
Cybersecurity Fusion: Leveraging Mafia Game
Tactics and Reinforcement Learning for Botnet

Detection

Amir Javadpour∗§, Forough Ja’fari†, Tarik Taleb∗, HamidReza Ahmadi‡, and Chafika Benzaı̈d∗
∗Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, 90570, Finland

§ICTFICIAL Oy, Espoo, Finland
†Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

‡Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

Abstract—Mafia, also known as Werewolf, is a game of
uncertainty between two teams, which aims to eliminate the
other team’s players from the game. The similarities between
detecting the Mafia members in this game and botnet detection
in a computer network motivate us to solve the botnet detection
problem using this game’s winning strategies. None of the state-
of-the-art researches have used the Mafia game strategies to
detect the network’s malicious nodes. In this paper, we first
propose the Mafia detection strategies, which are applied using
linear relation and reinforcement learning techniques. We then
use the suggested strategies in a network infected by the Mirai
botnet, using Mininet, to evaluate the performance of botnet
detection. The average results show that the suggested strategies
are 11% more accurate than the existing ones for the Mafia
game. Additionally, the true positive and true negative detection
rates of a network modeled by the proposed Mafia game are
71% and 91%, respectively.

Index Terms—Mafia game, Reinforcement learning, Network
security, Botnet detection, Distributed denial of service (DDoS)
attacks, and cybersecurity.

I. INTRODUCTION

The diminution in the functionality of a network after a

cyber attack, especially the distributed ones, is undeniable.

Some adversaries build up an army using the compromised

nodes and then launch a distributed attack against the valuable

assets in the network. This army is called a botnet, and since

its members are distributed, their attack is hard to detect. The

botnets infect billions of devices, and mitigating these threats

is highly important, especially in large-scale networks such as

the Internet of Things (IoT) [1, 2, 3].

The researchers have proposed several botnet detection

techniques. The most recent ones in different categories are as

follows. Ashraf et al. [4] and Popoola et al. [5] used learning

approaches to detect bots based on their behavioral patterns.

Ja’fari et al. [6] used deception techniques to lure the bots

and detect them. Joshi et al. [7] utilized fuzzy techniques for

training a neural network to detect the bots. Abu Khurma

et al. [8] proposed a botnet detection technique based on

optimization algorithms.

However, none of the researches in this field have focused

on the bots’ impact on the networks during their lifecycle to

detect them. For example, suppose there are hundreds of nodes

in a network, one-third of which are compromised as bots.

A Distributed Denial of Service (DDoS) attack is launched

against one of the critical servers in this network [9]. Among

those who have connected with this server, some are legal

nodes, and others are bots [10, 11, 12]. The state-of-the-art

botnet detection techniques first detect the bots and then block

them. However, because the current detection techniques do

not have a true positive rate of 100%, all the bots are not

detected. The remaining ones can again launch a DDoS attack

against another server in the next attack phase. Our goal is to

propose a way of detecting the bots based on their impact in

the previous attack phases.

Mafia is a role-based party game, invented by Dimitry

Davidoff, that includes two teams of players: Mafias and

Townies. The goal of each team is to eliminate the players of

the other team from the game. The Townies do not know each

player’s role, so they try to find clues about the Mafias. On

the other hand, the Mafias know each other, but they attempt

to lure the Townies by pretending to be a Townie. A voting

process is performed at the end of each phase of the game.

The players vote to choose the one who must exit the game.

The player receiving the most votes is removed from the game.

Different scenarios are defined for this game. Two extra roles

are defined in one of the most simple ones: Detective and

Proof. The Detective is a Townie who can inquest one of the

players, and realize whether it is in the Mafia team [13]. The

Detective’s challenge is which player is likely to be a Mafia.

The Proof in a Mafia game is one of the Townies, who never

leaves the game. The role of the Proof is hidden from the other

players, but once it receives the highest number of votes, its

role becomes revealed. Finding the Mafia members is based

on their votes/impact in the game, which is similar to our goal

in detecting the bots.

The current researches on the Mafia game has tried to give

a detection strategy. Chang [14] proposed a simulator that

assigns a credibility weight to each of the players, by which

the powerful Townie players are found. Kondoh et al. [15]

used long short-term memory learning to design an efficient

agent for the Mafia game. The features used for training the

agent are the conversation between the players and their votes

for all the other players. Hagiwara et al. [16] also considered

the conversations and the votes to train a Mafia agent that

utilizes reinforcement learning. Bi and Tanaka [17] suggested

the Detective randomly requesting the players. We call this

979-8-3503-1090-0/23/$31.00 © 2023 IEEE

Fig. 1. The mapping between the Mafia roles and the components of a network
under a botnet attack.

strategy as ”Previous Strategy 1”. As another example, Wang

and Kaneko [18] proposed a machine learning model that

selects the player for being requested by three parameters,

including (1) ”the number of each player’s votes to each of

the other players”, (2) ”the state of being active or inactive for

all the players”, and (3) ”the previous actions of the Detective”.

We call this strategy as ”Previous Strategy 2”. However, these

strategies are not powerful enough to make essential detection

decisions. Moreover, none of them used these strategies to

detect malicious nodes in a computer network.

The main goal of this paper is to model the process of

botnet detection as detecting the Mafia members in the Mafia

game. The similarities between a Mafia game and a real

network under a botnet attack are briefly illustrated in Figure 1.

Several game roles are presented in this figure. However, this

paper focuses on the Townies, Mafias, Detective, and Proof.

This paper defines new parameters by which the Detective

effectively inquests in the game. Moreover, the suggested

strategies are used to detect real botnets. The key contributions

of this paper are as follows:

• Suggesting efficient detection strategies in detecting the

Mafias or malicious nodes.

• Proposing the algorithms that can apply the suggested

strategies on the game, using two different techniques.

• Suggesting a new metric based on current common met-

rics for evaluating the Detective’s performance.

• Modeling the problem of botnet detection as a Mafia

game to increase the malicious nodes detection rate.

The remainder of this paper is structured as follows. In

section II, we propose the detection strategies for the Mafia

game and then explain the similarities between a real computer

network and the Mafia game. The algorithms for applying the

suggested strategy for the Detective on the network is also

presented in this section. section III provides the evaluation

results of the suggested strategy and its efficiency in a real

network. Finally, the conclusion of this paper and our plans

for future work are presented in section IV.

II. PROPOSED DETECTION STRATEGIES

In this section, we first suggest the detection strategies for

the Detective, and then explain how the Mafia game can be

mapped on the network to detect the malicious nodes.

The nature of a Mafia game is uncertain, and no specific

strategy is always correct in detecting the two sides of the

game. However, some of the facts in the game can lead to

better detection.

We define five different degrees for each player, based on

which, they can be sorted, and the players at the beginning of

the sorted list are the suggested candidates for being requested

by the Detective. in(i) (inactive(i)) is a binary degree, which

is 1 if the ith player is not in the game. ex(i) (exit(i))
is the number of removed players that were in the Townie

team and the ith player has voted them. pr(i) (proof(i))
is the number of the ith player’s votes for the Proof, only

if the Proof roles is revealed. po(i) (positive(i)) and ne(i)
(negative(i)) are binary degrees that are 1 if it is revealed for

the Detective in its previous questions that the ith player is in

the Townie or the Mafia teams, respectively. Considering these

five degrees, the Detective can detect the Mafia team with a

higher performance.

There are some cases that the Detective must keep in

mind. The players that are previously detected must not be

detected again. The po() and ne() degrees specify these cases.

Moreover, the winning strategy of the Detective is to detect

the players who are probably in the Mafia team. ex() is a good

metric for finding the malicious players. The chance that the

ones who vote for a removed player from the Townie team

are in the Mafia team is high. Furthermore, since the players,

who vote for the Proof, are probably Mafias, pr() is another

useful metric.

These degrees give each player a score, and the scores are

used to sort them based on their priority in being the target of

the Detective. Some of these degrees can specify exactly which

players must not be requested. For example, a Detective never

detects a single player multiple times in this game scenario. It

is a waste of chance toward the winning of the Townie team.

So, based on the po() and ne() degrees, all the previously

detected players are removed from the Detective’s target list.

However, the exact list and its order are hard to find.

We utilize two techniques to find the probable strategy to

lead the Detective inquest of the Mafias. These techniques

are linear relation and reinforcement learning. In the linear

relation technique, we consider a linear equation of the degrees

to calculate the players’ final score. For example, we consider

that the score of the ith player is a.ex(i) + b.pr(i). Then, we

try to find the best coefficients, which are in our example, the

values of a and b, based on the Mafia games dataset, that lead

to the best result. On the other hand, in the reinforcement

learning technique, we do not consider a linear equation

between the final score and the degrees. We train a learning

model based on the Mafia games dataset, by which we can

find a sorted set of the players as the output. Reinforcement

learning is a type of machine learning approach, in which, the

problem is passed to an agent, and the agent explores different

solutions to find the best one.

The linear technique for detecting the Mafias is shown

in Algorithm 1. A nested loop is used for finding the best

coefficients of ex() and pr(). They are found according to the

sorted set of the player’s scores. The best result is achieved

when the number of Mafia members at the beginning of this

set has the highest value. Then, the players are sorted based on

the found coefficients, and finally, the inactive players (in()),
the players who are previously detected (po() and ne()), and

the Detective itself are removed from the set.

Algorithm 1 The winning strategy of the Detective using

linear relation technique.

Require: G, the game parameters available for the Detective

Require: D, the Mafia games dataset

Ensure: Ω, the ordered list of Detective’s target candidates

in, ex, pr, po, ne ← G
d ← this player

mafias ← the Mafia team based on D
P ← size of in

best ← 0

Ω ← {}
for i ∈ (-20 . . . 20) do

for j ∈ (-20 . . . 20) do

scores ← {}
for k ∈ (1 . . . P) do

scores ← scores + {k, i.ex[k] + j.pr[k]}
scores ← sorted scores

result ← 0

for k ∈ (1 . . . |mafias|) do

if scores[k][1] ∈ mafias then

result ← result + 1

if result > best or Ω = {} then

best ← result

Ω ← scores[1]
for k ∈ (1 . . . P) do

if in[k] = 1 or po[k] = 1 or ne[k] = 1 or k = d then

Ω ← Ω - {k}
return Ω

The reinforcement learning technique is presented in Algo-

rithm 2. This technique starts with a training phase based on

the number of players at the beginning of the sorted list who is

Mafia. When the training phase is over, the players are sorted

based on the optimal scores, and then the players who must

not be in the output settings are removed.

We can model a network and its security vulnerability

against a botnet with the Mafia game, because there are

several similarities as follows. The Townies are the legitimate

Algorithm 2 The winning strategy of the Detective using

reinforcement learning technique.

Require: G, the game parameters available for the Detective

Require: D, the Mafia games dataset

Ensure: Ω, the ordered list of Detective’s target candidates

in, ex, pr, po, ne ← G
d ← this player

mafias ← the Mafia team based on D
P ← size of in

model ← initiate the model

for i ∈ (0 . . . 1000) do

scores ← generate the scores using model

result ← 0

for k ∈ (1 . . . |mafias|) do

if scores[k][1] ∈ mafias then

result ← result + 1

update model based on result

scores ← generate the sorted scores using model

Ω ← scores[1]
for k ∈ (1 . . . P) do

if in[k] = 1 or po[k] = 1 or ne[k] = 1 or k = d then

Ω ← Ω - {k}
return Ω

hosts, and the Mafias are the compromised nodes or bots. The

interaction between the players is the traffic that is forwarded

through the network. The Mafia team cooperates to cause the

Townie team to lose their power. The bots in a botnet also

cooperate to reduce the power of the hosts in a network. For

example, they try to perform a DDoS attack against one of the

servers to make the network services unavailable. The players

in the Mafia team know each other, while the Townies are not

sure about the identity of the other Townies. In a real network,

it is the same. The components in a botnet know each other,

while in general, the legitimate hosts are not sure which other

hosts are trusted. Voting for a player to remove it from the

game is similar to sending flooding traffic toward a host to

cause it to become unavailable.

The Detective’s responsibilities in the Mafia game are

similar to that of the intrusion detection component in the

network. An intrusion detection component knows malicious

patterns and then monitors the traffic from a suspicious node

to check its activity patterns [19]. It is similar to the tasks

of a Detective in a Mafia game. A honeypot is a deceptive

trap in the network that pretends to be a regular host. When

the malicious nodes communicate with a honeypot, they are

closely monitored and detected [20]. The behavior of the Proof

and a honeypot is similar. A honeypot in a network does not

have a productive value. So the legitimate host rarely connects

with it. The connections with the honeypots are probably

established by the illegal nodes (e.g. the bots). The Proof is

somehow the same. When the players vote for the Proof, they

become suspicious. The malicious nodes fear communicating

with the honeypots because this connection leads to their

detection. The Mafias are also concerned about voting for the

Proof.

According to these similarities, we can apply the suggested

strategies and the proposed techniques (Algorithm 1 and Al-

gorithm 2) of detecting the Mafia players to a real network to

detect the malicious nodes. These strategies help the network

defender detect the bots or any malicious nodes and then block

them. The main goal of modeling a network with a Mafia

game is to predict the malicious nodes by their connections.

We can say that the connections between the players are more

important than the internal activities and detailed features of

each node/player.

III. EVALUATION

To evaluate the proposed model and the suggested strategy,

we should consider two aspects: (1) checking the suggested

strategy with the Mafia game datasets and (2) checking the

suggested strategy with a real network. The first aspect ensures

that the suggested strategy for detecting the Mafia players is

effective, and the second one evaluates the performance of

modeling a network with the Mafia game. One way to evaluate

this effectiveness is to apply the suggested strategies on a real

game/network, and then investigate the final result, which is

the winning of the Mafia or Townie team. However, we do not

access an unbiased group of players, by which we can apply

the strategies and check the final winner. Additionally, it is out

of the scope of this paper to design an agent that automatically

plays the game. Moreover, different factors may affect the

final result in a real Mafia game, such as human personality

behaviors and players’ body language. As a result, we have

extended the meaning of two standard metrics in security fields

[21], True Positive Rate (TPR) and True Negative Rate (TNR),

for each of the strategies, and then evaluate their efficiency

using these metrics.

For the first aspect, we need the dataset of real-world Mafia

games. As a result, we watched 7 hours of a Mafia game

played by Iranian players, which are available on Youtube [22],

and then collected their major data to create a Mafia dataset.

Initially, ten players are in these games, three of which are in

the Mafia team. We compared the evaluation results with the

related strategies that are suggested by the previous researches.

For the second aspect, we simulated different networks under

the Mirai [23] botnet attack.

The two suggested techniques are evaluated in this section.

We used a neural network with two hidden layers containing

256 neurons for the reinforcement learning technique. The

problem model passed to the agent is a game of sorting

different cards, each with specific parameters. For example,

in a game with P players, the agent that tries to find the best

strategy for the Detective gets P cards, and each card has

five values equivalent to the in(), ex(), pr(), po(), and ne()
degrees. These cards represent each of the players. When the

agent sorts the cards, the first card will be suggested to the

Detective as its target for inquesting. The action space of the

agent contains only two actions. The first action, 0, means the

ith card must not be replaced by the jth card. The second

action, 1, means that the location of the ith and jth cards

The ex() coefficient

0
5

10
15

Th
e p

r()
 co

efi
cie

nt

0
5

10
15

Th
e

tru
e

po
sit

iv
e

ra
te

35
40
45
50
55
60

(a) TPR

The ex() coefficient

0
5

10
15

Th
e p

r()
 co

efi
cie

nt

0
5

10
15

Th
e

tru
e

ne
ga

tiv
e

ra
te

72
74
76
78
80
82
84

(b) TNR

Fig. 2. The value of TPR and TNR for the Detective’s strategy using the
linear relation technique according to the ex() and pr() coefficients.

must be changed. During the game steps, the values of i and

j are changed so that all the cards are considered in the sorting

process at the end of the game. 85% of the games in the dataset

are used for the training phase, and the remaining 15% are

used for testing the learning performance.

In this section, we will discuss the evaluation of the

proposed model, including the efficiency of Detectives and

network strategies.

A. Evaluating Detective’s strategy

The responsibility of the Detective is to detect the Mafia

members. In our suggested strategy, the Detective can find

them with a higher chance. The defined TPR and TNR

values for evaluating the suggested strategy are presented in

Equation 1 and Equation 2.

TPRCU =
The no. of targets who are Mafia members

The total no. of targets
(1)

TNRCU =
The no. of non-targets who are Townie members

The total no. of non-targets
(2)

Based on these metrics [24], we give an example. Consider a

game with 3 Mafias and 7 Townies. The sorted list generated

by the proposed techniques contains 9 players, because the

Detective itself is not in this list. According to the Detective’s

opinion, the first three members of this set are Mafias and

the others are Townies. Hence, if only two of the first three

players are Mafias, the values of TPR and TNR are 66% and

83%, respectively.

In Figure 2, the different coefficients of ex() and pr() and

their impact on the TPR and TNR values are shown. The

best results (i.e. the points with the light color) are obtained

where both coefficients are non-zero positive numbers and the

coefficient of pr() is greater than or equal to the coefficient

of ex(). This means that the importance of the pr() degree is

higher than the ex() degree for detecting the Mafia players. In

other words, the players who have voted for a revealed Proof

are more likely to be a Mafia than those who vote for other

removed Townies. The greatest achieved values for TPR and

TNR are about 61% and 83%, respectively. Another important

point about this graph is where the coefficients are zero. In this

case, the values of TPR and TNR are low; hence both of the

True Positive Rate True Negative Rate
0

20

40

60

80

100

Ra
te

 (%
)

61.9048

83.6735

100 100

33.3333

71.4286
66.6667

85.7143

Proposed Linear Relation
Proposed Reinforcement Learning

Previous Strategy 1 Previous Strategy 2

Fig. 3. The values of TPR and TNR by applying the suggested Detective’s
strategies on the Mafia dataset.

ex() and the pr() degrees must be considered in the winning

strategy of the Detective. Since the players who voted one of

the Townie members are more likely to be a Mafia, the positive

sign of the coefficients is reasonable.

Again, the best-obtained results are reported for comparing

the linear relation and reinforcement learning techniques.

Hence, to compare this part, we have used the ex() + 2pr()
equation as the linear relation. The comparison is illustrated

in Figure 3. Based on these results, the reinforcement learning

technique can detect 100% of the Mafia and Townie players,

using the suggested strategy. On the other hand, the linear

relation technique can detect about 61% and 83% of the

Mafias and Townies, respectively. We can conclude that the

reinforcement learning technique outperforms the linear rela-

tion technique when a dataset is available. The other point

about these results is that, due to the greater values of TNR

against TPR, the suggested strategy works better in detecting

the Townies than the Mafias. Although the reinforcement

learning technique achieves high TPR and TNR results, we

cannot say that the strategy can absolutely detect the Mafias

in every game. The results are currently reliable for our used

dataset. We also compared the results with the previous related

strategies. The proposed reinforcement learning technique has

the best results among the other strategies, and the second

place belongs to ”Previous Strategy 2”. On average, the

detection rate of our suggested strategy for the Detective is

11% higher than the previous strategies.

B. Evaluating real networks strategy

It is required to evaluate the suggested strategies in real

networks [25, 26]. We simulated different networks in Mininet

and then propagated the Mirai bots in these networks. Mirai

has three main components: the command and control server,

the loader, and the bots. The adversary is located on the

command and control server and commands the bots to launch

a DDoS attack against a specific target. The initial bots scan

the network, and whenever they find a host’s username and

password pair, they send it to the loader. The loader then

loads the malicious script on the victim hosts. In the simulated

networks, single nodes are dedicated to the IDS, honeypot,

command and control, and loader. The number of initial bots

and legal hosts varies in different networks. If b is the number

of initial bots, the number of legal hosts is 4b + 1, where b

varies from 1 to 10. The network topology with four initial

bots is shown in Figure 4. The IDS can detect up to b nodes,

and the username and passwords of each host are selected

among a set of four pairs.

To calculate the detection efficiency, we use the TPR and

TNR values based on the common definition of these two

metrics. TPR is a metric for evaluating the power of detecting

malicious nodes or bots in the network. This metric can be

calculated as in Equation 3.

TPRnet =
The no. of detected bots

The total no. of detected nodes
(3)

On the other hand, TNR shows the ability to detect the legal

nodes in the network. TNR is calculated based on Equation 4.

TNRnet =
The no. of undetected legal hosts

The total no. of undetected nodes
(4)

Figure 5 shows the TPR and TNR values of applying

the suggested strategy of the Detective on the data collected

from the simulated networks in Mininet. The results of the

linear relation technique show that the detection rate, both for

the bots and legal hosts, increases as the number of initial

bots gets higher. We can see that when the number of bots

are 10, the linear relation technique can detect up to 83%

and 95% of the bots and legal hosts, respectively. Moreover,

we can see that as the number of initial bots increases, the

detection rate of the linear relation technique outperforms

the reinforcement learning technique. This shows the power

of the linear technique in large-scale networks. Large-scale

networks have more connections, and since our strategy is

based on the connections, it works better in these networks.

On the other hand, we can see that the detection rate of the

reinforcement learning technique is 100% when the number

of initial bots is one or two. This is because the reinforcement

learning agent is trained with the Mafia game dataset, which

includes only one Mafia. Therefore, it works better in the

cases similar to the Mafia dataset. In general, the average

results of both techniques show that the suggested strategy

has the TPR and TNR values of about 71% and 91%, which

are acceptable detection rates. Furthermore, the gap between

the values of TPR and TNR in Figure 5 is similar to the graphs

related to Mafia roles strategies evaluations. This similarity is a

satisfactory result for claiming that the Mafia game is a good

candidate for modeling the security problems of real-world

networks.

IV. CONCLUSION

In this paper, we first proposed some detection strategies

for the Mafia game, and then applied them to the computer

networks for detecting botnets. Two different techniques,

namely linear relation and reinforcement learning, are pro-

posed for implementing the strategies. There is no correlation

Fig. 4. The simulated network topology with four initial Mirai bots.

1 2 3 4 5 6 7 8 9 10
The number of bots

30

40

50

60

70

80

90

100

Ra
te

 (%
)

Linear Relation TPR
Linear Relation TNR

Reinforcement Learning TPR
Reinforcement Learning TNR

Fig. 5. The values of TPR and TNR by applying the suggested Detective’s
strategy on the networks simulated in Mininet.

between linearity and reinforcement learning (RL) for the

Mafia. They use each concept independently to diagnose bots.

We compared two methods to determine which one is more

effective. For evaluating them, we extended the TPR and TNR

metrics definitions to match the Mafia game. Our suggested

strategies are 11% more accurate than the previously suggested

strategies in the Mafia game. We also emulated a network that

is compromised by the Mirai botnets. We then applied the

suggested strategies to check its adaptability with the network.

The emulation results obtained from Mininet show that the

malicious nodes are detected with a TPR and TNR values of

71% and 91%, respectively, which is a satisfactory result.

We aim to expand our scope in our upcoming research

endeavors by incorporating the additional roles outlined in

Figure 1 into the Mafia game framework. Our objective is

to formulate winning strategies for these newly introduced

roles systematically. Additionally, we plan to rigorously assess

the performance of a network that has been modeled using

our game-based approach, now enriched with these supple-

mentary roles. Looking further into the future, we aim to

develop a comprehensive security framework. This framework

will encompass many security mechanisms, including but not

limited to moving target defense and intrusion prevention

systems. Remarkably, our proposed framework will integrate

strategies derived from the Mafia game paradigm, effectively

leveraging its principles to mitigate various cyber attacks. By

bridging the gap between game theory and cybersecurity, our

innovative approach holds the potential to create a synergistic

alliance between these domains. As we progress, we envision

contributing significantly to advancing strategies that not only

bolster network security but also offer novel insights into

addressing the evolving landscape of cyber threats.

ACKNOWLEDGMENT

This research work is partially supported by the Business

Finland 6Bridge 6Core project under Grant No. 8410/31/2022,

the Research Council of Finland (former Academy of Fin-

land) IDEA-MILL project (Grant No. 352428), the Research

Council of Finland (former Academy of Finland) 6G Flagship

program (Grant No. 346208), and the European Union’s Hori-

zon Europe research and innovation programme HORIZON-

JU-SNS-2022 under the RIGOUROUS project (Grant No.

101095933). The paper reflects only the authors’ views. The

Commission is not responsible for any use that may be made

of the information it contains.

REFERENCES

[1] P. P. Kundu, T. Truong-Huu, L. Chen, L. Zhou, and S. G.

Teo, “Detection and classification of botnet traffic using

deep learning with model explanation,” IEEE Transac-

tions on Dependable and Secure Computing, 2022.

[2] A. Javadpour, F. Ja’fari, T. Taleb, and C. Benzaı̈d, “Re-

inforcement learning-based slice isolation against ddos

attacks in beyond 5g networks,” IEEE Transactions on

Network and Service Management, 2023.

[3] M. Bagaa, T. Taleb, J. B. Bernabe, and A. Skarmeta,

“Qos and resource-aware security orchestration and life

cycle management,” IEEE Transactions on Mobile Com-

puting, vol. 21, no. 8, pp. 2978–2993, 2020.

[4] J. Ashraf, M. Keshk, N. Moustafa, M. Abdel-Basset,

H. Khurshid, A. D. Bakhshi, and R. R. Mostafa, “Iotbot-

ids: A novel statistical learning-enabled botnet detection

framework for protecting networks of smart cities,” Sus-

tainable Cities and Society, vol. 72, p. 103041, 2021.

[5] S. I. Popoola, B. Adebisi, R. Ande, M. Hammoudeh,

K. Anoh, and A. A. Atayero, “smote-drnn: A deep

learning algorithm for botnet detection in the internet-of-

things networks,” Sensors, vol. 21, no. 9, p. 2985, 2021.

[6] F. Ja’fari, S. Mostafavi, K. Mizanian, and E. Jafari,

“An intelligent botnet blocking approach in software

defined networks using honeypots,” Journal of Ambient

Intelligence and Humanized Computing, vol. 12, no. 2,

pp. 2993–3016, 2021.

[7] C. Joshi, R. K. Ranjan, and V. Bharti, “A fuzzy logic

based feature engineering approach for botnet detection

using ann,” Journal of King Saud University-Computer

and Information Sciences, 2021.

[8] R. Abu Khurma, I. Almomani, and I. Aljarah, “Iot

botnet detection using salp swarm and ant lion hybrid

optimization model,” Symmetry, vol. 13, no. 8, p. 1377,

2021.

[9] R. Musotto and D. S. Wall, “More amazon than mafia:

analysing a ddos stresser service as organised cyber-

crime,” Trends in Organized Crime, pp. 1–19, 2020.

[10] A. Javadpour, F. Ja’fari, T. Taleb, M. Shojafar, and

B. Yang, “Scema: an sdn-oriented cost-effective edge-

based mtd approach,” IEEE Transactions on Information

Forensics and Security, vol. 18, pp. 667–682, 2022.

[11] A. Javadpour, F. Ja’fari, T. Taleb, and M. Shojafar, “A

cost-effective mtd approach for ddos attacks in software-

defined networks,” in in Proc. IEEE GLOBECOM’22,

Rio De Janeiro, Brazil, Dec. 2022.

[12] C. Benzaı̈d, M. Boukhalfa, and T. Taleb, “Robust self-

protection against application-layer (d) dos attacks in sdn

environment,” in 2020 IEEE Wireless Communications

and Networking Conference (WCNC). IEEE, 2020, pp.

1–6.

[13] MafiaScum, “Mafiascum wiki,” https://wiki.mafiascum.

net/, 2021, [Accessed: June 2022].

[14] Q. Chang, “A simulator for analyzing the balance of

mafia game,” in 2020 IEEE International Conference on

Artificial Intelligence and Information Systems (ICAIIS).

IEEE, 2020, pp. 622–627.

[15] M. Kondoh, K. Matsumoto, and N. Mori, “Development

of agent predicting werewolf with deep learning,” in

International Symposium on Distributed Computing and

Artificial Intelligence. Springer, 2018, pp. 18–26.

[16] M. Hagiwara, A. Moustafa, and T. Ito, “Using q-learning

and estimation of role in werewolf game,” in Proceedings

of the Annual Conference of JSAI 33rd (2019). The

Japanese Society for Artificial Intelligence, 2019, pp.

2O5E303–2O5E303.

[17] X. Bi and T. Tanaka, “Human-side strategies in the

werewolf game against the stealth werewolf strategy,”

in International Conference on Computers and Games.

Springer, 2016, pp. 93–102.

[18] T. Wang and T. Kaneko, “Application of deep reinforce-

ment learning in werewolf game agents,” in 2018 Con-

ference on Technologies and Applications of Artificial

Intelligence (TAAI). IEEE, 2018, pp. 28–33.

[19] A. K. Sangaiah, A. Javadpour, F. Ja’fari, P. Pinto,

W. Zhang, and S. Balasubramanian, “A hybrid heuristics

artificial intelligence feature selection for intrusion detec-

tion classifiers in cloud of things,” Cluster Computing,

pp. 1–14, 2022.

[20] H. Wang, H. He, W. Zhang, W. Liu, P. Liu, and A. Javad-

pour, “Using honeypots to model botnet attacks on the

internet of medical things,” Computers and Electrical

Engineering, vol. 102, p. 108212, 2022.

[21] K. Sinha, A. Viswanathan, and J. Bunn, “Tracking tem-

poral evolution of network activity for botnet detection,”

arXiv preprint arXiv:1908.03443, 2019.

[22] M. Plus, “Mafia plus,” https://www.youtube.com/

channel/UCzZJv5EsGb-h1HDEPa2o4Bg/videos, 2020,

[Accessed: June 2022].

[23] M. Antonakakis, T. April, M. Bailey, M. Bernhard,

E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halder-

man, L. Invernizzi, M. Kallitsis et al., “Understanding

the mirai botnet,” in 26th USENIX security symposium

(USENIX Security 17), 2017, pp. 1093–1110.

[24] A. Javadpour, S. K. Abharian, and G. Wang, “Feature

selection and intrusion detection in cloud environment

based on machine learning algorithms,” in 2017 IEEE

international symposium on parallel and distributed pro-

cessing with applications and 2017 IEEE international

conference on ubiquitous computing and communications

(ISPA/IUCC). IEEE, 2017, pp. 1417–1421.

[25] M. L. Adjou, C. Benzaı̈d, and T. Taleb, “Topotrust: A

blockchain-based trustless and secure topology discovery

in sdns,” in 2022 International Wireless Communications

and Mobile Computing (IWCMC). IEEE, 2022, pp.

1107–1112.

[26] Z. Shu, H. Feng, T. Taleb, and Z. Zhang, “A novel

combinatorial multi-armed bandit game to identify online

the changing top-k flows in software-defined networks,”

Computer Networks, vol. 230, p. 109783, 2023.

https://wiki.mafiascum.net/
https://wiki.mafiascum.net/
https://www.youtube.com/channel/UCzZJv5EsGb-h1HDEPa2o4Bg/videos
https://www.youtube.com/channel/UCzZJv5EsGb-h1HDEPa2o4Bg/videos

	Introduction
	Proposed Detection Strategies
	Evaluation
	Evaluating Detective's strategy
	Evaluating real networks strategy

	Conclusion

