
Deploying Testbed Docker-based application for
Encryption as a Service in Kubernetes

Amir Javadpour∗∥, Forough Ja’fari§∗∗, Tarik Taleb¶††, Chafika Benzaı̈d‡‡‡,
Luis Rosa†, Pedro Tomás†, and Luis Cordeiro†

∗ICTFICIAL Oy, Espoo, Finland †OneSource, Coimbra, Portugal
‡Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland

§Department of Computer Engineering, Sharif University of Technology, Iran
¶Faculty of Electrical Engineering and Information Technology, Ruhr University Bochum, Bochum, Germany

∥a.javadpour87@gmail.com (Corresponding Author) ∗∗azadeh.mth@gmail.com
††tarik.taleb@rub.de ‡‡chafika.benzaid@oulu.fi

Abstract—The scalability of today’s networking infrastruc-
tures, such as Kubernetes, has increased the demand for
everything-as-a-service concepts, including encryption services.
This paper details deploying an Encryption as a Service (EaaS)
framework on Kubernetes. In our current implementation, a web
platform is dedicated to the subscription processes and managing
the requested services. Service providers subscribe to receive
encryption and decryption services for their clients, and a token
is assigned to them. The client, or better to say, the devices
covered by that service provider, can use encryption/decryption
to specify that token. As our implemented web platform is written
in Django, through this paper, we have discussed the deployment
of Django applications on Kubernetes and the role of two other
services (i.e., Database and Nginx) to make it available. The
services are executed on Docker containers and deployed on
Kubernetes pods. We have also explained the steps to build
Docker containers, including the details of Dockerfiles. We have
deployed this framework on both local and remote Kubernetes
environments. The former deployment was performed by setting
up a local Minikube cluster, while the latter assumes a remote
Kubernetes cluster, and we are connecting to it through a
VPN. We have tested the availability and accuracy of the
encryption/decryption services and checked the logs to ensure
that these services work correctly. We aim to present this article
to assist researchers wishing to conduct effective testing or a
Testbed in the real world.

Index Terms—Encryption as a Service (EaaS), Kubernetes,
Internet of Things (IoT), NGINX, Deploying Docker-based,
TestBed.

I. INTRODUCTION

Encryption as a Service (EaaS) is the process of pro-
viding all cryptographic services to the end users, and it
overcomes the resource limitation issues of the end devices.
With EaaS, organizations can outsource the complex and
time-consuming tasks of encryption and key management to
third-party providers who specialize in these processes. This
allows them to focus on their core business operations while
maintaining the security and integrity of their sensitive data.
EaaS offers numerous benefits, including easy implementation
and scalability, reduced costs of ownership and maintenance,
and enhanced security measures [1, 2, 3].

One of the needful users of EaaS solutions is the Internet
of Things (IoT) devices. They have limited resources, and
due to their large scale and the popularity of such networks
among modern digital societies, a scalable EaaS framework is
needed. However, managing and maintaining an EaaS platform
for this demand is challenging [4, 5, 6]. An EaaS framework
deployed on Kubernetes environments improves data security
across other services provided by this environment. It focuses
on real-time encryption, easy integration, and improved access
controls [2, 7].

To communicate with the world outside the Kubernetes
cluster, clients first connect to Nginx, which acts as an entry
point and then routes requests to appropriate internal services,
such as the Django/Gunicorn service. NGINX offers high
performance, scalability, and reliability. NGINX is flexible
and can be used for various applications, from serving static
content to load balancing and caching dynamic web applica-
tions. NGINX Ingress Controller is a popular and powerful
tool for managing external access to Kubernetes services.
NGINX works with third-party modules for load balancing,
caching, security, and monitoring, allowing users to extend the
capabilities of their web servers while maintaining reliability.
NGINX Service Mesh provides a trustful environment with
strict control over allowed connections.

Minikube is a platform that allows running a single-node
Kubernetes cluster in a local environment, such as a laptop
or PC. This tool allows developers and DevOps engineers to
install Kubernetes quickly for testing, development, or learn-
ing. Minikube includes all the core components of Kubernetes,
including Deployments, Services, and ConfigMaps, and is
compatible with common tools such as kubectl. In Kubernetes,
a cluster may contain one or more nodes. Each node can host
multiple pods, and each pod can host one or more containers.
Each node has its resources, such as CPU, memory, and
storage. When pods are deployed in the cluster, Kubernetes
automatically determines which nodes are best suited to run
the pods. To check the sufficient resources in the nodes, tools
such as kubectl describe nodes and kubectl get pods -o wide
are used to monitor the cluster and check how the pods are

distributed.
We also have another concept called microservices, which

can solve problems related to the growth of projects. They
are often used with container management tools and services
and deployed on Kubernetes-managed cloud platforms. De-
ploying microservices requires considering API versions and
integration testing across multiple domains, and automated
monitoring is critical to ensure that each component is working
properly [8, 9, 10]. As mentioned above, NGINX is a powerful
load-balancing solution trusted by some of the world’s most
popular websites, including Dropbox, Netflix, and Zynga.
By providing dynamic reconfiguration for simple service
management and easy integration with popular microservices
management tools like Kubernetes, NGINX makes it easy for
leading companies like Netflix to use NGINX at the core
of microservices deployments. NGINX Controller provides
application delivery management for NGINX microservices
solutions and makes it easy to manage and monitor microser-
vices architectures at scale. NGINX Service Mesh provides
management solutions for our containerized microservices and
provides solutions for bridging heterogeneous microservice
environments. To deploy EaaS on Kubernetes, we need to
partition the environment into different parts on different
nodes. We also need to consider the hardware requirements for
each node to consider the optimal performance and scalability
of the EaaS deployment (Figure 1).

As shown in Figure 1 (Part A), EaaS deployment in a
Kubernetes environment should have different partitions on
different nodes, according to hardware requirements, to opti-
mize performance and scalability. The details of each item for
EaaS deployment in organizing Kubernetes containers based
on NGINX service are shown in Figure 1 (Part B).

This paper focuses on implementing an EaaS framework
on Kubernetes and provides its details. Figure 2 shows the
implementation architecture, containing three main services:
Django, Gunicorn, and Nginx. Django is a popular high-
level web development framework in the Python programming
language. This framework has attracted the attention of many
web developers due to its Model-View-Controller (MVC)
architecture, powerful tools for database management, and a
fast and efficient development environment. The end-devices
connect to the web platform (Django) through Nginx, as a
proxy. Nginx forwards traffic from the end-devices to the
Django service, and vice versa. The Django service is also
exposed by the Gunicorn service. It is worth noting that a
PostgreSQL database service [11] is also provided to store the
data related to the EaaS framework.

Each service is encapsulated in Docker containers, defined
by Dockerfiles, and orchestrated using Docker Compose with
environment configurations managed through ”.env” files. The
deployment process on Kubernetes involves creating deploy-
ments for each service, ensuring communication between
them, and efficiently managing pods. This setup exemplifies a
robust infrastructure for a scalable EaaS framework.

The remainder of this paper is organized as follows. sec-
tion II provides details on dockerizing the main EaaS services

and the required configurations. section III presents the steps
of deploying the created Docker containers on the Kubernetes
environment. The performance of the deployed EaaS frame-
work is then evaluated in section IV. Finally, section V gives
this paper’s summary and conclusion.

II. DOCKERIZING THE SERVICES

This section describes how to dockerize the main services
to build the EaaS framework. Three services are needed to be
executed on the Kubernetes based on their Docker container:
a PostgreSQL service for the database, a Django service for
the web platform, and an Nginx service for the proxy.

The steps to build Docker containers will be provided in the
following section. This includes creating a Dockerfile for each
service. For the web service, the Dockerfile includes installing
dependencies, copying project files, and setting up Gunicorn.
The Dockerfile consisted of copying the Nginx config file and
setting the executable command for the Nginx service. Also, it
explains how to build a Docker image using the docker build
command and test it with docker run. Docker Compose is a
tool that allows us to manage different Docker services with
a single YAML file. We looked at how to define services in
Docker Compose and map ports. Also, dependencies between
services and settings related to networking and storage are
explained. To configure Nginx, we looked at creating an
upstream to direct traffic to the web service. We also discussed
settings for Nginx listening on port 80 and how to configure
paths for static and media files.

A Dockerfile is a file that defines a set of commands to build
a Docker container. This file should specify what images will
be used as a base, how dependencies will be installed, and
how the project will run. Table I shows a sample dockerfile
that we have used for the Django service. This file specifies
the required dependencies to be installed and the related
commands to be executed before the container is deployed.
To serve static and media files, specific paths are provided to
access CSS, JavaScript, images, and other static resources.

To run Nginx as a standalone service in Docker, we must
create a special dockerfile for Nginx. Also, to properly con-
figure Nginx, we need to include the appropriate settings in
the Nginx config file. These settings include the upstream to
direct traffic to the web service and the ports Nginx uses to
listen for incoming requests. First, a Dockerfile for Nginx must
be created in a separate path. This file contains the necessary
commands to configure and run Nginx. In this Dockerfile, we
need to copy the Nginx config file to the container, which
will start Nginx. The Nginx config file contains upstream and
routing settings. In this file, we must define how Nginx will
route incoming traffic to the web service and the ports Nginx
will listen to. These settings allow Nginx to connect to the
web service and handle incoming traffic properly.

After that, the Dockerfiles are generated, and a docker-
compose.yml file is used to define them as services. It is worth
noting that for the database service, a default one is presented
by Docker Hub, and we can easily build it on Kubernetes
by calling the version and the path to its default container.

A) The details of Deploying EaaS on Orchestrating Kubernetes Containers based on NGINX Service

B) The EaaS deployment in a Kubernetes environment should have different parts on different nodes, with consideration given to

the hardware requirements to optimize performance and scalability.

Fig. 1. The details of Deploying EaaS and presenting different parts on different nodes in Kubernetes Containers based on NGINX Service

Fig. 2. The implementation architecture used for deploying the EaaS framework on Kubernetes.

Hence, dockerizing the Django platform and the Nginx proxy
are discussed here.

The docker-compose.yml file shown in Figure 3 presents
the configurations for dockerizing web (i.e., Django service)
and nginx (i.e., Nginx proxy). The database URL is also
specified to show the web service where to communicate for
storage processes. Moreover, a Gunicorn command is defined

to make the Django service accessible. Gunicorn is used as
a WSGI server to handle requests. It is worth noting that we
have passed the environment variables directly in the docker-
compose.yml file in this configuration. Another common way
to manage environment variables is to create a .env file that
contains important information such as database URLs, API
keys, and other sensitive settings. This file should be placed

Fig. 3. Deploying a Django project on Kubernetes using Docker.

in the main project folder and not uploaded to version control
systems.

The configurations for the Nginx service should be added,
and necessary configurations should be done in the docker-
compose.yml file.

III. DEPLOYING ON KUBERNETES

This section provides details on pods and services for
Kubernetes deployment. The database service, web, and Nginx

are defined as the project’s main components in this configu-
ration. Docker images are used for each service, and required
settings are provided by using environment variables. The
Kubernetes infrastructure to deploy these services is shown
in Figure 1. When the Docker containers are ready, we can
deploy them on the Kubernetes pods. Figure 3 shows how
the three containers related to our three main services are
deployed. The Nginx service is a proxy reverser, and Gunicorn
handles incoming requests through port 8000.

TABLE I
THE DOCKERFILE USED FOR DOCKERIZING THE DJANGO WEB SERVICE.

FROM python:3.8.10-slim-buster as builder
WORKDIR /usr/src/ICT
ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1
RUN apt-get update && apt-get install -y –no-install-recommends gcc
RUN pip install –upgrade pip
RUN pip install flake8==6.0.0
COPY . /usr/src/ICT/
COPY ./requirements.txt .
RUN pip wheel –wheel-dir /usr/src/ICT/wheels -r requirements.txt
FROM python:3.8.10-slim-buster
RUN mkdir -p /home/ICT
RUN addgroup –system ict && adduser –system –group ict
ENV HOME=/home/ICT
ENV APP HOME=/home/ICT/web
RUN mkdir $APP HOME
RUN mkdir $APP HOME/staticfiles
WORKDIR $APP HOME
RUN apt-get update
RUN apt-get install -y –no-install-recommends netcat
COPY –from=builder /usr/src/ICT/wheels /wheels
COPY –from=builder /usr/src/ICT/requirements.txt .
RUN pip install –upgrade pip
RUN pip install –no-cache /wheels/*
COPY . $APP HOME
RUN chown -R ict:ict $APP HOME
USER ict

To bring up a local Kubernetes cluster, we have used
Minikube, and Kubectl allows us to connect to the cluster,
create new resources, and monitor the status of the cluster
and pods. kubectl is the primary tool for Kubernetes cluster
management.

We can use containers such as PostgreSQL to create and
deploy an SQL database. For example, if we want to have a
PostgreSQL version 15, we can call the version associated with
this version from Docker Hub. YAML files are commonly used
to create and run a database in Kubernetes. These files contain
Kubernetes resource definitions for developing and managing
pods, deployments, and services. The command ”kubectl apply
-f db-deployment.yaml -f db-service.yaml” applies the YAML
files and creates the required deployment and service. This
way, we will deploy one replica of PostgreSQL and a service
listening on the specified port in Figure 3 part db.yaml.

Data monitoring and services are critical for maintaining
operational integrity and security in deploying Encryption-
as-a-Service on Kubernetes. Each service is carefully moni-
tored using tools to track health, performance, and resource
usage. Logs from each container are collected and analyzed
to detect anomalies and troubleshoot problems. Kubernetes’
native monitoring capabilities are enhanced with tools like
Prometheus and Grafana for metrics collection and visualiza-
tion. Additionally, Kubernetes’ logging capabilities play a vital
role in monitoring for auditing access and identifying potential
security breaches. PostgreSQL is used as the database service,
configured through Dockerfiles, and managed using Kuber-
netes Secrets and ConfigMaps for sensitive information. Data
replication, backup, and recovery strategies are implemented
to safeguard against data loss and ensure high availability.

IV. EVALUATION RESULTS

The deployment process involved setting up Kubernetes
services to facilitate communication between the web ser-
vice, database, and Nginx. Environment configurations were
managed through .env files, ensuring sensitive information
was securely handled. Testing with Minikube in a local en-
vironment confirmed that the deployment works as intended,
with services communicating correctly and efficiently handling
HTTP/HTTPS traffic. Using Kubectl to manage resources and
check logs has been instrumental in verifying the deployment’s
stability and performance. Initial results are promising, with
the deployed system showing robust performance and scalabil-
ity. Also, in our current implementation, we have implemented
the EaaS and the subscription part to prepare tokens for new
clients. We also discussed various topics related to deploying
and configuring Django projects on Kubernetes and Docker.
First, we discussed the deployment of Django on Kubernetes
and the role of the three primary services (web, database, and
Nginx). The database service was defined with PostgreSQL,
the web service with Django/Gunicorn, and the Nginx service
to handle HTTP traffic. To build Docker containers, we
explained the steps to create a Dockerfile and the methods
of creating a Docker image. The Dockerfile included steps to
install dependencies, copy project files, and run the app with
Gunicorn. Also, we examined how to configure the Django
project using environment files (.env) and methods of manag-
ing environment variables. Next, the structure of the Docker
Compose file, how to define different services, map ports,
and the settings required to connect services were discussed.
Also, Nginx configurations and upstream settings, ports, and
traffic routing to the web service were explained. Also, we
covered setting up Minikube and how to test Kubernetes
deployments in a local environment. We ran Kubernetes files,
tested services with curl, and checked logs to ensure services
worked correctly.

We started by building Docker containers to package our
custom services. This involved setting up Dockerfiles to create
container images that included everything needed for the
services. Once the containers were built, we deployed them to
Kubernetes, where they were run as pods, the basic building
blocks in Kubernetes. This made our services accessible and
ready for users. Then, we tested Encryption as a service
platform. This involved checking that the different parts could
connect, looking at logs to spot errors, and ensuring the
services were fast and responsive. This final step aimed to
ensure the platform was ready for production and that users
would have a smooth experience. We need to ensure that users
connected to the EaaS platform have access. Various platforms
are available in the EaaS sector, such as a Django-type web
service. This web service provides a page to the customer and
subscription encryption services. Upon joining and requesting
a service, the user receives a token (for example, 15a4d),
which he or his devices can use to access EaaS. When a
user registers, his information is stored in the database along
with the token. The EaaS platform has several components,

Fig. 4. Make an HTTP post request and include the authorization token received from the site

including the request handler (RH), Decryptor, Encryptor, key
manager (KM), and key generator (KG).

In Figure 4, we see an Internet of Things (IoT) device
sending a request to RH, which wants to encrypt the word
”Hello” using RSA encryption. The device also has a token.
When RH receives a request, it first searches the database
for the token and user information to verify if the service
can be provided. If allowed, RH communicates with KM to
obtain the key generated by KG for the encryption process.
Then, RH sends the encrypted content back to the IoT client
(curl -X POST -H ”Content-Type: application/json” -H
’Authorization: Bearer aaaa’ -d ’”id”: ”1”, ”text”: ”hello”,
”algo”: ”rsa”’ http://10.1.0.100:30303/encrypt/). The request
is sent to RH for decryption, which contains the ID and
encrypted text, and assuming that the cipher is “bbbb”,
to decrypt it, the command is used (curl -X POST -H
”Content-Type: application/json” -H ’Authorization: Bearer
aaaa’ -d ’”id”: ”1”, ”cipher”: ”bbbb”, ”algo”: ”rsa”’
http://10.1.0.100:30303/decrypt/)

V. CONCLUSION AND FUTURE WORK

In this paper, we implemented an encryption as a service
framework on Kubernetes. The current Testbed has been
deployed on OneSource (OneSource, Consultoria Informática,
Lda.) company assets as part of the RIGOUROUS ”secuRe de-
sIGn and deplOyment of trUsthwoRthy cOntinUum computing
6G Services” project. We have covered deploying Django on
Kubernetes, building Docker containers, configuring Django
projects using environment files, setting up Minikube, and
testing Kubernetes deployments in a local environment. Fur-
ther integration with advanced monitoring and logging tools
will be pursued to enhance the system’s observability. This
includes implementing more granular logging and real-time
alerts to identify and resolve issues proactively. Enhancing
security measures should be considered for future work, such
as incorporating advanced authentication mechanisms and en-
suring compliance with emerging data protection regulations.

In our future projects, We plan to enhance the security
of our Docker-based application deployed on Kubernetes by
integrating a network honeypot. Additionally, we will imple-
ment virtual network embedding, utilizing machine learning
algorithms to optimize resource allocation. It acts as a decoy
to lure and analyze potential attackers, significantly enhancing
our security measures [12, 6, 13, 14, 15]. Administrators can
detect and monitor unauthorized access attempts by deploying
a honeypot and collecting real-time data on emerging threats.

Deploying EaaS framework on Kubernetes revealed several
key insights regarding performance, scalability, and security.
Integrating Django, PostgreSQL, and Nginx into Docker con-
tainers managed by Kubernetes has shown promising re-
sults, especially in handling HTTP/HTTPS traffic and inter-
service communications. Initial experiments using Minikube
in a local environment confirmed the robustness and poten-
tial scalability of the framework to meet the needs of IoT
devices, which require secure and efficient communication
channels despite limited resources. However, several areas
require further exploration and improvement, especially in
terms of security improvements. While the current implemen-
tation uses standard encryption methods, there is significant
potential to enhance security through advanced authentication
mechanisms and strict compliance with emerging data protec-
tion regulations.Also, The deployment process emphasized the
importance of careful setup and configuration, especially when
handling sensitive information via environment (.env) files.
The use of Dockerfiles and Docker Compose is essential in
managing container services, facilitating effective deployment
in a controlled environment. However, moving to a production
environment may present additional challenges, such as man-
aging API versions and ensuring comprehensive integration
testing across multiple domains. Addressing these challenges
will be critical for wider adoption and real-world application
of the EaaS framework.

Another critical area identified is the need for advanced
monitoring and reporting tools. The current implementation

uses basic tools to verify the stability and performance of the
deployment, which is sufficient for initial testing. For produc-
tion environments, more sophisticated monitoring solutions are
necessary to provide detailed reporting and real-time alerts.

Future work also aims to further secure Docker-based
applications deployed on Kubernetes based on Moving Target
Defence to shuffle the Pods [16, 17]. This includes the
aforementioned integration of a network honeypot and the
implementation of advanced monitoring and reporting tools
to improve system visibility. Ensuring compliance with data
protection regulations and incorporating advanced authenti-
cation mechanisms will be critical. These improvements not
only enhance the security of the framework, but also ensure
its durability and reliability in various real-world applications,
ultimately driving its adoption across industries.

ACKNOWLEDGMENT

This research is partially supported by the European Union’s
Horizon Europe research and innovation program under the
RIGOUROUS project (Grant No. 101095933). It is also par-
tially supported by the Research Council of Finland (formerly
the Academy of Finland) through the 6G Flagship program
(Grant No. 346208). The paper reflects only the authors’
views, and the European Commission bears no responsibility
for any utilization of the information contained herein.

REFERENCES

[1] A. Alqarni, “Enhancing cloud security and privacy with zero-knowledge
encryption and vulnerability assessment in kubernetes deployments,”
Ph.D. dissertation, Middle Tennessee State University, 2023.

[2] A. Javadpour, F. Ja’fari, T. Taleb, Y. Zhao, Y. Bin, and C. Benzaı̈d, “En-
cryption as a service for iot: Opportunities, challenges and solutions,”
IEEE Internet of Things Journal, 2023.

[3] M. Zhang, J. Cao, Y. Sahni, Q. Chen, S. Jiang, and T. Wu, “Eaas: A
service-oriented edge computing framework towards distributed intel-
ligence,” in 2022 IEEE International Conference on Service-Oriented
System Engineering (SOSE), 2022, pp. 165–175.

[4] D. Unal, A. Al-Ali, F. O. Catak, and M. Hammoudeh, “A secure
and efficient internet of things cloud encryption scheme with forensics
investigation compatibility based on identity-based encryption,” Future
Generation Computer Systems, vol. 125, pp. 433–445, 2021.

[5] C. Carrión, “Kubernetes scheduling: Taxonomy, ongoing issues and
challenges,” ACM Computing Surveys, vol. 55, no. 7, pp. 1–37, 2022.

[6] A. Javadpour, F. Ja’fari, T. Taleb, M. Shojafar, and C. Benzaı̈d, “A com-
prehensive survey on cyber deception techniques to improve honeypot
performance,” Computers & Security, p. 103792, 2024.

[7] A. Javadpour, F. Ja’fari, and T. Taleb, “Encryption as a service: A
review of architectures and taxonomies,” in Distributed Applications and
Interoperable Systems, R. Martins and M. Selimi, Eds. Cham: Springer
Nature Switzerland, 2024, pp. 36–44.

[8] T. Z. Benmerar, T. Theodoropoulos, D. Fevereiro, L. Rosa, J. Ro-
drigues, T. Taleb, P. Barone, G. Giuliani, K. Tserpes, and L. Cordeiro,
“Towards establishing intelligent multi-domain edge orchestration for
highly distributed immersive services: a virtual touring use case,” Cluster
Computing, pp. 1–31, 2024.

[9] T. Taleb, A. Boudi, L. Rosa, L. Cordeiro, T. Theodoropoulos, K. Tserpes,
P. Dazzi, A. I. Protopsaltis, and R. Li, “Toward supporting xr services:
Architecture and enablers,” IEEE Internet of Things Journal, vol. 10,
no. 4, pp. 3567–3586, 2022.

[10] T. Z. Benmerar, T. Theodoropoulos, D. Fevereiro, L. Rosa, J. Rodrigues,
T. Taleb, P. Barone, K. Tserpes, and L. Cordeiro, “Intelligent multi-
domain edge orchestration for highly distributed immersive services:
an immersive virtual touring use case,” in 2023 IEEE International
Conference on Edge Computing and Communications (EDGE). IEEE,
2023, pp. 381–392.

[11] H. Schönig, Mastering PostgreSQL 15: Advanced techniques to
build and manage scalable, reliable, and fault-tolerant database

applications. Packt Publishing, 2023. [Online]. Available: https:
//books.google.nl/books?id=ZBOrEAAAQBAJ

[12] A. Javadpour, F. Ja’Fari, T. Taleb, and C. Benzaı̈d, “A mathematical
model for analyzing honeynets and their cyber deception techniques,”
in 2023 27th International Conference on Engineering of Complex
Computer Systems (ICECCS), 2023, pp. 81–88.

[13] A. Javadpour, F. Ja’fari, T. Taleb, and C. Benzaı̈d, “Enhancing 5g
network slicing: Slice isolation via actor-critic reinforcement learning
with optimal graph features,” in GLOBECOM 2023-2023 IEEE Global
Communications Conference. IEEE, 2023, pp. 31–37.

[14] A. Javadpour, F. Ja’fari, T. Taleb, and C. Benzaı̈d, “Reinforcement
learning-based slice isolation against ddos attacks in beyond 5g net-
works,” IEEE Transactions on Network and Service Management,
vol. 20, no. 3, pp. 3930–3946, 2023.

[15] C. Benzaı̈d, T. Taleb, A. Sami, and O. Hireche, “Fortisedos: A deep
transfer learning-empowered economical denial of sustainability detec-
tion framework for cloud-native network slicing,” IEEE Transactions
on Dependable and Secure Computing, vol. 21, no. 4, pp. 2818–2835,
2024.

[16] A. Javadpour, F. Ja’fari, T. Taleb, M. Shojafar, and B. Yang, “Scema:
An sdn-oriented cost-effective edge-based mtd approach,” IEEE Trans-
actions on Information Forensics and Security, vol. 18, pp. 667–682,
2023.

[17] A. Javadpour, F. Ja’fari, T. Taleb, and M. Shojafar, “A cost-effective mtd
approach for ddos attacks in software-defined networks,” in GLOBE-
COM 2022 - 2022 IEEE Global Communications Conference, 2022, pp.
4173–4178.

