
1

Reinforcement Learning-based Slice Isolation
against DDoS Attacks in Beyond 5G Networks

Amir Javadpour, Forough Ja’fari, Tarik Taleb, and Chafika Benzaı̈d

Abstract—Network slicing in 5G networks can be modeled
as a Virtual Network Embedding (VNE) problem, wherein the
slice requests must be efficiently mapped on the core network.
This process faces two major challenges: covering the maximum
number of requests and providing slice isolation. Slice isolation is
a mechanism for protecting the slices against Distributed Denial
of Service (DDoS) attacks. To overcome these two challenges,
we have proposed a novel actor-critic Reinforcement Learning
(RL) model, called Slice Isolation-based Reinforcement Learning
(SIRL), using five optimal graph features to create the problem
environment, the form of which is changed based on a ranking
scheme. The ranking procedure reduces the dimension of the
features and improves learning performance. We evaluated SIRL
by comparing it against four non-RL and nine state-of-the-art RL
models. The average results show that the ratio of the covered
requests and the damage caused by a DDoS attack of SIRL
is 54% higher and 23% lower than that of the other models,
respectively. It also has an acceptable learning performance and
generality, regarding the reported results that show SIRL agents
trained and tested with different networks outperform the other
agents by 97%.

Index Terms—5G networks, Slice isolation, Reinforcement
Learning (RL), and Distributed Denial of Service (DDoS)

I. INTRODUCTION

THE rapid evolution of cellular networks toward 5G and
beyond reveals that a various range of services, includ-

ing proprietary and personalized ones, are expected to be
supported by the currently available resources. 5G networks
handle the massive number of service providing requests by
network slicing, which is the process of sharing a substrate
network between multiple independent virtual networks, called
network slices [1]. Supporting the requested services, consid-
ering resource limitations, is not the only challenge that the 5G
networks are facing. Emerging services, such as the Internet
of Things, autonomous transportation, telemedicine, and smart
cities, have always been an attractive target for the attackers.
Hence, 5G networks have to deal with the security threats
against the supported services.

Distributed Denial of Service (DDoS) attacks are one of the
security threats targeting 5G slices. The adversary recruits an
army of compromised devices, and then commands them to
send flooded traffic toward the substrate network hosting the
slices. These attacks degrade the performance of the services,

Amir Javadpour is with the faculty of Information Technology and Elec-
trical Engineering, University of Oulu (e-mail: a.javadpour87@gmail.com).

Forough Ja’fari is with the Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran (e-mail: azadeh.mth@gmail.com).

Tarik Taleb and Chafika Benzaı̈d are with the faculty of Information
Technology and Electrical Engineering, Oulu University, Oulu, 90570 Finland
(e-mail: tarik.taleb@oulu.fi, and e-mail: and chafika.benzaid@oulu.fi)

Corresponding authors: Amir Javadpour and Tarik Taleb

and in the intense cases, the service becomes completely
unavailable [2]. A DDoS attack becomes more destructive
when multiple slices are sharing a common substrate node,
which is a common situation due to the nature of network
slicing. In such a situation, all the services running on the
target substrate node are affected [3].

As most of the existing security researches on 5G net-
works [4, 5] have stated, slice isolation is a mechanism for
protecting the communication channel between the different
slices. However, this concept can be extended to a wider area.
Considering the definition of slice isolation suggested by Sattar
and Matrawy [3], we define slice isolation as any security
mechanism that can protect a slice from the threats targeting
the other slices. Slice isolation faces two main challenges: (1)
covering an optimal number of slice requests, and (2) making
the slices as isolated as possible. These challenges are shown
in Figure 1. There are four users (on the left side of the
figure) and each of them has a custom service that must be
embedded on the substrate network (on the right side of the
figure). There is also an adversary who launches a DDoS attack
against one of the Substrate Nodes (SNs). The circles are the
Virtual Nodes (VNs) to be embedded, and the colors specify
the requester. The numbers inside the circles and on the links
specify the required CPU and bandwidth capacities of the VNs
and Virtual Links (VLs), respectively. The Substrate Links
(SLs) are considered to have enough resources. In Figure 1(a),
all the black VNs are not mapped on the SNs due to CPU
resource limitation. Hence, the fourth user is unsatisfied with
the service providing performance. The requests of the other
three users are completely mapped on the substrate network;
However, since at least one of the VNs of their request is
mapped on the adversary’s target SN, their services become
partially available. The embedding scenario of Figure 1(b) is
much more acceptable, because the request of the fourth user
is also covered, and its VNs are not affected by the attack.
Finally, Figure 1(c) shows a better situation, where all the
requests are covered, and only two of the users are affected
by the attack.

To the best knowledge of the authors, the current solutions
for embedding virtual networks on a shared substrate network
do not consider slice isolation (i.e., second challenge). Sattar
and Matrawy [3] have focused on slice isolation for securing
the services, but, on the other hand, the embedding perfor-
mance (i.e., first challenge) is not discussed. In this paper, we
aim to provide slice isolation for beyond 5G networks, wherein
the number of covered slices is maximized. To achieve this
goal, we have proposed an actor-critic Reinforcement Learning
(RL) model, called Slice Isolation based on Reinforcement

2

SN1

SN3

SN5

SN2

SN4

SN6

Unsatisfied

Partially
satisfied

Partially
satisfied

Partially
satisfied

The
adversary

(a) Dealing with none of the challenges

SN1 SN2

SN4

SN6
SN5

SN3

Partially
satisfied

Partially
satisfied

Partially
satisfied

Satisfied
User

The
adversary

(b) Dealing with the first challenge

The

The
adversary

Partially
satisfied
Partially
satisfied
Partially
satisfied

Partially
satisfied

Partially
satisfied

User
satisfied

User
satisfied

SN5 SN6

SN3SN3

SN3

SN1 SN2

SN4

(c) Dealing with both of the challenges

Fig. 1. A sample scenario of slice isolation challenges, which are (1) covering
an optimal number of slice requests, and (2) making the slices as isolated as
possible.

Learning (SIRL) designed for solving Virtual Network Em-
bedding (VNE) problems. RL is a type of machine learning
approach, in which an agent interacts with the problem envi-
ronment, and finds the optimal solution based on the achieved
reward or punishment [6].

Presenting the problem space to the agent is challenging,
due to the various number of features that may influence
the final solution. Moreover, leading the agent toward the
optimal solution requires a subtle methodology. The proposed
method tries it best to overcome these challenges. The key

contributions of this paper are as follows:
• Providing a mathematical model for VNE problems that

considers time in its representation, defining two map-
ping objectives for increasing the number of success-
fully mapped requests, while keeping their security and
isolation at an acceptable level, and then proposing an
objective function, maximizing which will help in finding
the optimal solution based on these objectives;

• Introducing novel features for presenting a network as the
problem environment, that better cope with the challenges
in maximizing the number of accepted requests and
improving slice isolation against DDoS attacks;

• Proposing an optimized actor-critic RL model, that pro-
cesses the extracted features from the network in a way
that improves its generality and learning performance.

The remainder of this paper is structured as follows. Sec-
tion II reviews different RL models that are proposed for
solving VNE problems. In Section III, we have described the
problem and represent it with a mathematical model. Sec-
tion IV presents the proposed RL model, and the algorithms
for creating the environment. In Section V, we have evaluated
the performance of our proposed model by comparing it with
multiple RL models. Finally, Section VI provides a summary
of our work and the future directions.

II. RELATED WORK

In this section, we review the different solutions, especially
the RL models, for effectively mapping the VNs on the SNs.
It is worth noting that several types of research have been
conducted in this field. Hence due to the space limitation, we
will focus on the most recent ones.

Different types of solutions are currently proposed for
solving the problem of VNE. Some of the optimization-based
researches use heuristic algorithms in order to rank the SNs
and/or VNs regarding their competency to host the VNs and/or
their competency to be first mapped on the SNs, respectively.
A heuristic function in these algorithms calculates the score
of the items that must be ranked. Cao et al. [7] have proposed
a ranking algorithm for solving VNE problems, that sorts
the SNs based on a heuristic function with number of links,
sum of bandwidth, and shortest distance to other nodes as
its parameters. This sorting process considers both direct and
stable outputs of the heuristic function to rank the nodes. In
this research, both the SNs and VNs are sorted, and then,
the VN with the highest required resources is mapped on
the SN with the highest embedding power. Cao et al. [8]
have considered the same topological features as well as
node centrality and link interference. Another heuristic ranking
method is proposed by Hashmi and Gupta [9], where the
parameters involved in the sorting function are the number
of links, the available bandwidth, and the CPU capacity of the
SNs. Only the SNs are sorted and the VNs are mapped one by
one. Shi et al. [10] have focused on solving VNE problems
in software-defined networks, where the embedding process
can be dynamically managed in real-time. The closeness
aggregation of the SNs and the central aggregation of the VNs
are the novel topological features considered in this method.

3

Even though the heuristic ranking techniques are fast, the
found solution is not always the optimal one.

Metaheuristic algorithms are another optimization-based
solutions, that can seek larger problem spaces for finding the
optimal solution rather than ranking approaches, by defining
an objective function and attempting to maximize or mini-
mize it. Aguilar-Fuster and Rubio-Loyola [11] have focused
on defining an efficient objective function, which leads the
problem space searching process with the help of the SNs
and VNs degrees. Another metaheuristic approach is proposed
by Song et al. [12], in which the data records of the most
repeated situations are stored to improve the performance
of VNE. Particle swarm optimizer is used for exploring the
problem space. There are also other types of metaheuristic
solutions that focus on genetic algorithms, in which some
random solutions (i.e., the chromosomes that are made up of
genes) are generated, and then the poor ones are omitted, and
the others are improved by crossover and mutation phases. The
improvement phases try to minimize/maximize the output of
a fitness function. The fitness function and the structure of
the chromosomes in these algorithms are designed based on
the VNE problem. Zhang et al. [13] have proposed a genetic
solution for multi-domain VNE problems, where two or more
infrastructure providers share the same substrate network,
while managing their own users and requests. The number of
genes of each chromosome in this research is equal to the total
number of SNs, and different genes indicated different VNs
that are mapped on that SN. They have defined the fitness
function as the amount of available CPU and bandwidth of
the substrate network. The goal is to maximize the remained
resources after mapping the VNs by maximizing the fitness
function. The method proposed by Zhuang et al. [14] is another
example of genetic-based solutions of VNE. In this method,
the number of chromosomes are equal to the total number of
VNs, and the genes indicated which of the SNs are hosting
that VN. This solution considers the amount of consumed
bandwidth of the substrate network as the fitness function,
which has to be minimized. The genetic algorithms suffer from
high complexity when the problem space becomes larger, and
this why RL solutions are suggested.

Yuan et al. [15] proposed a RL model for solving VNE
problems with multiple agents, each of which finds the optimal
mapping solution for a single request. Since the focus of this
model is to optimize the agent strategies, it is not mentioned
which features are considered for learning the environment.
Thakkar et al. [16] also proposed a RL model that solves the
problem of VNE in two stages. The first stage assigns a binary
value to each of the SNs, indicating whether the current VN
can be mapped on them. In the second stage, a probability is
assigned to the SNs that indicates their suitability for hosting
the VN. In this research, the main focus is on the learning
process, and therefore, the exact features of the SNs and VNs
are not mentioned.

Yao et al. [17] proposed a RL model, called CDRL
(Continuous-Decision virtual network embedding scheme rely-
ing on Reinforcement Learning), for solving VNE problems, in
which three main features are considered for each of the SNs:
the CPU capacity, the sum of the bandwidth of the adjacent

link, and the node degree (i.e., the number of connected links).
Yao et al. [18] also presented a model, RDAM (Reinforcement
learning based Dynamic Attribute Matrix representation), that
uses the same features of CDRL, with an extra one: the average
distance to the other nodes. Cao et al. [19] also deployed a RL
model based on CDRL with an extra security level feature to
protect the slices and the substrate nodes of the 5G network.

Jiang and Zhang [20] proposed a RL model that considers
both quality of service and the security level of each VN in
the process of solving the VNE problem. We call this model
VNEQS, short for Virtual Network Embedding for Quality
of service and Security. The nodes safety level and the delay
are notable features of this model. Lu et al. [21] proposed
a RL model, MLRL (Multi-Layer virtual network embedding
algorithm based on Reinforcement Learning), for software-
defined networks. MLRL finds the optimal mapping solution
for two-layer virtual requests. The first layer request acts as
the substrate network for the second layer request in a two-
layer request. Three topological features, degree centrality,
closeness centrality, and betweenness centrality, are considered
in MLRL for modeling the environment. Li and Lu [22]
also proposed a similar RL model, called DRLVNE (Double-
layer Reinforcement Learning-based VNE algorithm), with
two extra features: the average distance to the other nodes
and eigenvector centrality.

Zhang et al. [23] proposed an actor-critic RL model that
uses a graph convolution neural network to extract the en-
vironment features automatically. We call this model GC-
NNRL, short for Graph Convolution Neural Network with
Reinforcement Learning. The number of VNs and VLs that
are successfully mapped are considered as mapping state
features. Yan et al. [24] proposed a deep RL model, A3CGCN
(Asynchronous Advantage Actor-Critic Graph Convolutional
Network), to automatically solve the problem of VNE, in
which the features of the substrate and virtual network are
extracted using a graph convolutional network. The notable
features that represent the environment in A3CGCN are a
binary value that indicates whether one of the previous VNs
of the current request is mapped on a SN, and the number of
VNs in the current request that is not still mapped.

Dolati et al. [25] proposed a deep RL model, called Deep-
ViNE (Deep reinforcement learning Virtual Network Embed-
ding), in which the substrate network graph is encoded as an
image considering the spatial locality property. The features
of the SNs and VNs construct the processes image. Wang
et al. [26] proposed a RL model, called PNVNE (Pointer
Network VNE), for solving VNE problems, which utilizes an
attention mechanism that selects the most suitable substrate
nodes, hence, the model can focus on them. Troia et al. [27]
proposed an Advantage Actor-Critic RL (A2CRL) model for
mapping slice requests in a 5G network on the SNs, as a
special form of VNE problems. The main focus of this model
is to decide whether to accept a request or not. The notable
feature considered by A2CRL is the percentage of leaf nodes
in the network.

None of these RL models, which are summarized in Table I,
focus on the damage caused by a DDoS attack against the
slices. Moreover, generality of the models are not considered,

4

and this is challenging in large-scale networks. As a result, we
propose a novel RL model to cope with these weaknesses.

III. PROBLEM DEFINITION

In this section, we describe the network model and the
symbolic presentation of each element in a 5G network, which
are summarized in Table II and Table III. We also define the
VNE problem using three constraints, and then explain our two
objectives in solving such problems. 5G networks commonly
consist of user devices, radio access networks, core networks,
network slice managers, and controllers [28]. Due to the scope
of this paper, we are focusing on the core network, and hence,
modeling the other components is not taken into consideration.
Since in VNE problems, the physical network is called the
substrate network, we refer to the core network as the substrate
network in the remaining of this paper. It is worth noting that
all the sets that are presented in this section are ordered sets.

The substrate network, S, can be written as a tuple like
(N ,L,R), where N is the set of substrate network nodes
capacity, L is the matrix of substrate network links capacity,
and R, is the set of requested slices that arrive over the time.
N is written as {n1, n2, . . . , nN}, where N is the total

number of nodes in the substrate network and ni is the ith

node capacity. L is a square N × N matrix, in which the
element in the ith row and jth column is shown by l(i,j).
l(i,j) is the capacity of the link that connects the ith and jth

nodes in the substrate network. Since the substrate network is
modeled as an undirected graph, we have l(i,j) = l(j,i).
R is written as {r1, r2, . . . , rR}, where R is the total

number of requests and ri is the ith arriving request. If we are
focusing on a limited time interval, R is an integer, otherwise,
it is ∞. Each of the requests arrives at and lasts for a specific
time, and also asks for a VN to be mapped on the SNs
and links in the substrate network. Hence, we can show ri
with a tuple like (ti, di,Ni,Li,Mi), where ti and di are the
arrival time of the ith request and its duration, respectively,
Ni is the set of VNs capacity of the ith request, Li is the
matrix of VLs capacity of the ith request, and Mi is the
set of substrate network nodes, on which the VNs of the
ith request are mapped. We have Ni = {ni

1, n
i
2, . . . , n

i
Ni
},

where Ni is the total number of VNs and ni
j is the jth VN

capacity in the ith request. Li is also a square Ni×Ni matrix,
in which the element in the jth row and kth columns is
shown by li(j,k). l

i
(j,k) is the capacity of the link that connects

the jth and kth VNs in the ith request. Like the substrate
network, the requests are also modeled as an undirected graph,
and therefore, we have li(j,k) = li(k,j). Finally, we can write
Mi as {(mi

1, t
i
1), (m

i
2, t

i
2), . . . , (m

i
Ni

, tiNi
)}, where mi

j is the
substrate network node index, on which the jth VN in the
ith request is mapped, and tij is the time that this mapping is
performed. If the VN is not still mapped, the value of mi

j and
tij are zero and ∞, respectively. If all the VNs of a request
are mapped at once, the mapping time is the same. It must
be noted that the value of tij for all valid i and j is always
lower than ti+di. Because if a request is not mapped until its
deadline, the mapping is failed. Moreover, on the departure of
a request, the related mi

j becomes zero again.

In our proposed model, the process of mapping the VLs
starts after all the VNs of a single request are mapped.
Moreover, we map the VLs on the shortest path between the
SNs, on which the VNs of that link is mapped. If two paths
have the same number of edges (i.e., hops), we select the path
with the highest minimum weight of the edges.

We define a binary function, called α(t, i, j, k), that returns
one if the kth VN of the jth request is mapped on the ith SN
at time t, and otherwise it returns zero. In other words, we
can calculate this function as defined in Equation 1. Based on
this equation, the value of α is one, only if the request is still
active in the current time, and the value of m is equal to the
SNs index.

α(t, i, j, k) =


0, if t < tjk
0, else if t > tj + dj

1, else if mj
k = i

0, otherwise

(1)

We also define a similar binary function, β(t, i, i′, j, k, k′),
that returns one if the link between the kth and k′th VNs of
the jth request is mapped on the link between the ith and
i′th SNs at time t. Assuming that the shortest path between
the ith and i′th SNs is p(i,i

′), and it contains P (i,i′) edges,
in which the eth edge is between p

(i,i′)
e and p

(i,i′)
e+1 SNs, the

β function can be calculated as Equation 2, where π is the

condition of p
(mj

k,m
j

k′)
e = i ∧ p

(mj
k,m

j

k′)

e+1 = i′ or p
(mj

k,m
j

k′)
e =

i′ ∧ p(m
j
k,m

j

k′)

e+1 = i. According to this equation, the value of β
is one, only if the related request is still active, the endpoints
of the VL are successfully mapped, and the endpoint SNs are
in the shortest path.

β(t, i, i′, j, k, k′) =



0, if t < tjk or t < tjk′

0, else if t > tj + dj

0, else if mj
k = 0 or mj

k′ = 0

1, else if ∃e ∈ N
P

(m
j
k
,m

j
k′)

: π

0, otherwise

(2)

To check whether a request is completely mapped on the
substrate network, we define a binary function, γ(t, i), that
returns one or zero if, until time t, the ith request is completely
mapped or not mapped, respectively. We can define this
function as Equation 3. This equation says that a request is
completely mapped, only if a number, except zero, is assigned
to all of its VNs related m.

γ(t, i) =

{
1, if t ≥ ti and ∀j ∈ NNi : m

i
j ̸= 0

0, otherwise
(3)

Another function is δ(t, i), which returns the number of
requests that are mapped on the ith SN at time t. In sub-
section III-A, we will discuss the constraints for mapping the
VNs, and based on Constraint 1, two VNs of a same request
cannot be mapped on a same SN. Hence, we can say that
δ(t, i) is the number of VNs mapped on the ith SN at time
t. This function is calculated according to Equation 4. If the
value of α is one, the related VN is mapped on the target SN.

5

TABLE I
A SUMMARY OF THE RL-BASED VNE SOLUTIONS AND THEIR MAIN CHARACTERISTICS

Model name Substrate features Virtual features Defined actions Reward parameters Time complexity

C
PU

B
an

dw
id

th

D
eg

re
e

D
is

ta
nc

es

E
m

be
dd

in
g

C
PU

B
an

dw
id

th

E
m

be
dd

in
g

CDRL [17] • • • Selecting one of the
SNs

Covered and
consumed amount of

resources

O(SNs4)

RDAM [18] • • • • Selecting one of the
SNs

Covered and
consumed amount of

resources

O(SNs4)

VNEQS [20] • • Selecting one of the
SNs

Covered and
consumed amount of

resources

O(requests × VNs × VLs)

MLRL [21] • • • Selecting one of the
SNs

Covered and
consumed amount of

resources

O(VLs × SNs3)

GCNNRL [23] • • • • • Selecting one of the
SNs

Covered and
consumed amount of

resources

O(requests × SN × VNs)

A3CGCN [24] • • • • • • Selecting one of the
SNs

The VNs indices O(SL × VLs)

DeepViNE [25] • • • • • Deciding to map on
the neighbor SNs

Covered and
consumed amount of

resources

O(VNs × SLs × VLs)

PNVNE [26] • • • • Selecting one of the
SNs

The consumed
bandwidth

O(SNs × SLs × VLs)

A2CRL [27] • • • • Deciding whether to
accept the current

request or not

Number of involved
hops and consumed

CPU

O(SNs × SLs × VLs)

SIRL (this work) • • • Selecting one of the
SNs

Number of involved
hops and maximum
number of VNs on a

single SN

O(requests × SNs3)

Hence, This equation calculates the sum of α values for all
the VNs of all the requests.

δ(t, i) =

R∑
j=1

Nj∑
k=1

α(t, i, j, k) (4)

If the number of edges that are involved in mapping the VLs
connecting the jth VN of the ith request is shown with ρ(i, j),
we have Equation 5. If the value of β is one, the related VL
is mapped on the target SL. Hence, calculating the sum of β
values results in the number of involved edges.

ρ(i, j) =

N∑
l=1

N∑
l′=i+1

Ni∑
k=1

β(tij , l, l
′, i, j, k) (5)

For calculating the consumed resources, we define two
functions as σ and φ. σ(t, i) returns the consumed CPU of the
ith SN, and φ(t, i, i′) returns the consumed bandwidth of the
link between the ith and i′th SNs at time t. These functions are
calculated based on Equation 6 and Equation 7, respectively.
In these two equations, we have to calculate the sum of n and
l values. If they are multiplied by the values of α and β, the
not-mapped nodes and the links are also not considered.

σ(t, i) =

R∑
j=1

Nj∑
k=1

nj
k × α(t, i, j, k) (6)

φ(t, i, i′) =

R∑
j=1

Nj∑
k=1

Nj∑
k′=k+1

lj(k,k′) × β(t, i, i′, j, k, k′) (7)

We also define a binary function, τ(i, i′, j, j′), that returns
one if the SL between the ith and i′th SN has a shared node
with the SL between the jth and j′th SN. Hence, we can
calculate this function based on Equation 8. Two links have a
shared node, only if one of their endpoints are equal.

τ(i, i′, j, j′) =


0, if i = i′ or j = j′

1, else if i = j or i = j′ or i′ = j or i′ = j′

0, otherwise
(8)

The last defined function is λ(i, i′), which returns the number
of SLs that have a shared node with the link between the
ith and i′th SN. The value of this function can be calculated
by Equation 9. In this equation, we have to consider all the
possible endpoints.

λ(i, i′) =

N∑
j=1

N∑
j′=j+1

τ(i, i′, j, j′) (9)

A. Mapping constraints

There are some constraints for mapping the requests on the
substrate network at each time t.

6

TABLE II
THE LIST OF NOTATIONS USED FOR MODELING THE NETWORK AND THEIR

DESCRIPTION

Notation Description
S The substrate network
N The set of substrate network nodes capacity
L The matrix of substrate network links capacity
R The set of requested slices
Rt The set of requests that last till time t
N The total number of SNs
ni The ith SN capacity

l(i,j) The capacity of the link between the ith and jth SNs
R The total number of arrived requests during time
ri The ith arrived request
ti The arrival time of the ith request
di The duration that the ith request lasts in the network
Ni The set of the ith request VNs capacity
Li The matrix of the ith request VLs capacity
Mi The set of SNs, on which the VNs of the ith request

are mapped
Ni The total number of the ith request VNs
ni
j The jth VN capacity of the ith request

li
(j,k)

The capacity of the link between the jth and kth VNs
in the ith request

mi
j The index of the SN, on which the jth VN of the ith

request is mapped
p(i,i

′) The shortest path between the ith and i′th SNs
P (i,i′) The number of edges in the shortest path between the

ith and i′th SNs

p
(i,i′)
e The eth node in the shortest path between the ith and

i′th SNs

Constraint 1. Two VNs in the same request must not be
mapped on a shared SN. This constraint is equivalent to
Equation 10.

∀ri ∈ Rt : ∄j, k ∈ NNi : j ̸= k ∧mi
j = mi

k (10)

Constraint 2. The sum of the capacities of all the VNs must
not exceed the capacity of their host SN. This constraint is
equivalent to Equation 11.

∀i ∈ NN : σ(t, i) ≤ ni (11)

Constraint 3. The sum of the capacities of all the VLs must
not exceed the capacity of their host SL. This constraint is
equivalent to Equation 12.

∀i, i′ ∈ NN : φ(t, i, i′) ≤ l(i,i′) (12)

B. Mapping objectives

In this paper, we aim to find an optimized mapping solution
that can map as many requests on the substrate network while
keeping the effect of a DDoS attack as low as possible.
So the objectives of mapping the requests, after considering
Constraint 1, Constraint 2, and Constraint 3, are as follows.

Objective 1. A mapping solution must map the maximum
possible number of requests on the substrate network. In other
words, we want to increase the number of completely mapped
requests, which is equivalent to Equation 13.

Maximize

(
R∑
i=1

γ(t, i)

)
for all t (13)

Objective 2. A mapping solution must map the requests on
the substrate network in a way that whenever the adversary
performs a DDoS attack against one of the SNs, the minimum
possible number of slices are affected. In other words, the
maximum number of VNs that are mapped on the SNs must
be kept low. This objective is equivalent to Equation 14.

Minimize
(
max
i∈NN

δ(t, i)

)
for all t (14)

In training the agent of an RL model, the time steps are the
steps of mapping the VNs, and the requests arrival time step is
the next step after the mapping process of the previous request
is over. Hence, we have a discrete time VNE problem, where
the mapping time of the ith and the jth VNs of the rth request
follows tri < trj , if and only if i < j. Based on this constraint,
we have to check if a request is completely mapped, only
after mapping its last VN is done. Considering these situations,
we can combine Objective 1 and Objective 2 into a function,
obj(t, i, j), that must be maximized. This function is presented
in Equation 15.

obj(t, i, j) =Ψ

 mi
j

ρ(i, j)× max
k∈NN

δ(t, k)
+mi

j − 1

+

Φ

(
⌊ j

Ni
⌋(2γ(t, i)− 1)

) (15)

The values of Φ and Ψ depend on the importance of achieving
success in complete and partial mapping processes, respec-
tively.

IV. PROPOSED REINFORCEMENT LEARNING MODEL FOR
SLICE ISOLATION

A 5G network is always listening for the slice requests
and its service performance depends on the slices which are
successfully mapped. However, the security performance must
be also considered. For example, assume a 5G network that
receives five slice requests in two cases. In the first case, all
five requests are mapped; however, there are many shared
substrate nodes, and by a simple DDoS attack from the
adversary, all of them will become out of service. Only four of
the requests are mapped in the second case, while the number
of shared SNs is reduced, and a DDoS attack causes only one
of the slices to become out of service. From the security point
of view, the second case is preferable.

In our proposed model, dubbed SIRL, we aim to map as
many slice requests as possible while keeping their availability
at an acceptable level. In other words, we try to achieve
Objective 1 and Objective 2. Our proposed model works
based on actor-critic RL concepts. Actor-critic models are a
combination of value-based and policy-based RL approaches.
The agent in a value-based RL model chooses the action that
is experienced to lead in a higher reward for the current state.
On the other hand, in policy-based models, the agent attempts
to find a function that can probably map the states on to the
actions. In actor-critic models, the actor, which is the policy-
based part, decides the optimal action to be performed in each
situation, and the critic, which is the value-based part, helps it

7

TABLE III
THE LIST OF DEFINED FUNCTIONS USED FOR MODELING THE NETWORK AND THEIR DESCRIPTION

Function Description Equation
α(t, i, j, k) A binary function that returns one if the kth VN of the jth request is mapped on the ith SN at time t,

and otherwise, returns zero.
Equation 1

β(t, i, i′, j, k, k′) A binary function that returns one if the link between the kth and k′th VNs of the jth request is
mapped on the link between the ith and i′th SNs at time t, and otherwise, returns zero.

Equation 2

γ(t, i) A binary function that returns one if the ith request is completely mapped until time t, and otherwise,
returns zero.

Equation 3

δ(t, i) A function that returns the number of VNs that are mapped on the ith SN at time t. Equation 4
ρ(i, j) A function that returns the number of edges involved in mapping the VLs connected to the jth VN of

the ith request.
Equation 5

σ(t, i) A function that returns the consumed CPU of the ith SN at time t. Equation 6
φ(t, i, i′) A function that returns the consumed bandwidth of the link between the ith and i′th SNs at time t. Equation 7

τ(i, i′, j, j′) A binary function that returns one if the SL between the ith and i′th SN has a shared node with the
SL between the jth and j′th SN, and otherwise, returns zero.

Equation 8

λ(i, i′) A function that returns the number of SLs that have a shared node with the SL between the ith and
i′th SN.

Equation 9

obj(t, i, j) The proposed objective function, maximizing which can help in finding the optimal solution of VNE. Equation 15

by specifying the efficiency of the applied action and how to
improve it. Actor-critic RL models have higher performance
than value-based and policy based RL models, by addressing
some of their individual weaknesses, such as scalability and
convergence issues [29]. Actor-critic models are a good candi-
date for the problems that have both short-term and long-term
rewards. The actor finds the optimal action considering the
short-term rewards, while the critic warns it about the long-
term rewards. In the problem of VNE, the mapping goals are
classified into partial and complete mappings. For the partial
mapping goal, the focus is on successfully mapping a VN
on a SN, and in the complete mapping goal, the focus is to
make the whole request successfully mapped. Reaching the
first goal requires a short-term reward, while the long-term
one is to completely map all the VNs and VLs successfully.

The interaction between the agent and the environment is for
learning all its different states and features. In our problem, the
substrate network is a weighted graph that must be provided
to the agent. A graph has many different features, such as
the nodes and links weights, and the way they are connected.
However, passing the whole S to the agent is not rational,
due to the time-consuming processes involved in percepting
and learning it, especially for large-scale graphs. As a result,
there is a need of extracting appropriate graph features which
can generally model the network. Moreover, if the environment
passes through some repeated states, the learning performance
improves. Because the agent has previously faced that state,
and the new predicted action is enhanced by the experiment of
the previous one. This idea also reduces the number of states
in an environment. The lower number of states are quicker to
learn, as the agent spends less time to explore the environment
for finding the optimal solution [30]. When the number of
states are lower, a wider range of network configurations
may result in a same state. Therefore, if a model is trained
with a single network, it can generate the optimal solution
for many other networks with different conditions. Regarding
these points, we have applied two strategies in the proposed
learning model: (1) considering appropriate network features
helping the agent to find optimal mapping solutions that lead
to both the maximum possible number of successfully mapped

requests and the minimum possible DDoS damage and, and (2)
reducing the number of states of the environment to improve
the learning performance.The details of SIRL are described in
what follows.

A. Action space

The agent in a RL model explores the environment to
realize its states and then performs an action that transfers
the environment from the current state to another valid state.
In our case, the substrate network is the environment. The
agent receives a single VN and its responsibility is to select
one of the SNs to be the host of that VN. Selecting one of the
SNs to be the host of the current VN is the action. The agent
chooses a number from 1 to N that indicates the index of a
SN, on which the current VN must be mapped.

Considering this action space, whenever the number of
passed steps reaches the total number of VNs, one episode
of the learning phase will be finished. It is worth noting that
for a request, whenever the agent maps a VN on a SN, the
VLs, the endpoint of which are currently mapped during the
previous steps, are also mapped on the shortest path between
the related SNs. For example, if the agent has mapped the first
three VNs of a request, when the fourth VN is mapped, the
links between the fourth VN and the first three ones are also
mapped. In the case that one of the VNs or VLs of a request
cannot be mapped, the agent unmaps the currently mapped
VNs/VLs of that request, and also skips the steps to the other
request.

B. Environment states

Our first strategy is to represent the network with an optimal
set of features. Five initial features are considered in this
regard:

• F1F1F1: The remained CPU capacity of each SN
• F2F2F2: The sum of the adjacent links remained bandwidth

of each SN
• F3F3F3: The number of VNs that are currently mapped on

each SN

8

• F4F4F4: A binary value for each SN that indicates whether or
not that SN can be the host of the current VN

• F5F5F5: The importance value of each SN
Some of the existing RL models in this field have considered
the first two features (i.e., F1 and F2). However, the last three
features (i.e., F3, F4, and F5) are suggested by SIRL. The
number of currently mapped VNs on each SN helps the agent
determine the DDoS vulnerability of that SN. Assume that
there are two SNs with the same features, but one of them
has 3 and the other has 5 mapped VNs. In this case, when the
agent selects the latter SN and receives a low reward according
to the DDoS damage, it can figure out the result based on this
feature. We have also considered the state of validity of a SN
for hosting a VN. It helps the agent figure out which of the
SNs are currently valid for hosting. It is worth noting that the
validity of hosting in feature F4 is only about Constraint 1
and Constraint 2. The last feature is the importance value of
a SN. We define the importance value of a SN as the sum
of the importance values of its adjacent links. The importance
value of a SL is also defined as the ratio of the remained
CPU capacities of its endpoints to the number of SLs that
have a shared SN with that SL (i.e., the value of λ function).
The importance value of a link indicates the importance of its
existence in increasing the whole resources of the network.
For example, if we have a node with a lot of resources, which
is connected to only one link, and this links becomes out of
resources to map new virtual links, that node’s resources are
wasted. But if this node is connected to other links as well,
the existence of the mentioned link is not of high importance.

Considering that F = {F1, F2, F3, F4, F5} is the set of
mentioned initial features, Algorithm 1 shows how it is cal-
culated. F1, F3, and F4 are calculated in the first loop of this
algorithm (line 2 to line 11), where each iteration is dedicated
for each of the SNs. The remained CPU capacity of a SN
is the difference between its total CPU and the consumed
amount (line 3). F3 stores the number of VNs mapped on each
SN, and hence, it is enough to append the value of δ(t, i) to
this set (line 4). If the requested CPU is higher than the SN
remained resource, it cannot handle the VN. Hence, zero is
appended to F4 (line 5). Otherwise, we have to first check
whether the previous VNs of the same request are mapped on
this SN (line 9). If the mapping is valid, one, and otherwise,
zero is appended to F4 (line 10 and line 11). The second
loop of the algorithm (line 12 to 17) is for generating F2

and F5. A nested loop is required for considering all the
edges, by iterating over their endpoints (line 14). The remained
bandwidth is calculated as the difference between the total and
consumed bandwidth resources (line 15). Then, if there is a
link between the two SNs (line 16), the importance value is
updated by adding the endpoints remained CPU and dividing
it by λ (line 17). It is worth noting that the loops involved in
Algorithm 1 are for making the algorithm readable. However,
in the implementation phase of SIRL, one can use dynamic
programming to reduce its time complexity.

The second strategy of SIRL is to optimize the state size,
or in other words, the number of possible states, to improve
the learning performance. Here, we give an example to show
the importance of state size. Suppose that an environment has

Algorithm 1 The procedure of generating the set of initial
features in SIRL
Require: S (the substrate network)
Require: t (the current time)
Require: r (the index of the current request)
Require: v (the index of the current VN)
Ensure: F (the set of initial features)

F1, F2, F3, F4, F5 ← {}, {}, {}, {}, {}
2: for 1 ≤ i ≤ N do

F1 ← F1 + {ni − σ(t, i)}
4: F3 ← F3 + {δ(t, i)}

if nr
v > F1[i] then F4 ← F4 + {0}

6: else
valid ← 1

8: for 1 ≤ j < v do
if mr

j = i then valid ← 0 break
10: if valid = 1 then F4 ← F4 + {1}

else F4 ← F4 + {0}
12: for 1 ≤ i ≤ N do

F5 ← F5 + {0}
14: for 1 ≤ i′ ≤ N do

F2 ← F2 + {l(i, i′)− φ(t, i, i′)}
16: if l(i, i′) ̸= 0 then

F5[i] ← F5[i] + (F1[i] + F1[i
′])/λ(i, i′)

18: return {F1, F2, F3, F4, F5}

four states and two actions. In this condition, the agent has
to learn eight different situations in this environment. Now
suppose that the modeling of this environment is not optimal
and one models it with eight states. Hence, the agent now must
learn 16 different situations. The time to train the latter model
is much more than the training time of the former model. This
example shows that the number of states plays an essential role
in the learning performance of a RL model. In the models with
continuous state space, the number of possible states the agent
may face is directly related to the state size. For example, if a
continuous state is modeled with 5 bits, there are 32 different
states in that environment. As a result, we try to reduce the
state size by presenting the environment states in a new form.

To the best of our knowledge, in the current RL models
in the field of mapping VNs on the SNs, the environment is
passed to the agent with the numeric form of the features. For
example, in the environment of ??, the SNs are represented as
{5, 4, 4, 10, 2, 3}. This representation has some weaknesses.
Since different networks have different capacities, one must
consider the greatest capacity to dedicate enough memory for
the environment state. In other words, each SN may vary
from 1 to 10, and hence, we may have 106 different states.
This weakness also exists in the normalized features. The
normalized features are float numbers that vary from 0 to 1. If
we assume that the float numbers are presented with 64 bits,
there may be 646 different states in this environment.

When a single model is trained, it can be used for different
networks. If we do not consider the model’s generality, it
would be useless. Now we explain the new form of represent-
ing these numbers. In a network with six SNs, we can rank the
nodes by their CPU capacity. So, the SNs can be represented

9

Algorithm 2 The procedure of generating the set of final
features in SIRL
Require: Fi (the set of the values of the ith initial feature)
Ensure: F ′

i (the set of the values of the ith final feature)
S, F ′

i ← {}, {}
2: for 1 ≤ j ≤ N do

S ← S + {{j, Fi[j]}}
4: Sort the tuples in S based on the second element

for 1 ≤ j ≤ N do
6: F ′

i ← F ′
i + {j − 1}

if j ̸= 1 and S[j][2] = S[j − 1][2] then
8: F ′

i [j] ← F ′
i [j − 1]

return F ′
i

in the form of {4, 2, 2, 5, 0, 1}. So, each SN may vary from
0 to 5, and only 66 different states may be available for the
agent. As a result, SIRL uses the ranking of the SNs for each
of the initial features to generate the final features and create
the environment state. This procedure is shown in Algorithm 2,
where F ′

i is the set of the ith feature values, which is generated
based on Fi. In the sorting phase of Algorithm 2, one can use
any sorting algorithm to sort the tuples in S ascendingly. We
have used merge sort, with the complexity order of O(nlogn),
in order to keep the time complexity of our proposed method
low.

C. Reward function

When the agent performs an action in a state, it will receive
a reward that evaluates the solution found by the agent. The
reward function is important in a RL model due to its ability
in giving the agent an appropriate direction in solving the
problem. For example, a negative reward is like a punishment
for the agent to avoid the situations resulting it, and a big
positive reward is the sign of a good action in that state.
According to our objectives, Objective 1 and Objective 2,
we should consider both the number of successfully mapped
requests and the DDoS damage in the reward function.

Our agent faces four different situations, based on its
selected action:

• Successful partial mapping: If the agent successfully
maps a VN and its related VLs, the reward must be a
positive value to encourage it for mapping more and more
VNs. However, this reward is based on the superiority
of agent’s action against other possible ones. Since the
requests arrive at random times with random features,
SIRL does not know the future requests to predict the
number of successfully mapped ones. Hence, we can
consider the remained resources as a metric that can
predict the ability to map the future resources. Different
mapping solutions consume the same amount of CPU
capacity. Hence, considering it in the reward function
does not lead the agent toward the optimal solution. On
the other hand, the available bandwidth is not always the
same for different mapping solutions. It depends on the
number of hops (i.e., edges) that the VLs are mapped on.
Moreover, we have to consider the number of VNs that

are mapped on each SN, in order to reduce the DDoS
damage. We have chosen the maximum number of VNs
mapped on the SNs to estimate the DDoS damage in the
reward function. We have to design the reward function
in a way that the agent is leaded to keep the maximum
number of VNs mapped on a same SN and the number
of hops for mapping the VLs low. A fraction, such as
1/(hops×max V Ns), becomes higher when the value
of hops and max V Ns are reduced. As a result, if we
call the Successful Partial mapping reward of the jth

VN of the ith request at time t as SP(t, i, j), we have
Equation 16.

SP(t, i, j) =
+1

ρ(i, j)× max
k∈NN

δ(t, k) (16)

• Unsuccessful partial mapping: If there is a failure in the
partial mapping process, the agent must be punished with
a negative reward. For this case, we have considered -1
points.

• Successful overall mapping: Completely mapping a re-
quest is much more important than mapping the individ-
ual VNs. As a result, whenever the agent succeeds in the
overall mapping process, a big positive reward, which is
much higher than the successful partial mapping reward,
must be received. We have selected +500 points for this
situation.

• Unsuccessful overall mapping: If the agent fails in map-
ping at least one of the VNs or VLs of a request, it
does not matter how many of the partial attempts are
successful. The whole request must be dropped. Hence,
in this situation, the agent receives a big negative value
as the punishment, which is bigger than the partial failure
punishment, and we have considered -500 points for it.

Based on these four situation, the reward function of mapping
the jth VN of the ith request at time t is Re(t, i, j), and it is
calculated as Equation 17.

Re(t, i, j) =



SP (t, i, j), If j ̸= Ni and mi
j ̸= 0

−1, If j ̸= Ni and mi
j = 0

SP (t, i, j) + 500, If j = Ni and γ(t, i) = 1

SP (t, i, j)− 500, Else If mi
j ̸= 0

−501, Otherwise
(17)

We can summarize Equation 17 as Equation 18, where ⌊x⌋ is
the floor function of x, that returns the biggest integer lower
than or equal to x.

Re(t, i, j) = mi
j(SP (t, i, j) + 1) + 500⌊ j

Ni
⌋(2γ(t, i)− 1)− 1

(18)

It is worth noting that when γ(t, i) is one, all the VNs
are completely mapped, and hence, we have mi

j ̸= 0. This
reward function is a special case of our objective function
(Equation 15), where the values of Ψ and Φ are 1 and 500,
respectively. The process that an agent performs during the
training phase is described in Algorithm 3.

10

Algorithm 3 The procedure of training the agent in SIRL
Require: S (the substrate network)
Require: episodes (the number of training episodes)
Ensure: model (the trained model)

model ← initialize the actor-critic model
2: for 1 ≤ e ≤ episodes do

moves ← 0
4: for 1 ≤ i ≤ R do

moves ← moves + Ni

6: for 1 ≤ move ≤ moves do
s ← the environment state from Algorithm 2

8: a ← the optimal action from model in s
r ← the current request index

10: v ← the current VN index of the rth request
Map the vth VN on the ath SN

12: if v is the last VN of the rth request then
Map the virtual links on the shortest paths

14: reward ← Re(move, r, v) ▷ Equation 18
Update model based on s, a, and reward

16: return model

D. Time Complexity

Algorithm 1 is the naive form of generating the initial
features, and its time complexity is not optimized. At the end
of this algorithm, we have a nested loop of O(N2), in which
the values of φ and λ are required. Based on Equation 7 and
Equation 9, calculating these values is requires a time higher
than O(N2). As a result, the time complexity of Algorithm 1
is at least O(N4).

For the implementation phase, we can perform some short-
cuts and dynamic programmings in order to reduce the
time complexity. The implemented algorithm of the proposed
method, containing all the processes, is shown in Algorithm 4.
In this algorithm, {} is an empty array, and {0}N , {1}N and
{{}}N are arrays which are filled with N zeros, ones, and
empty arrays, respectively.

First, the variables that are fixed in each episodes are
calculated. The values of lsum[i] and degree[i] indicate the
total sum of link bandwidth and the number of adjacent links
of the ith SN, respectively. path[i][j] stores the SNs in the
shortest path between the ith and the jth SNs. These three
variables are calculated in a loop in line 2 to line 7. This loop
is of O(N3), because finding the shortest path from the ith SN
to the others (line 7), when the links are stored as an adjacency
matrix, is of O(N2) in Dijkstra, and it must be calculated for
all the nodes.

The number of links that are adjacent to the link between
the ith and the jth SNs is stored in adjacent[i][j], and it is
calculated in a nested loop of O(N2) in line 8 to line 11.
Similarly, the initial importance value of the ith SN is stored
in importance[i], and it is calculated in a loop of O(N2) in
line 12 to line 14. The value of index[i] indicates the sum of
the number of VNs in the first request to the ith one. The loop
in line 15 to line 16, which is of O(N), is for generating this
variable.

Now, the actor-critic model is initialized and a loop repeats
the training processes episodes times (line 17 to line 51).

At the beginning of each iteration, the five feature sets are
initialized (line 18), and they will be updated during the
training phase. FL stores the available bandwidth of each link.
The agent maps a single VN on a SN in each step, and then
maps the VLs between the VNs that are currently mapped.
Hence, there may be some conditions, in which a VN or a VL
of a request cannot be mapped, and the previous mappings of
the same request must be unmapped. In this case, the agent
has to reset the resources to their condition before the mapping
of that request. The varibales in line 19 are for this reason.
max and r store the maximum number of VNs mapped on a
SN and the index of the current request, respectively. move
counts the number of steps the agent has taken, and mapping
stores the index of the SNs which are hosting the mapped VNs
of the current request and the mapping time.

The whole number of VNs indicates the total number of
steps, and therefore, a loop is considered in line 21 to 51 to
repeat the processes in each step. The variable of this loop
is move and at the end of each iteration, it is incremented
by one (line 51). v stores the index of the current VN in the
current request, and it is calculated in line 22 and line 23. The
value of F4 must be updated (O(N)) at the beginning of each
step, to check the SNs that do not have enough CPU capacity
for hosting the current VN (line 24 and 25). Then, the set
of initial features are passed to Algorithm 2 to get the final
features. It is done in line 26, and it is of O(nlogn). Now, the
agent estimates the optimal action for the current state, and
this action indicates the SN that hosts the current VN.
hops stores the number of edges that are involved in

mapping the VLs of the current VN, success indicates whether
this mapping is successful (line 28). A nested loop is required
for mapping the VLs (line 29 to 35). The outer loop is for
iterating on one of the endpoints of the involved edges, and
the inner one is for considering all the edges in the shortest
path. It must be noted that this part maps the VLs with both
endpoints successfully mapped. If one of the edges in the
involved shortest paths has a lower available bandwidth than
that of the VL, we have an unsuccessful mapping. Otherwise,
the values of F2 and FL are updated by reducing the weight
of that VL. This nested loop is of O(N2), because the outer
loop iterates v− 1 times, which is at most N due to that fact
that the number of VNs in a request cannot exceed the total
number of SNs, and the inner loop is repeated for at most N
times due to the fact that the length of a path in a graph is
at most N − 1. The value of F1 is updated by reducing the
consumed CPU capacity, and F3 is incremented (line 36). The
value of max is changed, only if F3 reaches a greater value
than before (line 37), and F5 is also updated based on the new
importance values (line 38).

If the agent performs a successful mapping, regarding the
mapping of the current VN and related VLs (line 40), the
index of the selected SN is appended to mapping and reward
becomes a positive value based on the number of involved
hops and the maximum number of VNs mapped on the SNs
(line 41). Otherwise, the agent has to reset the consumed
resources of the unsuccessful mappings (line 43), skip the
steps to the next request, and receive a punishment (line 44). In
line 45, the end of processing all the VNs in the current request

11

Algorithm 4 The implemented procedure of SIRL
Require: S (the substrate network)
Require: episodes (the number of training episodes)
Ensure: model (the trained model)

lsum, degree, importance, path, adjacent, index ← {0}N , {0}N , {0}N , {{}}N , {{}}N , {N1}
2: for 1 ≤ i ≤ N do

for 1 ≤ j ≤ N do
4: lsum[i] ← lsum[i] + l(i,j)

if l(i,j) ̸= 0 then degree[i] ← degree[i] + 1
6: Fill path[i] with the shortest paths from the ith SN to all other nodes using Dijkstra’s algorithm

for 1 ≤ i ≤ N do
8: for 1 ≤ j ≤ N do

if l(i,j) ̸= 0 then adjacent[i] ← adjacent[i] + {degree[i] + degree[j]− 1}
10: else adjacent[i] ← adjacent[i] + {0}

for 1 ≤ i ≤ N do
12: for 1 ≤ j ≤ N do

if adjacent[i][j] ̸= 0 then importance[i] ← importance[i] + (ni + nj)/adjacent[i][j]
14: for 2 ≤ i ≤ R do

index ← index + {index[i− 1] +Ni}
16: model ← initialize the actor-critic model

for 1 ≤ e ≤ episodes do
18: F1, F2, F3, F4, F5, FL ← N , lsum, {0}N , {1}N , importance, L

rF1, rF2, rF3, rF5, rL ← F1, F2, F3, F5, FL
20: max, r, move, mapping ← 0, 1, 1, {}

while move ≤ index[R] do
22: if r = 1 then v ← move

else v ← move − index[r − 1]
24: for 1 ≤ i ≤ N do

if F1[i] < nr
v then F4[i] ← 0

26: state ← pass {F1, F2, F3, F4, F5} to Algorithm 2 to get final features
action ← the optimal action from model in state

28: hops, success ← 0, True
for 1 ≤ i < v do

30: if lr(i,v) ̸= 0 then
for p ∈ path[action][mapping[i][1]] do

32: start, end, hops ← the first endpoints of p, the second endpoints of p, hops + 1
if lr(i,v) > FL[start][end] then success ← False break

34: F2[start], F2[end] ← F2[start] − lr(i,v), F2[end] − lr(i,v)
FL[start][end], FL[end][start] ← FL[start][end] − lr(i,v), FL[end][start] − lr(i,v)

36: F1[action], F3[action] ← F1[action] − nr
v , F3[action] + 1

if max < F3[action] then max ← F3[action]
38: for 1 ≤ i ≤ N do

if adjacent[action][i] ̸= 0 then F5[action] ← F5[action] − nr
v/adjacent[action][i]

40: if success and F4[action] ̸= 0 then
mapping, mr

v , trv reward ← mapping + {action,move}, action, move, 1/(hops×max)
42: else

F1, F2, F3, F5, FL ← rF1, rF2, rF3, rF5, rL
44: mr

v , move, reward ← 0, index[r], -1
if move = index[r] then

46: if size(mapping) = Nr then Mr, reward ← mapping, reward + 500
else reward ← reward - 500

48: r, F4, mapping, rF1, rF2, rF3, rF5, rL ← r + 1, {1}N , {}, F1, F2, F3, F5, FL
else F4[action] ← 0

50: Update model based on state, action, and reward
move ← move + 1

52: return model

12

is checked. If the agent has reached the end of a request,
and the hosts of all the VNs are added to mapping, the
whole request is completely mapped, and the agent receives
a big reward (line 46). Moreover, the value of Mr (the
mapping solution for the current request) is updated. But, on
the other hand, if the request is not completely mapped, a big
punishment is received (line 47). The values of the variables
are also updated based on the next request in line 48. If
processing the current request is not done yet, the value of
F4 is updated, because the other VNs cannot be mapped on
the selected SN in this step (line 49). Finally, the actor-critic
model is updated based on the received reward in the current
state by applying the estimated action (line 50).

In each episode of Algorithm 4, there is a loop that iterates
at most

∑R
i=1 Ni (line 21). The value of Ni, for all 1 ≤ i ≤ R,

does not exceed N , due to the fact that the number of VNs
in a request are at most N . Hence, the maximum number of
iterations of this loop is R×N . The most time-consuming part
of this loop is mapping the links (line 29 to line 35), which is
of O(N2). As a result, we can say that the time complexity
of SIRL for training a single episode is O(R×N3), where R
is the number of requests and N is the number of SNs.

V. EVALUATION

To evaluate the performances of our proposed RL model
(i.e., SIRL), we have simulated different network topologies
in Python, and PyTorch is used for implementing and training
the RL models. First, we have evaluated the superiority of
SIRL, as an RL method, with some other non-RL methods for
solving the same problem. This evaluation helps determining
whether the proposed method outperforms the naive solutions.
In this regard, the performance of SIRL is compared with
four other approaches: random, greedy, ranking, and genetic
approaches. In the random approach, the VNs are randomly
mapped on the SNs without any extra considerations. In the
greedy approach, we aim to balance the number of mapped
VNs among different SNs that have enough resources, in order
to reduce the DDoS damage. For the ranking approach, we
have applied the solution proposed by Cao et al. [7], where
the heuristic function uses the defined features of SIRL (i.e.,
F1 to F5). The genetic approach applies a modification of the
solution proposed by Zhang et al. [13]. In this modified form,
we have used Equation 18 (our proposed reward function)
as the fitness function that must be maximized, and the
chromosomes structure is based on SIRL’s defined features.

Then, we have compared the performance of SIRL against
nine of the existing RL models, which are CDRL [17], RDAM
[18], VNEQS [20], MLRL [21], DRLVNE [22], GCNNRL
[23], A3CGCN [24], DeepViNE [25], PNVNE [26], and
A2CRL [27]. Since our focus is on the features and their
ability to model the environment, we have considered the same
reward function for all the simulated models to remove the
impact of the rewards on the model’s performance. Moreover,
all the models are trained with the same number of episodes
(i.e. 2000 episodes). For VNEQS, we have considered the
number of VNs that are mapped on each SN as the security
level.

Several random network scenarios are considered in the
simulations, and the average results are reported. The number
of SNs in the simulated networks vary from 10 to 100, and they
have random amount of resources, where the CPU weights are
from 10 to 30, and the bandwidth weights are from 5 to 45.
The probability of having an edge between two SNs is also
0.3. In the simulated scenarios, several random slice requests
arrive at random times and last for a random time. However,
not more than 100 requests are active at a time. Each request
contains at least 2 VNs and at most one quarter of the number
of SNs, and each of them request random resources from 1 to
5. While all the features of the requests are random, the same
requests are passed to the models to compare them fairly.

For the actor-critic model, we have set the learning and
discount rates to 0.001 and 0.99, respectively. The input
layer of the actor’s neural network takes the environment
state, which contains the extracted features, and its output
is forwarded to the first hidden layer with 128 neurons. The
second and third hidden layers contain 256 neurons, and the
output layer predicts the solutions in terms of the probability
of the actions that must be selected. The mentioned layers
are fully connected and their activation function is ReLU
(Rectified Linear Unit). The critic has similar layers, except
for the output layer that only evaluates the actor’s predicted
action.

We have analyzed the acceptance ratio, the DDoS damage,
and the learning performance in the simulation results to fairly
evaluate the performance of SIRL. The analysis is presented
as follows.

A. Requests acceptance ratio

The acceptance ratio is the ratio of the number of success-
fully mapped requests to the total number of arrived requests.
In other words, we can calculate the acceptance ratio as
Equation 19, where the value of γ function can be calculated
by Equation 3.

Acceptance Ratio =

R∑
i=1

γ(t, i)

R
× 100

(19)

The value of the acceptance ratio for a method can determine
its performance in mapping the requests. The higher values of
the acceptance ratio show better performance. The acceptance
ratio can show us our goal achievement in reaching Objec-
tive 1.

Before comparing SIRL with other RL models, we have
to evaluate its performance against non-RL approaches. Fig-
ure 2 shows this comparison. This graph shows how RL
models outperform the traditional heuristic and metaheuristic
approaches. The average results show that the proposed RL
model results in an acceptance ratio, which is 70% higher
than non-RL approaches. The reason that the acceptance ratio
gets lower as the substrate network becomes larger is due
to the increase of VNs in each request. In the simulations,
the maximum number of VNs in a request is one-quarter of
the number of SNs. Another point about these results is the
gap between ranking and genetic approaches, which becomes

13

10 20 30 40 50 60 70 80 90 100

The number of SNs

5

10

15

20

25

30

35

40

45

50

Th
e

ac
ce

pt
an

ce
 ra

tio
 (%

)
Random approach
Greedy approach

Ranking approach
Genetic approach

SIRL (RL approach)

Fig. 2. Comparing SIRL with non-RL approaches in terms of acceptance
ratio

larger with the growth of substrate network size. This growth
shows the poor performance of heuristic approaches compared
to metaheuristic ones in large-scale problems.

Figure 3 illustrates the ability of different RL models in
embedding the virtual requests. We can see a big difference
between the number of successfully mapped requests in SIRL
and the other models. The most significant difference can
be seen in the scenarios with larger substrate networks. The
acceptance ratio of SIRL is about 54% greater than the average
acceptance ratio of the other models. This means that SIRL
can map more requests on the SNs than the other models. The
model in the next place is A3CGCN, and its acceptance ratio
is about 41% lower than that of SIRL. The reason may be
that A3CGCN, like SIRL, pays attention to general network
features instead of complex details.

B. DDoS damage

When the adversary performs a DDoS attack against the
SNs, all the mapped slices on that SN will be affected. Because
all the VNs of a request must collaborate, losing one of them
leads to the failure of the whole request. As a result, a good
mapping solution must map the VNs on the SNs in a way that
attacking one of the SNs causes the lowest possible number of
slices to be unavailable. We define DDoS damage as the ratio
of the average number of requests that are affected by a DDoS
attack to the total number of requests. This metric is related to
Objective 2, and its value at time t, considering the adversary’s
target is the kth SN, can be calculated by Equation 20.

DDoS Damage =
max
i∈NN

δ(t, i)

R∑
i=1

γ(t, i)

× 100 (20)

We have simulated the networks of all the eight scenarios with
the mapping solutions that the models suggest, and then we
performed a DDoS attack against the SNs. Some extra nodes
are considered out of the substrate network, as the end-hosts,

10 20 30 40 50 60 70 80 90 100
The number of SNs

10

15

20

25

30

35

40

45

50

Th
e

ac
ce

pt
an

ce
 ra

tio
 (%

)

CDRL
RDAM

VNEQS
MLRL

GCNNRL
A3CGCN

DeepViNE
PNVNE

A2CRL
SIRL

Fig. 3. Comparing SIRL with other RL models in terms of acceptance ratio

which can be compromised by the adversary, and launch a
DDoS attack. We have considered that each SN crashed when
at least 40 end-host send flooded traffic toward them. In each
simulation, the adversary selects a random SN in the network
and commands the compromised hosts to launch the attack
against it.

For evaluating the DDoS damage, the scenarios with the
equal number of accepted requests are classified together.
Figure 4 compares SIRL with non-RL approaches in terms of
ability to reduce the impact of DDoS attacks. Since the greedy
approach tries to balance the number of VNs that are mapped
on the SNs, the best results are reported for this approach.
There are no other solutions that can reduce the DDoS damage
more than the greedy approach. However, among the other
approaches shown in this graph, SIRL is the most powerful
one. It can reduce the impact of successful DDoS attacks on
the embedded requests 19% higher than ranking and genetic
approaches. Even though the greedy approach has a good
result in terms of reducing the DDoS damage, it is weak

14

50 60 70 80 90 100

The number of accepted requests

2

3

4

5

6

7

Th
e

DD
oS

 d
am

ag
e

(%
)

Greedy approach Ranking approach Genetic approach SIRL (RL approach)

Fig. 4. Comparing SIRL with non-RL approaches in terms of DDoS damage

50 60 70 80 90 100

The number of accepted requests

1

2

3

4

5

6

7

8

Th
e

DD
oS

 d
am

ag
e

(%
)

CDRL
RDAM

VNEQS
MLRL

GCNNRL
A3CGCN

DeepViNE
PNVNE

A2CRL
SIRL

Fig. 5. Comparing SIRL with other RL approaches in terms of DDoS damage

in increasing the number of accepted requests, according to
Figure 2. As a result, combining the results reported for both
acceptance ratio and DDoS damage metrics, the proposed RL
approach outperforms the non-RL techniques.

The average results of the attacks and their effect on the
network are reported for different RL models in Figure 5. We
can see that the average number of slices that are crashed after
the attack utilizing SIRL is lower than in the other cases. The
results show that the attacks cause about 23% lower damage
to the slices when they are mapped on the substrate network
using the suggestions of SIRL. This is because while the
reward function is the same for all the models, the features
representing the environment in SIRL are much more related
to the impact of DDoS attacks on the network than the other
features. We can see that this graph is ascending, because as
the number of requests grows, more VNs have to be mapped
on a single SN, and it increases the attack damage.

C. Learning performance

During the environment exploration, if the agent faces a
state that has been explored before, the predicted optimal
action will be improved. Hence, the learning speed improves
as the number of repeated states in a network becomes higher.
Moreover, if the number of same states for modeling two
different networks is high, once trained with one of them, the
agent can also find a suitable solution for the other. Figure 6
compares the average number of repeats of the states in a
network and also between this sample network and another
one, where N = 10. A complete episode is executed, and
then the repeats are counted. In the first scenario, the states
are compared with each other in the same network, but in the
second one, the states of two different networks are considered.
We can see that the number of state repeats in both scenarios
for SIRL is greater than the other models. The results of the
first and second scenarios for SIRL are about three and six
times greater than other models, respectively. The difference
between the results of the first and second scenarios in SIRL
is lower than that of the others by 36%. This is the sign of
SIRL’s generality.

Figure 7 shows the acceptance ratio of the models that are
trained and tested with the same or different networks. These
results claim the generality of SIRL, as its acceptance ratio
when trained and tested with different networks is 97% higher
than that of the other models.

Figure 8 illustrates the scores that the agent achieves during
the training phase of different models in the scenarios with 20
SNs. This graph shows that the agent in SIRL finds the optimal
solution after a lower number of episodes than in other models.
This is because the number of states to be explored are lower in
SIRL. The agent in GCNNRL is slower in terms of the number
of episodes for finding the solution. The other point about this
graph is the maximum awarded scores of different models.
The agent in SIRL can achieve higher scores for solving VNE
based on our defined reward function.

VI. CONCLUSION

Mapping the slice requests on the beyond 5G networks with
a high request acceptance ratio is challenging, especially when
the security of these slices matters. This paper proposes a novel
actor-critic RL model, SIRL, that aims to find the best SNs for
hosting the VNs according to the mapping performance and
slices protection against DDoS attacks. Five network features
are considered to train the agent, three of which are not defined
in the previous RL models. Moreover, SIRL reduces the
number of possible states of the environment by ranking the
SNs. This reduction plays an important role in improving the
learning performance. We also conducted several simulations
to evaluate and compare the performance of SIRL and nine
other RL models. The obtained results showed that SIRL could
increase the acceptance ratio by 54% on average. It can also
reduce the DDoS damage by 23% on average.

Since the substrate network is a graph, and each graph
contains many topological features, we plan to define more
powerful topological features that can improve SIRL per-
formance in future research work. Hypergraphs generalize

15

CDRL RDAM VNEQS MLRL GCNNRL A3CGCN DeepViNE PNVNE A2CRL SIRL
Different RL models

0

10

20

30

40

50

60

70
Th

e
av

er
ag

e
re

pe
at

 o
f e

ac
h

st
at

e

25.2
23

18.3 19.7

9
13.7 12.1 10.8

28.4

75.4

12.3
9.8

12.1
7.5

5.4 7 6.6 6.3

20.7

70.3

In the same network Between different networks

Fig. 6. Comparing the average number of repeated states in different RL models

CDRL RDAM VNEQS MLRL GCNNRL A3CGCN DeepViNE PNVNE A2CRL SIRL
Different RL models

0

10

20

30

40

50

60

70

Th
e

ac
ce

pt
an

ce
 ra

tio
 (%

)

47.5 47.1

55.4

45.9

37

59.4
55.7

40.6

31.8

68.4

35.2
33.3

43.1

27.5

21.2

49.9

37
32.4

27.3

67.3

Trained and tested with a same network Trained and tested with different networks

Fig. 7. Comparing the models that are trained and then tested with the same or different networks

the normal graphs, where an edge can connect two sets of
vertices. We have planned to model the substrate network
with a hypergraph, and then pass its features to the RL agent.
Moreover, we intend devising a new algorithm to be executed
after the model is trained, which can reduce the DDoS damage.
In this algorithm, when the flooding attack is launched, the
VNs that are mapped on the target SN, are migrated to
another SN considering the resource limitations. This work
can also be improved by analyzing different ways of mapping
the VLs on the SLs. In this work, we have considered the
shortest path between two SNs for mapping the related VLs.
However, one can improve the acceptance ratio by mapping
the VLs on the other paths, if the shortest path does not have
enough resources, and even by dynamically changing the VL
mappings in order to avoid congestion.

ACKNOWLEDGMENT

This work was supported in part by the EU’s Horizon
2020 research and innovation programme under the INSPIRE-
5Gplus project (Grant No. 871808), the EU’s HE research and
innovation programme HORIZON-JU-SNS-2022 under the
RIGOUROUS project (Grant No. 101095933), the Academy
of Finland IDEA-MILL project under Grant No. 352428, and
the Academy of Finland 6Genesis Flagship Project (Grant No.
346208).

REFERENCES

[1] B. Han, J. Lianghai, and H. D. Schotten, “Slice as an evo-
lutionary service: Genetic optimization for inter-slice resource
management in 5g networks,” ieee access, vol. 6, pp. 33 137–
33 147, 2018.

[2] R. F. Olimid and G. Nencioni, “5g network slicing: A security
overview,” IEEE Access, vol. 8, pp. 99 999–100 009, 2020.

16

0 200 400 600 800 1000 1200 1400 1600 1800 2000
The number of episodes

20000

18000

16000

14000

12000

10000

Th
e

re
wa

rd
ed

 sc
or

e

CDRL
RDAM

VNEQS
MLRL

GCNNRL
A3CGCN

DeepViNE
PNVNE

A2CRL
SIRL

Fig. 8. Comparing the rewarded score of the agent in different RL models

[3] D. Sattar and A. Matrawy, “Towards secure slicing: Using slice
isolation to mitigate ddos attacks on 5g core network slices,”
in 2019 IEEE Conference on Communications and Network
Security (CNS). IEEE, 2019, pp. 82–90.

[4] V. N. Sathi, M. Srinivasan, P. K. Thiruvasagam, and S. R. M.
Chebiyyam, “A novel protocol for securing network slice
component association and slice isolation in 5g networks,”
in Proceedings of the 21st ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile
Systems, 2018, pp. 249–253.

[5] A. Thantharate, R. Paropkari, V. Walunj, C. Beard, and
P. Kankariya, “Secure5g: A deep learning framework towards
a secure network slicing in 5g and beyond,” in 2020 10th an-
nual computing and communication workshop and conference
(CCWC). IEEE, 2020, pp. 0852–0857.

[6] B. Recht, “A tour of reinforcement learning: The view from
continuous control,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 2, pp. 253–279, 2019.

[7] H. Cao, L. Yang, and H. Zhu, “Novel node-ranking approach
and multiple topology attributes-based embedding algorithm for
single-domain virtual network embedding,” IEEE Internet of
Things Journal, vol. 5, no. 1, pp. 108–120, 2017.

[8] H. Cao, Y. Guo, Y. Hu, S. Wu, H. Zhu, and L. Yang, “Location
aware and node ranking value-assisted embedding algorithm
for one-stage embedding in multiple distributed virtual network
embedding,” IEEE Access, vol. 6, pp. 78 425–78 436, 2018.

[9] A. Hashmi and C. Gupta, “Vne-nr: A node-ranking method for
performing topology-aware and resource-driven virtual network
embedding,” in 2020 11th International Conference on Comput-
ing, Communication and Networking Technologies (ICCCNT).
IEEE, 2020, pp. 1–6.

[10] C. Shi, X. Meng, Q. Kang, and X. Han, “Novel node-ranking
approach for sdn-based virtual network embedding,” Mathemat-
ical Problems in Engineering, vol. 2020, 2020.

[11] C. Aguilar-Fuster and J. Rubio-Loyola, “A novel evalua-
tion function for higher acceptance rates and more profitable
metaheuristic-based online virtual network embedding,” Com-
puter Networks, vol. 195, p. 108191, 2021.

[12] A. Song, W.-N. Chen, T. Gu, H. Yuan, S. Kwong, and

J. Zhang, “Distributed virtual network embedding system with
historical archives and set-based particle swarm optimization,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 51, no. 2, pp. 927–942, 2019.

[13] P. Zhang, X. Pang, G. Kibalya, N. Kumar, S. He, and B. Zhao,
“Gcmd: Genetic correlation multi-domain virtual network em-
bedding algorithm,” IEEE access, vol. 9, pp. 67 167–67 175,
2021.

[14] L. Zhuang, G. Wang, M. Wang, and K. Zhang, “A virtual net-
work embedding algorithm based on cellular automata genetic
mechanism,” in MATEC Web of Conferences, vol. 232. EDP
Sciences, 2018, p. 01019.

[15] Y. Yuan, Z. Tian, C. Wang, F. Zheng, and Y. Lv, “A q-learning-
based approach for virtual network embedding in data center,”
Neural Computing and Applications, vol. 32, no. 7, pp. 1995–
2004, 2020.

[16] H. K. Thakkar, C. K. Dehury, and P. K. Sahoo, “Muvine:
Multi-stage virtual network embedding in cloud data centers
using reinforcement learning-based predictions,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 6, pp. 1058–
1074, 2020.

[17] H. Yao, S. Ma, J. Wang, P. Zhang, C. Jiang, and S. Guo, “A
continuous-decision virtual network embedding scheme relying
on reinforcement learning,” IEEE Transactions on Network and
Service Management, vol. 17, no. 2, pp. 864–875, 2020.

[18] H. Yao, B. Zhang, P. Zhang, S. Wu, C. Jiang, and S. Guo,
“Rdam: A reinforcement learning based dynamic attribute
matrix representation for virtual network embedding,” IEEE
Transactions on Emerging Topics in Computing, vol. 9, no. 2,
pp. 901–914, 2018.

[19] H. Cao, G. S. Aujla, S. Garg, G. Kaddoum, and L. Yang, “Em-
bedding security awareness for virtual resource allocation in 5g
hetnets using reinforcement learning,” IEEE Communications
Standards Magazine, vol. 5, no. 2, pp. 20–27, 2021.

[20] C. Jiang and P. Zhang, “Vne solution for network differentiated
qos and security requirements from the perspective of deep rein-
forcement learning,” in QoS-Aware Virtual Network Embedding.
Springer, 2021, pp. 61–84.

[21] M. Lu, Y. Gu, and D. Xie, “A dynamic and collaborative multi-

17

layer virtual network embedding algorithm in sdn based on
reinforcement learning,” IEEE Transactions on Network and
Service Management, vol. 17, no. 4, pp. 2305–2317, 2020.

[22] M. Li and M. Lu, “A virtual network embedding algorithm
based on double-layer reinforcement learning,” The Computer
Journal, vol. 64, no. 6, pp. 973–989, 2021.

[23] P. Zhang, C. Wang, N. Kumar, W. Zhang, and L. Liu, “Dynamic
virtual network embedding algorithm based on graph convolu-
tion neural network and reinforcement learning,” IEEE Internet
of Things Journal, 2021.

[24] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, “Automatic virtual
network embedding: A deep reinforcement learning approach
with graph convolutional networks,” IEEE Journal on Selected
Areas in Communications, vol. 38, no. 6, pp. 1040–1057, 2020.

[25] M. Dolati, S. B. Hassanpour, M. Ghaderi, and A. Khonsari,
“Deepvine: Virtual network embedding with deep reinforce-
ment learning,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS).
IEEE, 2019, pp. 879–885.

[26] C. Wang, F. Zheng, G. Zheng, S. Peng, Z. Tian, Y. Guo,
G. Li, and Y. Yuan, “Modeling on virtual network embedding
using reinforcement learning,” Concurrency and Computation:
Practice and Experience, vol. 32, no. 23, p. e6020, 2020.

[27] S. Troia, A. F. R. Vanegas, L. M. M. Zorello, and G. Maier,
“Admission control and virtual network embedding in 5g net-
works: A deep reinforcement-learning approach,” IEEE Access,
vol. 10, pp. 15 860–15 875, 2022.

[28] M. Settembre, “A 5g core network challenge: Combining
flexibility and security,” in 2021 AEIT International Annual
Conference (AEIT). IEEE, 2021, pp. 1–6.

[29] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Bridging
the gap between value and policy based reinforcement learning,”
Advances in neural information processing systems, vol. 30,
2017.

[30] A. Asghari and M. K. Sohrabi, “Bi-objective cloud resource
management for dependent tasks using q-learning and nsga-3,”
Journal of Ambient Intelligence and Humanized Computing, pp.
1–21, 2022.

Amir Javadpour Amir Javadpour obtained his MSc
degree in Medical Information Technology Engi-
neering from the University of Tehran, Iran, in
2014. From Guangzhou University, China, he re-
ceived a Ph.D. in Computer Science (Mathemat-
ics/Cybersecurity) in 2020. In addition, he has pub-
lished papers with his colleagues in highly ranked
journals and several ranked conferences on sev-
eral topics, including Cloud Computing, Software-
Defined Networking (SDN), Big Data, Intrusion
Detection Systems (IDS), and the Internet of Things

(IoT), Moving Target Defence (MTD), Machine Learning (ML), and opti-
mization algorithms. Additionally, he reviewed papers for several reputable
venues such as IEEE Transactions on Cloud Computing, IEEE Transactions on
Network Science and Engineering, ACM Transactions on Internet Technology,
the Journal of Supercomputing, several journals of Springer and Elsevier, etc.
and he is also the Technical Program Committee (TCP) member of various
conferences.

Forough Ja’fari is a Senior Researcher in cyberse-
curity and computer science. She received her Bach-
elor’s degree from Sharif University of Technol-
ogy and her Master’s degree in Computer Network
Engineering from Yazd University, Iran. She is a
visiting scholar researcher at Guangzhou University,
China. Software-Defined Networking (SDN), Intru-
sion Detection Systems (IDS), Internet of Things
(IoT), Moving Target Defence (MTD), and Machine
Learning are some of her research interests. She is
currently a Guest Editor (GE) of Cluster Computing

(CLUS) Journal, as well as a reviewer for several journals and conferences.

Tarik Taleb (Senior Member, IEEE) is currently a
Professor at the Center of Wireless Communications,
The University of Oulu, Finland. He is the founder
and director of the MOSA!C Lab (www.mosaic-
lab.org). He is the founder and board chair of
ICTFicial Oy. Between Oct. 2014 and Dec. 2021,
he has been a Professor at the School of Electrical
Engineering, Aalto University, Finland. Prior to that,
he was working as Senior Researcher and 3GPP
Standards Expert at NEC Europe Ltd, Heidelberg,
Germany. He was then leading the NEC Europe Labs

Team working on R&D projects on carrier cloud platforms. Before joining
NEC and till Mar. 2009, he worked as assistant professor at the Graduate
School of Information Sciences, Tohoku University, Japan, in a lab fully
funded by KDDI, the second largest mobile operator in Japan. From Oct.
2005 till Mar. 2006, he worked as research fellow at the Intelligent Cosmos
Research Institute, Sendai, Japan. He received his B. E degree in Information
Engineering with distinction, M.Sc. and Ph.D. degrees in Information Sciences
from Tohoku Univ., in 2001, 2003, and 2005, respectively. His research
interests lie in the field of telco cloud, network softwarization & network slic-
ing, AI-based software defined security, immersive communications, mobile
multimedia streaming, & next generation mobile networking. He has been also
directly engaged in the development and standardization of the Evolved Packet
System as a member of 3GPP’s System Architecture working group 2. Prof.
Taleb served on the IEEE Communications Society Standardization Program
Development Board. As an attempt to bridge the gap between academia and
industry, Prof. Taleb founded the “IEEE Workshop on Telecommunications
Standards: from Research to Standards”, a successful event that got awarded
“best workshop award” by IEEE Communication Society (ComSoC). Based
on the success of this workshop, Prof. Taleb has also founded and has been the
steering committee chair of the IEEE Conf. on Standards for Communications
and Networking.

Chafika Benzaı̈d is currently a senior research
fellow at University of Oulu, Finland. Between Nov.
2018 and Dec. 2021, she was senior researcher at
Aalto University. Prior to that, she was working
as an associate professor at University of Sciences
and Technology Houari Boumediene (USTHB). She
holds Engineer, Magister and “Doctorat ès Sciences”
degrees from USTHB. Her research interests lie in
the field of 5G/6G, SDN, Network Security, AI
Security, and AI/ML for zero-touch security man-
agement. She is an ACM professional member.

	Introduction
	Related Work
	Problem Definition
	Mapping constraints
	Mapping objectives

	Proposed Reinforcement Learning Model for Slice Isolation
	Action space
	Environment states
	Reward function
	Time Complexity

	Evaluation
	Requests acceptance ratio
	DDoS damage
	Learning performance

	Conclusion
	Biographies
	Amir Javadpour
	Forough Ja'fari
	Tarik Taleb
	Chafika Benzaïd

