
ers the client info (i.e., MACID), compares it to
the database, identifies the same client’s move-
ment to a new edge, and subsequently triggers
the live migration of the container from the old
ES to the next one to which the client is directly
connected. For Openvz, the live content delivery
is done using checkpoint/restore in userspace
(CRIU). It performs vz-dump (memory block
dump) to save the state and uses rsync (i.e., incre-
mental file transfer utility) to transfer the file to the
target location. It performs a dual-level operation
to prevent data loss. First, pre-copy starts from
the point at which the migration is initiated. Once
completed, the container initialization is started
in the new edge along with post-copy. Here-
in, post-copy represents transfer of the residual
amount of changes that occurred in the memory
block during this small interval. As service auto-
start is already enabled, once this data transfer
operation is done, the container is automatical-
ly started in the target edge, and the old one is
released. The user remains unaware of this fact
and enjoys normal streaming. Throughout the
migration time, the container IP address remains
the same, ensuring no service downtime (i.e., the
session remains active) during this span.

For service migration, the test is performed
with two types of storage. In the first type, the
whole operation is performed using local stor-
age (i.e., service migration within a federated
edge network). The vz-dump files are first cop-
ied to the local storage, then synched with the
target ES node, the container is initialized in that
target node, and after post-copy the migration is
completed. However, this method causes high
delays. To achieve better performance with min-
imum response, the second type is implement-
ed. A network file system (NFS) server is used as
shared storage for the operation. The NFS server
is installed inside the EO, and the shared space
is defined for the cluster nodes. The shared stor-
age is used only for vz-dump files. During migra-

tion, the copied memory files are stored in the
shared location. As the target node can access
the shared location directly, it reduces the content
delivery to the edge, resulting in faster response.

In Fig. 3, we plot the migration duration of one
container for three different conditions:
• With streaming online mode — streaming in

use and the client watching the video
• Without streaming offline mode — stream-

ing in use and the client is not watching the
video with no changes in the memory blocks

• Blank container with two different types of ES
The migration latency is plotted considering

local storage. The migration latency of a blank con-
tainer is plotted to showcase how much added
services impact the migration time. From the
results, we can observe that when video streaming
is not active, the content migration takes less time
compared to the case when the video is being
streamed. Moreover, for an ES with higher RAM
capacity, the migration duration is shorter. This is
attributable to the fact that copying memory pages
takes less time with higher RAM, leading to a slight
decrease in the overall duration.

Figure 4 plots the migration duration when
considering various ways to share the storage
among edges. The test is performed with two dif-
ferent sizes of containers, one small and anoth-
er big, to investigate if container size affects
migration duration. We clearly remark that the
container size merely affects the migration laten-
cy. Besides, we observe that shared-sync mode
achieves shorter latency in comparison to local
mode. Furthermore, the shared storage, if con-
figured in shared-async mode, reduces the dura-
tion of the migration closer to 10 s. In this last
mode, the video experienced a single glitch of
1∼2 s. We explain this by the fact that data cor-
ruption took place during async mode, resulting
in reduced quality of experience (QoE) [17]. The
results obtained through this evaluation reveal
that the storage type and memory capacity have
high impact on the migration latency.

conclusIon And futurE rEsEArch
dIrEctIons

In this article, we propose a framework that lever-
ages MEC to support diverse applications in smart
city scenarios. To always ensure high QoE, the
Follow Me Edge concept is introduced. Accord-
ing to this concept, services move across edge
servers as per the movement of their respective
users. The proposed framework is validated using
a real-life testbed. Edge mobility was tested using
different storage types, different container sizes,
and different edge resources.

Interesting results were obtained, suggest-
ing migration latency depends on the differ-
ent techniques used. The obtained results also
demonstrate that short migration latency does
not necessarily guarantee high QoE. It becomes
apparent that the complexity of the system aris-
es as a trade-off between short migration laten-
cy at the cost of possible data loss. Based on
the obtained results, it can be concluded that a
mechanism to select the right combination of
techniques to be used for efficiently migrating a
service is of vital importance. This defines one of
the authors’ future research directions in this area.

Figure 3. Live migration time using local storage: a) with streaming online
mode; b) without streaming offline mode; c) blank container.

a

40

0

Ti
m

e
(s

)

b c

60

80

100

20

120
Edge 1 GB RAM
Edge 4 GB RAM

IEEE Communications Magazine • March 2017 43

AcknoWlEdgMEnts
This work was partially supported by the TAKE 5
project funded by the Finnish Funding Agency for
Technology and Innovation (TEKES) and in part by
the Finnish Ministry of Employment and the Econ-
omy. It is also partially supported by the European
Union’s Horizon 2020 research and innovation
programme under the 5G!Pagoda project with
grant agreement no. 723172.

rEfErEncEs
[1] T. Taleb, A. Ksentini, and A. Kobbane, “Lightweight Mobile

Core Networks for Machine Type Communications,” IEEE
Access, vol. 2, Oct. 2014. pp. 1128–37.

[2] T. Taleb and A. Kunz, “Machine Type Communications in
3GPP Networks: Potential, Challenges, and Solutions,” IEEE
Commun. Mag., vol. 50, no. 3, Mar. 2012.

[3] T. Taleb et al., “EASE: EPC as a Service to Ease Mobile Core
Network,” IEEE Network, vol. 29, no. 2, Mar. 2015, pp. 78–88.

[4] T. Taleb, “Toward Carrier Cloud: Potential, Challenges, and
Solutions,” IEEE Wireless Commun., vol. 21, no. 3, June
2014, pp. 80–91.

[5] U. Shaukat et al., “Cloudlet Deployment in Local Wire-
less Area Networks, Motivation, Taxonomies, and Open
Research Challenges,” J. Network Computer Applications,
vol. 62, Feb. 2016, pp. 18–40.

[6] A. Ksentini, T. Taleb, and F. Messaoudi, “A LISP-Based Imple-
mentation of Follow Me Cloud,” IEEE Access, vol. 2, Oct.
2014. pp. 1340–47.

[7] H. Chang et al., “Bringing the Cloud to the Edge,” Proc. IEEE
INFOCOM Wksps.), Toronto, Ontario, Canada, May 2014.

[8] A. Ahmed and E. Ahmed, “A Survey on Mobile Edge Com-
puting,” Proc. IEEE 10th Int’l. Conf. Intelligent Systems Con-
trol, India, May 2016.

[9] D. Fesehaye et al., “Impact of Cloudlets on Interactive Mobile
Cloud Applications,” Proc. IEEE 16th Int’l Conf. Enterprise Dis-
tributed Object Computing, Beijing, China, Sept. 2012.

[10] J. Fajardo, I. Taboada, and F. Liberal, “Improving Content
Delivery Efficiency through Multi-Layer Mobile Edge Adap-
tation,” IEEE Network, vol. 29, no. 6, Dec. 2015, pp. 40–46.

[11] W. Zhu et al., “Multimedia Cloud Computing,” IEEE Signal
Processing Mag., vol. 28 , no. 3, May 2011, pp. 59–69.

[12] Y. Jararweh et al., “Resource Efficient Mobile Computing
Using Cloudlet Infrastructure,” Proc. IEEE 9th Int’l. Conf.
Mobile Ad Hoc Sensor Networks, Dalian, China, Dec. 2013.

[13] S. Wang et al., “Dynamic Service Migration in Mobile Edge-Clouds,”
Proc. IFIP Networking Conf., Toulouse, France, May 2015.

[14] P. Frangoudis et al., “An Architecture for On-Demand Ser-
vice Deployment over a Telco CDN,” IEEE ICC ’16, Kuala
Lumpur, Malaysia, May 2016.

[15] T. Taleb, A. Ksentini, and R. Jantti, “Anything as a Service
for 5G Mobile Systems,” IEEE Network, vol. 30, no. 6, Dec.
2016, pp. 84–91.

[16] T. Taleb and A. Ksentini, “An Analytical Model for Follow
Me Cloud,” Proc. IEEE GLOBECOM, Atlanta, GA, Dec. 2013.

[17] S. Dutta, T. Taleb, and A. Ksentini, “QoE-Aware Elasticity
Support in Cloud-Native 5G Systems,” Proc. IEEE ICC ’16,
Kuala Lumpur, Malaysia, May 2016.

bIogrAPhIEs
Tarik Taleb is currently a professor at the School of Electrical
Engineering, Aalto University, Finland. He has worked as senior
researcher and 3GPP standards expert at NEC Europe Ltd. Prior
to his work at NEC, until March 2009, he worked as anassis-
tant professor at the Graduate School of Information Sciences,
Tohoku University, Japan, in a lab fully funded by KDDI. He
received his B.E. degree in information engineering with distinc-
tion, and his M.Sc. and Ph.D. degrees in information sciences
from Tohoku University in 2001, 2003, and 2005, respectively.
His research interests lie in the field of architectural enhance-
ments to mobile core networks (particularly 3GPP’s), mobile
cloud networking, mobile multimedia streaming, and social
media networking. He has also been directly engaged in the
development and standardization of the Evolved Packet System.
He is a member of the IEEE Communications Society Standard-
ization Program Development Board and serves as Steering
Committee Chair of the IEEE Conference on Standards for Com-
munications and Networking. He has received many awards for
his many contributions to the area of mobile networking.

Sunny DuTTa obtained his M.Sc. and Bachelor’s degree from
the School of Electrical Engineering, Aalto University, Finland,
and the West Bengal University of Technology, India, in 2016
and 2006, respectively. Prior to his Master’s studies, he worked

as an engineer assuming different roles in network administra-
tion, energy automation, and smart grid communication net-
work infrastructure. His present research focus includes MEC,
NFV, SDN, and multimedia content delivery.

aDlen kSenTini received his M.Sc. degree in telecommunication
and multimedia networking from the University of Versailles Saint-
Quentin-en-Yvelines, and his Ph.D. degree in computer science
from the University of Cergy-Pontoise in 2005, with a disserta-
tion on QoS provisioning in IEEE 802.11-based networks. From
2006 to 2015, he worked at the University of Rennes 1 as an
assistant professor. During this period, he was a member of the
Dionysos Team with INRIA, Rennes. Since March 2016, he has
been working as an assistant professor in the Communication
Systems Department of EURECOM. He has been involved in
several national and European projects on QoS and QoE support
in future wireless, network virtualization, cloud networking, and
mobile networks. He has co-authored over 100 technical jour-
nal and international conference papers. He received the best
paper award from IEEE IWCMC 2016, IEEE ICC 2012, and ACM
MSWiM 2005. He has been acting as TPC Symposium Chair for
IEEE ICC 2016 and 2017 and IEEE GLOBECOM 2017. He was a
Guest Editor of IEEE Wireless Communications, IEEE Communica-
tions Magazine, and two issues of ComSoc MMTC Letters. He has
been on the Technical Program Committees of major IEEE Com-
Soc, ICC/GLOBECOM, ICME, WCNC, and PIMRC conferences.

MuDDeSar iqbal is working as a senior lecturer in mobile
computing at the Computer Science and Informatics Division,
School of Engineering, London South Bank University. He has
been a principal investigator, co-investigator, technical lead,
project manager, coordinator, and focal person of more than
10 internationally teamed R&D and capacity building training
projects with total funding of over £1 million from different
international organizations. He has co-founded and successfully
launched a startup called SwanMesh Networks Ltd that was
initially established in the United Kingdom to commercialize his
Ph.D. project and now has over six years of design and develop-
ment experience. Over the last few years, he has been actively
involved in R&D projects in the area of mobile cloud computing
and other open source networking technologies for applications
in healthcare, disaster management, and community networks.
He has won two awards from the Association of Business Execu-
tives UK while tutoring on computing modules.

Hannu Flinck is a research manager at Nokia Bell Labs Espoo,
Finland. Before that he worked with Nokia Research Center
and the Technology and Innovation unit of Nokia Networks in
various positions. He has been actively participating in a number
of EU research projects. He received his M.Sc. degree (1986)
and Lic.Tech. degree (1993) in computer science and commu-
nication systems from Aalto University (at that time known as
Helsinki University of Technology). His current research interests
include mobile edge computing, SDN, and content delivery in
mobile networks, particularly in 5G networks.

Figure 4. Live migration latency: a) local storage; b) shared sync storage; c)
shared async storage.

a

20

0

Ti
m

e
(s

)

b c

40

60

80

100

120
Big
Small

