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Enabling Modular and Intelligent IoRT Systems:
Integrating the Model Context Protocol for

Semantic Decoupling at the Edge
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Abstract—The Internet of Robotic Things (IoRT) is shifting
the paradigmatic of device-environment engagement through
the seamless converge of sensing, actuation, and intelligent
reasoning. However, contemporary IoRT systems exhibit strong
inter-dependencies between devices and application services,
which hinders extensibility and prolongs technological innovation
cycles, especially in the context of the rapidly evolving Edge AI
landscape. In this paper, we propose a novel integration of the
recently-introduced Model Context Protocol (MCP) into edge-
level IoRT systems to enable modular service composition and
semantic decoupling. By treating devices as callable resources and
tools, MCP allows large language models (LLMs) to orchestrate
complex workflows through natural language prompts. We design
a unified framework where heterogeneous IoRT nodes expose
their capabilities through MCP-compliant interfaces, enabling
scalable interaction and task automation. A proof-of-concept
implementation based on digital twin edge nodes demonstrates
the feasibility of the approach, including modular access and de-
coupled service. We also discuss key challenges such as semantic
standardization, security, and edge-level optimization. This work
opens new avenues for building generalizable, intelligent, and
adaptable IoRT platforms.

Index Terms—Internet of Robotic Things, Model Context
Protocol, Modular Service Composition, Semantic decoupling,
Large Language Models, Robotic, and Internet of Things.

I. INTRODUCTION

THE Internet of Robotic Things (IoRT) is a specialized
subdomain within the Internet of Things (IoT) framework

that integrates robotic systems with sensing, communication,
computation, and control capabilities. Recently, IoRT has
substantially enhanced the autonomy of machines by leverag-
ing advanced sensing and computing technologies within the
framework of edge intelligence, which has driven significant
innovations in various verticals, including industrial automa-
tion [1], agriculture [2], healthcare [3], and logistics. IoRT is
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expected to play a pivotal role in enabling a wide range of
intelligent use cases in future 6G-enabled systems.

As IoRT rapidly evolves, technologies like digital twins,
extended reality, and Artificial Intelligence (AI) are becoming
integral to its architecture. This convergence enhances coor-
dination, deepens human–machine collaboration, and fosters
distributed intelligence. To manage the growing complexity
and diversity of devices and services, robust interoperability
frameworks are essential for seamless system integration. The
middleware layer handles core functions such as device regis-
tration, data normalization, and system-wide coordination.For
example, in smart farming, IoRT systems integrate sensor data,
construct digital twin models, and enable applications such as
crop planning and autonomous machinery control. Interactive
visual interfaces further provide real-time insights to support
human oversight and data-driven decision-making [4].

With the proliferation of IoRT in diverse industries, the in-
herent heterogeneity of sensors, actuators, and service input re-
quirements poses significant challenges in establishing unified
interaction strategies and well-orchestrated workflows. Mid-
dleware frameworks (e.g., Robot Operating System (ROS) [5]
and FIWARE [6]) have been developed to tackle these issues
by providing standardized infrastructure models, unified data
service protocols, and orchestration capabilities. Besides, sev-
eral other frameworks address modularity and orchestration
in IoT and edge computing. EdgeX Foundry [7] adopts a
microservice-based architecture to enable device interoper-
ability across heterogeneous environments, while Eclipse io-
Fog [8] focuses on containerized orchestration for distributed
edge deployments. KubeEdge [9] extends Kubernetes to the
edge, enabling containerized application orchestration and de-
vice management across cloud–edge environments. However,
while these frameworks facilitate interoperability at the device
and service interface levels, they often fall short in supporting
dynamic integration and flexible orchestration. Incorporating
new hardware or services still requires manual development of
adapters, mapping of communication topics or data schemas,
and reconfiguration of orchestration workflows. For exam-
ple, consider two distinct livestock-focused IoRT solutions
aimed at improving poultry production: RFID-assisted mon-
itoring [10] and energy-adaptive environmental control [11].
For an operated IoRT system, the extension of new capabilities
necessitates extensive evaluation to assess their suitability,
requiring costly parallel trials. Subsequently, the selected
solution typically demands a comprehensive reconfiguration
of the existing middleware. Although middleware frameworks
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mitigate certain scalability issues, they tend to confine applica-
tions within rigid, domain-specific silos. Given the rapid pace
of innovation in electronic information technologies and the
continual emergence of novel IoRT devices and services, the
demand for modular, semantically interoperable, dynamically
orchestrable and truly plug-and-play IoRT architectures has
become increasingly urgent.

Beyond the demands for rapid deployment and application,
human–machine interaction constitutes a foundational pillar of
the IoRT ecosystem, facilitating more effective collaboration
through visualized digital twin interfaces and advanced de-
cision support tools. Recent advances in generative AI have
fostered the development of powerful Large Language Models
(LLMs), such as GPT-4, which exhibit remarkable capabilities
in semantic understanding, task decomposition, and logical
reasoning [12]. To overcome the limitations of static pre-
trained knowledge and rigid dialogue structures, OpenAI intro-
duced the “function calling” mechanism, which enables LLM
outputs to be programmatically linked to predefined APIs,
thereby enhancing system integration and extending functional
capabilities. This paradigm has catalyzed a new class of
IoRT applications that exploit LLM-driven intent recognition
for control, manipulation, data filtering, and augmentation,
including the authors’ own work on semantic-based remote
robotic operation [13]. However, despite these advancements,
each LLM platform maintains its own API schema and
integration logic. Achieving model-agnostic interoperability
thus necessitates the development of custom adapter layers,
along with substantial effort in function lifecycle management,
version control, testing, and orchestration.

The Model Context Protocol (MCP) has emerged as a
promising standardized solution to address integration chal-
lenges in systems driven by LLMs [14]. MCP defines a unified
interface that enables LLMs to interact with external tools,
databases, and services in a structured, secure, and semanti-
cally meaningful manner. As a model-agnostic and extensible
protocol, MCP allows external functions to be registered as
callable resources, each accompanied by formal descriptions
that guide LLMs in their invocation. This architecture supports
a wide range of operations, such as querying, calculating, and
manipulating data, utilizing the semantic reasoning capabilities
of LLMs. With growing adoption, MCP servers now provide
standardized access to components like code editors, computa-
tional engines, and knowledge bases, enabling uniform, model-
agnostic interaction across diverse systems. As a result, MCP
functions as a semantic integration layer that connects LLM-
based reasoning with executable system functions, helping to
overcome the persistent fragmentation between data, services,
and applications within IoRT environments, complementing
existing device-centric and service-centric paradigms.

Despite the increasing adoption of MCP and its rapid
advancement in computer software applications, its application
within IoRT systems remains largely underexplored. In this
work, we introduce a novel framework that integrates MCP
into the IoRT architecture, enabling modular and semantically-
consistent access to both data sources and control interfaces.
By decoupling perception components from high-level task
logic, the framework facilitates greater flexibility, reusability,

and scalability in the design of IoRT systems. We demon-
strate the effectiveness of this approach through a prototype
implementation centered on environmental digital twins, and
further discuss how the proposed principles can be generalized
to support broader classes of IoRT applications. Our major
contributions can be summarized as follows:

• We present the first integration of MCP and IoRT sys-
tems, enabling modular access to device functionalities
through structured and semantically-describable inter-
faces.

• We design a framework that decouples perception capa-
bilities from application logic, enhancing the flexibility,
composability, and maintainability of robotic and sensing
systems.

• We implement and evaluate a prototype system that
demonstrates how environmental digital twin nodes can
expose their sensing and control interfaces to LLMs and
other applications through MCP.

• We analyze the extensibility of the MCP-enabled frame-
work across heterogeneous IoRT scenarios, suggesting a
generalizable model for future intelligent deployments.

The rest of this paper is organized as follows. Section II
introduces the proposed framework that integrates MCP into
IoRT systems. A use case implementation based on environ-
mental digital twins is presented in Section III. Section IV
discusses the technical challenges and limitations of the pro-
posed framework. Finally, Section V concludes the paper and
outlines future research directions.

II. THE FRAMEWORK FOR MCP-ENABLED IORT SYSTEMS

This section provides a structured overview of prevailing
architectural paradigms in the IoRT, introduces the MCP
framework, and presents our proposed integration approach
that embeds MCP within the IoRT ecosystem to enhance
modularity, scalability, and semantic-level control.

A. Conventional IoRT Architecture

As illustrated in Fig. 1a, the typical conventional architec-
ture of IoRT consists of a layered system comprising per-
ception and actuation components at the edge, interconnected
via middleware platforms that provide abstraction and service
coordination. Perception components include a broad range
of sensors, such as environmental sensors (e.g., temperature,
humidity, and pressure), spatial sensors (e.g., GPS), motion
detectors, and audio-visual devices. Actuation components
range from simple mechanical devices such as motors and
switches to complex entities such as robotic arms, autonomous
vehicles, and drones, many of which may simultaneously serve
as sensors and actuators.

These heterogeneous components are integrated through
middleware solutions, which often handle protocol translation
and provide standardized interfaces for data acquisition and
control commands. Communication is facilitated through var-
ious networks (e.g., Zigbee, Wi-Fi, LoRa, NB-IoT, Bluetooth,
5G) and protocols (e.g., MQTT, CoAP, HTTP, LwM2M),
selected based on the deployment context.
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Fig. 1: The proposed MCP-enabled IoRT framework: (a) Conventional IoRT architecture; (b) The MCP framework; (c) Examples
of tools, resources, and prompts within the MCP server.

The middleware acts as a bridge between the physical layer
and the application layer, enabling upper-layer services such
as authentication, logging, monitoring, persistent storage, rule
engines, orchestration, reasoning, multi-agent coordination,
digital twins, visualization, and Human-Machine Interaction
(HMI). Despite the availability of middleware solutions (e.g.,
ROS, FIWARE, etc.), their coordination typically requires
substantial customization to accommodate different message
formats, data flows, and system functionalities, leading to
significant development overhead and lengthy verification and
deployment cycles.

B. MCP Framework

The MCP architecture introduces a novel mechanism for
semantically integrating external services, tools, and data into
LLM-based systems through structured task interpretation.
The standalone MCP architecture is illustrated in Fig. 1b
and comprises three primary components: the MCP Host,
MCP Client, and MCP Server, each playing a distinct role in
facilitating modular, dynamic interaction between LLMs and
external functionalities.

1) MCP Host: The MCP Host provides the runtime envi-
ronment in which the LLM operates and executes commands.
It embeds the MCP Client and enables seamless interaction
with registered external integrations.

2) MCP Client: The MCP Client serves as an intermediary
between the LLM and one or more MCP Servers. It translates
high-level, LLM-generated task representations into structured

protocol requests (e.g., JSON-RPC 2.0), dispatches them to the
appropriate endpoints, and manages runtime behaviors such
as progress tracking and interruption handling. The Client
also transmits execution results back to the LLM for further
reasoning or action.

3) MCP Server: The MCP Server registers external in-
tegrations and exposes their capabilities through three core
abstractions: Resources (readable data elements such as sensor
values or logs), Tools (executable services or functions), and
Prompts (predefined templates guiding LLM interactions).
Prompts facilitate task orchestration by supporting parameter
injection, dynamic configuration, and workflow composition.
The MCP Server maintains a queryable and hot-pluggable
registry of these elements using standardized formats such as
YAML and JSON (as shown in Fig. 1c), thereby supporting
scalable and flexible integration.

When used in conjunction with an LLM, MCP enables
dynamic tool invocation based on natural language input.
For example, in the smart traffic system (Fig. 1c), an in-
struction like ”Set intersection 112 to pedestrian priority
mode” is parsed by the LLM, the appropriate MCP tool (e.g.,
set traffic mode(intersection id, mode)) will be identified, and
then it will be executed with inferred parameters.

The MCP framework follows a request–response pattern
where tools are registered with semantic descriptors. Each
workflow step is invoked through intent-based calls, and
responses are serialized in JSON for cross-platform compati-
bility.
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C. MCP-enabled IoRT framework

To address limitations in traditional middleware-based IoRT
systems with tight coupling, static configurations, and a lack
of semantic understanding, we propose a framework that
embeds MCP components across the IoRT system. Fig. 1
provides a comprehensive view of the complete system archi-
tecture, demonstrating the coordination and interaction among
all framework components. At the infrastructure layer, each
sensor or actuator can optionally be paired with an MCP
server. Perception elements are registered as resources, while
actuation functions are exposed as tools. Middleware functions
can be also encapsulated via MCP, enabling semantic access
to otherwise specific protocol operations. Upper-layer services
can utilize their own MCP servers to define reusable prompts
for common workflows. The MCP Host provides a centralized,
LLM-based orchestration interface, allowing for system-wide
semantic interaction. Although MCP integration introduces
flexibility and modularity, middleware remains essential for
real-time data routing and low-latency control. Therefore, the
proposed architecture supports coexistence between MCP and
conventional middleware, with deployment strategies deter-
mined by specific application requirements. The advantages
brought by MCP in IoRT are as follows:

1) Modular Interoperability: Devices, services, or compo-
nents can be encapsulated into MCP modules by implementing
the MCP client/server interface. This promotes uniformity in
packaging and invocation.

• Encapsulation abstraction: Devices register capabilities
independent of hardware types or network protocols. For
example, a traffic node may expose get vehicle count()
as a resource and set signal timing() as a tool.

• Invocation uniformity: Any MCP-compatible LLM or
service can invoke registered tools semantically, enabling
domain agnostic integration and inter-system coordina-
tion.

2) Decoupling Data from Services: MCP enables logical
separation between data sources and service logic. This al-
lows independent evolution of system components through
its model-agnostic design and standardized LLM interaction
protocols. For example, disparate traffic nodes with varied
capabilities can be uniformly managed by a single inference
service without requiring interface implementations.

3) Intent-Driven Interaction: By embedding MCP into
IoRT, systems gain a full-stack semantic interface. Users can
issue natural language commands (e.g., ”Schedule a com-
fortable meeting environment at 3 PM”) that are interpreted
into actions such as adjusting Heating, Ventilation, and Air
Conditioning (HVAC) systems, without manual configuration.

The framework supports real-time hot-plugging of devices
and workflows through the native properties of MCP. New
devices register as MCP servers without requiring system
restart, and their capabilities are automatically exposed as
tools in the registry. Workflow updates are achieved by
modifying semantic descriptions (typically a few lines of
YAML), after which the orchestrator immediately discovers
and integrates the new functionalities. This seamless process

minimizes developer effort and enables dynamic adaptation in
heterogeneous IoRT environments.

D. MCP vs Middleware in IoRT

While traditional middleware has been instrumental in en-
abling scalable IoRT systems, it falls short in dynamic environ-
ments that demand semantic interpretation, service discovery,
and workflow agility. Table I contrasts middleware and MCP
approaches across several dimensions. MCP excels in flexibil-
ity, semantic integration, and modularity, whereas middleware
retains its advantage in latency-critical scenarios and legacy
system support. Therefore, MCP is not a replacement but
rather an augmentation of middleware, providing the semantic
layer necessary for future-proof, intelligent IoRT systems.

TABLE I: Comparison of middleware and MCP features

Features Middleware MCP
Access
Mechanism

API with custom
message formats

Semantic declaration via
tools/resources

Workflow Design Predefined pipelines Prompt-based, intent-driven
workflows

Component On-
boarding

Manual
configuration

Auto-discovery via MCP
Client

Scalability Tight-coupled, brit-
tle

High, modular and extensi-
ble

HMI Integration Custom UI or inter-
faces

Native semantic HMI sup-
port

Real-Time
Action

Strong Weaker (inference overhead)

Legacy Support Plug-and-play Requires redesign

III. USE CASE IN ENVIRONMENT DIGITAL TWINS

To validate the feasibility and effectiveness of the pro-
posed integration framework, we implemented a demonstration
system that incorporates the MCP protocol into a simplified
Internet of Robotic Things (IoRT) scenario. We demonstrate
the framework with a self-designed edge device, named Digital
Twin Box (DTB), which serves as a representative perception-
actuation unit with built-in environmental sensing and mul-
timedia control capabilities. DTB can be flexibly deployed
on board static or mobile robots across various intelligent
application domains, including smart factories, smart homes,
and precision agriculture.

A. DTB Device Overview

DTB is built on RK3588-based computing platform, offer-
ing high computational performance, extensive I/O interfaces,
and support for on-device AI inference. On the sensing side,
it supports configurable environmental sensors (e.g., tempera-
ture, humidity, barometric pressure, and CO2 concentration),
enabling adaptation to specific application requirements. DTB
provides basic visual sensing capabilities and enables con-
trol of multiple environmental switches (e.g., fans, heaters,
actuators), with optional modules for networking and display
output.

The proof-of-concept was implemented on the DTB with
4 GB RAM, running Ubuntu 20.04. The MCP runtime and
orchestration services were implemented in Python 3.8 with
MCP-over-MQTT for messaging.
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B. MCP Integration Strategy

To evaluate the semantic orchestration capabilities of MCP
in an IoRT context, we deployed MCP servers both in the
DTB device and the user side for workflow, as shown in Figs.
2b and 2d. Notably, we did not deploy a MCP server in the
cloud backend, as the focus was to validate end-to-end task
composition between user operations and edge devices via
MCP.

On DTB, the MCP server exposes the following resources
and tools:

• resource://iot/devices provides the online devices for ref-
erence for LLM parsing.

• get device state(device id) provides real-time environ-
mental data, and returns it in JSON structure.

• control device(device id, operation) and enable con-
trol of the switches for the environmental regulator,
the operation can be chosen as one of the follow-
ing: temperature up, temperature down, fan open,
fan close.

We conducted two sets of experiments in different scenarios
to further validate the advantages of MCP integration, specif-
ically its support for modular device/service access and the
decoupling of data sources from service logic.

C. Basic Scenario

We begin by a simple scenario involving two devices, each
connected to environmental sensors that provide temperature
and humidity data, as well as actuators for environmental
regulation (such as air conditioners and ventilation fans il-
lustrated in Fig. 2a). Within a smart home context, the system
is capable of autonomously regulating indoor comfort. To
increase the logical complexity, we assume that decisions
regarding the environmental adjustment actions of device B are
made based on environmental data collected from device A. To
clearly demonstrate the workflow enabled by MCP integration,
we use Claude Sonnet 4 as the interface for conversational
demonstration, though other MCP-compatible LLMs would
achieve similar results.

Within our use case, the MCP server defines a tool,
get policy, with an env adjustment parameter. The policy
returned, as shown in Fig. 2e, contains a comprehensive
description field that maps the device IDs to their functions
within specific scenarios. Once the functions of each MCP
server are properly configured, workflow execution can pro-
ceed accordingly.

We utilize natural language commands via the conversa-
tional interface to instruct Claude Sonnet 4 to commence
an environmental adjustment workflow. Empowered by the
MCP protocol, Claude Sonnet 4 interprets the semantic
meaning of the user input and launches a workflow (as
shown in Fig. 2f). It first queries the relevant workflow from
the MCP server by invoking get policy(”env adjustment”),
and then parses the semantic content of the workflow. Af-
ter understanding the prescribed sequence, it begins ex-
ecution. For example, Claude Desktop may invoke the
get device state(”5a5a5b0db496c231”) method on the DTB
MCP server to retrieve real-time sensor data, which it then

semantically analyzes. If the temperature is found to be
above the human comfort range, it proceeds to call con-
trol device(”20a52f2f4e792abb”, ”temperature down”) to
adjust the environmental controls on device B (e.g., activate
cooling functions). The entire process, including the reasoning
and tool invocation chain, is transparently presented to the
user via the interactive interface (see Fig. 2c), enabling a clear
understanding of the workflow and its decision logic.

Fig. 2g illustrates the time consumption for the entire work-
flow in our demonstration. In particular, item T0 represents the
total execution time for the basic scenario. As shown, the vast
majority of the time is consumed by the MCP Host, which
accounts for 96.84% of the total workflow duration (with the
overall process taking 17.20 seconds, of which the MCP Host
is responsible for 16.65 seconds).

To further illustrate the modularity and ease of integration
enabled by MCP, we extend this demonstration to additional
use cases. Given the similarity of the principles and methods,
we omit further interface screenshots for brevity and instead
summarize key advantages as follows.

D. Scenario for Modular Device/Service Integration

Building on the baseline scenario, the integration of new
devices or features becomes straightforward by connecting the
relevant device to the framework via an MCP server to enable
management and control immediately.

For devices not previously supported or functionally equiv-
alent devices from different manufacturers, the deployment of
a compatible MCP server will be standard practice in the
future; device vendors may offer ready-to-use MCP server
modules, which can be downloaded, configured, and run to
enable seamless device onboarding. This approach also facil-
itates effortless device substitution, as similar devices from
different vendors can be seamlessly replaced through their
respective MCP server adaptations. This eliminates the need
for developing APIs or adapters for every new device, greatly
streamlining integration.

Alternatively, for scenarios requiring more deterministic
control, suppose we do not wish to rely on LLM-generated
policies but instead introduce a dedicated MCP server for
handling complex strategies. We can design a tool such
as env adjustment(temperature, humidity) within the strategy
server, and modify the workflow description to reference this
tool for environmental adjustment decisions. During workflow
execution, the LLM calls this tool and bases its actions on the
returned results. We have implemented and tested a rule-based
policy engine using this approach. The time consumption of
this case is shown in the item T2 of Fig. 2g.

E. Scenario for Decoupling of Devices and Services

In our framework, workflows and strategies are treated as
modular services, separate from the underlying hardware. To
demonstrate workflow substitution, consider a scenario where
devices A and B are located in an office and a meeting room,
respectively, each with independent environmental regulators.
To adjust the office environment, we simply modify the
semantic policy in the strategy server. For example, updating
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the description to “Check the environment in the office, and
operate the device to make it comfortable.” Device identifiers
(e.g., 5a5a5b0db496c231 for the office, 20a52f2f4e792abb
for the meeting room) are mapped accordingly. This enables
workflow invocation through natural language and semantic
parsing, allowing the LLM to automatically retrieve and inter-
pret the environment data, and execute corresponding actions
based on the result.

Policy updates are equally efficient. For example, the system
may shift from targeting human comfort (20–26°C) to food
preservation (0–4°C) simply by modifying the semantic de-
scription in the policy. The LLM will interpret the new
requirement and adjust its reasoning accordingly, making the
transition seamless. The time consumption of this case is
illustrated in the item T1 of Fig. 2g.

While such simple strategies can be achieved by both
traditional and MCP-based frameworks, real-world IoRT ap-
plications often involve more complex scenarios with domain-
specific logic. For these, it suffices to implement new strategy
tools in the MCP server and reference them in workflow de-
scriptions, which eliminates the need to adapt existing devices
or middleware for new policies. The LLM will automatically
convert input data to the required format for the new strategies
during invocation. Through these demonstrations, we have
illustrated the modular device/service onboarding and the
functional decoupling between device capabilities and service

logic achieved by our MCP-integrated IoRT framework.

F. Analysis on Time Consumption

In our described use case, we evaluated both the basic
scenario and its evolved variants, and recorded the correspond-
ing time consumption statistics, as shown in Fig. 2g (with
some details previously discussed). It is important to note that
integrating MCP into IoRT introduces a significant trade-off:
the reliance on LLM-based semantic analysis can result in
considerable processing delays, as the LLM must parse data
and invoke subsequent tools. In our use case, given the relative
simplicity of both the MCP server tools and workflow, the
majority of the total execution time was spent on semantic
parsing and tool invocation by the MCP host, accounting for
over 95% of the total workflow duration.

Beyond latency measurements, we note that once an MCP
server is registered, both new device functions and workflow
updates become immediately available. The LLM orchestrator
discovers and incorporates these changes in real time, ensur-
ing that system capabilities are dynamically updated without
additional reconfiguration overhead.

This observation highlights that when handling IoRT tasks
via the MCP protocol, the characteristics of the task itself must
be carefully considered. For tasks that are triggered frequently
or are time-sensitive, the response latency introduced by LLM-
driven workflows may not be acceptable, and MCP alone
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may not fully meet workflow requirements. Therefore, for
such tasks, it remains necessary to utilize middleware or
other traditional solutions within the proposed framework to
ensure timely execution. In such scenarios, leveraging MCP
to generate corresponding contextual interaction standards and
enable automatic deployment could also be a viable approach,
though this falls beyond the scope of this paper. Nevertheless,
for general-purpose or latency-tolerant applications, integrat-
ing MCP into existing IoRT frameworks offers significant
advantages, and its benefits are expected to play an important
role in accelerating the evolution of IoRT systems.

IV. CHALLENGES

The MCP-integrated IoRT framework provides flexibility
and modularity, but its integration also introduces critical
challenges. As MCP inherently relies on LLM capabilities
for orchestration and decision-making, its deployment inherits
many of the fundamental challenges associated with LLM
integration in IoRT systems. This section discusses the main
issues encountered in typical IoRT deployments and highlights
obstacles that must be addressed for practical adoption.

A. Real-Time and Safety of IoRT scenarios
In safety-critical IoRT applications such as industrial au-

tomation and medical monitoring, systems require determin-
istic responses within strict time bounds [15]. Control loops
may require actions of sub-10 ms, while medical alerts often
require reactions within 100 ms. However, LLM inference
introduces variable latency and probabilistic behavior, which
undermine predictability and reliability in such environments.
The unpredictable nature of language model processing cre-
ates fundamental challenges for deployment in time-sensitive
environment.

The potential mitigation strategies include hybrid archi-
tectures that combine deterministic real-time controllers with
MCP-enabled high-level coordination, lightweight MCP run-
times optimized for time-critical paths, edge deployment of
small language models to reduce latency, and fallback mech-
anisms to conventional control.

B. Security and Access Control for intent injection
The semantic nature of MCP registration and LLM-driven

orchestration introduces attack surfaces beyond traditional
IoRT security. Malicious services may inject harmful tools
or misleading prompts, while semantic ambiguity can be
exploited for intent spoofing, leading to unsafe or unintended
actions. LLM-based orchestration further adds risks, including
hallucinated tool invocations, inconsistent behavior in edge
cases, excessive computational overhead, and dependencies on
external services that may create single points of failure.

To mitigate these threats, access control must go beyond
traditional role-based models. An intent-level authorization
framework can provide finer-grained control by assigning
permissions to semantic intents rather than devices alone.
Complementary measures include certification and sandboxing
of MCP tools, semantic intent validation to reduce spoofing,
distributed consensus for safety-critical actions, and runtime
monitoring to detect anomalous LLM behavior.

C. Semantic Standardization on MCP servers

As IoRT deployments scale, heterogeneous MCP servers
and devices introduce semantic ambiguity that complicates or-
chestration. Similar functions may carry inconsistent meanings
among vendors or scenarios; for example, a get temperature
service could refer to greenhouse climate control, server room
monitoring, or medical equipment. In contrast, large-scale de-
ployments often involve numerous identical sensors and actua-
tors, creating challenges in precise semantic identification and
disambiguation among functionally equivalent devices. This
heterogeneity in parameter structures, measurement units, and
operational semantics undermines interoperability, complicates
workflow automation, and hinders cross-vendor substitution.

To address these challenges, standardized semantic descrip-
tors are essential. A schema-based approach can unify tool
descriptions by specifying functionality, parameters, context,
and interoperability metadata. Industry-wide efforts should pri-
oritize hierarchical taxonomies of IoRT capabilities, contextual
metadata standards that capture spatial and temporal dimen-
sions, cross-vendor compatibility frameworks, and automated
schema validation to ensure compliance. These measures will
reduce ambiguity, enhance interoperability, and support scal-
able MCP integration in diverse IoRT environments.

D. Transparency and auditability in MCP host

IoRT applications require workflow transparency and au-
ditability to support system maintenance, debugging, and
operational oversight. However, LLM-based orchestration in-
troduces significant opacity challenges. The probabilistic na-
ture of LLM responses creates non-deterministic behavior,
where identical inputs may produce different outputs, un-
dermining system predictability and troubleshooting efforts.
Current MCP implementations lack explainability for decision-
making processes and standardized traceability mechanisms,
creating difficulties when investigating system behaviors or
performance issues.

Establishing transparency requires comprehensive logging
and audit capabilities. Essential components include execution
provenance tracking, explainable AI integration for decision
rationale, and workflow replay mechanisms for debugging
purposes. Implementation should encompass structured log-
ging protocols, audit trail preservation, real-time visualization
dashboards, and automated anomaly detection. These mecha-
nisms must maintain minimal performance overhead to avoid
impacting overall system efficiency in IoRT deployments.

V. CONCLUSION

This paper presents a novel architectural approach for the
Internet of Robotic Things (IoRT) by introducing the Model
Context Protocol (MCP) as a semantic orchestration layer
bridging edge devices and intelligent agents. The proposed
framework demonstrates how MCP facilitates modular reg-
istration of sensing and actuation functionalities, effectively
decoupling device and service integration from the constraints
of traditional middleware pipelines. By leveraging prompt-
driven execution, LLM-based controllers are empowered to
dynamically orchestrate device behaviors, thereby reducing
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development complexity and enhancing adaptability in het-
erogeneous environments.

Our digital twin node implementation validates the practical
advantages of MCP integration, illustrating how IoRT nodes
can expose both real-time and historical data as structured
resources and provide actuator control through standardized
tools. This paradigm paves the way for the next generation
of IoRT systems, which are characterized by openness, re-
configurability, and enhanced alignment with human-centric
semantic reasoning.

Looking forward, further research and development in
lightweight MCP runtimes, real-time protocol extensions, and
interoperability standards will be essential to drive the adop-
tion of this architecture in large-scale, mission-critical IoRT
deployments.
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