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Abstract—Given the constantly growing demand for live
streaming services, live transcoding has become compulsory
and very challenging. So far, investigations have been confined
to satisfy a huge number of users for ensuring the Quality
of Experience (QoE). The aim of this paper is to propose a
framework architecture following ESTI-NFV (Network Function
Virtualization) model [1], whereby the transcoding and streaming
Virtual Network Functions (VNFs) would be running on top
of multiple cloud domains. By respecting ESTI-NFV model, we
ensure the flexibility of our virtual delivery platform that scales
up/down and in/out relative to the changing demands of the end-
users in order to reduce cost. For this purpose, this paper presents
a new framework for managing the virtual live transcoding and
streaming VNFs on top of multiple cloud domains for ensuring
the QoE while reducing the cost. In order to develop such a
framework, we have done a set of experimental benchmarking
of transcoding and streaming VNFs using variant flavors (i.e., in
terms of CPU and Memory resources). The obtained results will
be explored later for developing an intelligent algorithm that will
be integrated with the proposed framework in managing different
transcoding and streaming VNFs in an efficient manner.

I. INTRODUCTION

In the last few years, live streaming has become extremely
popular [2]–[5], and it is expected to be insensitively used
in the near future. Real time entertainment services, such as
video and audio streaming services, are currently accounting
for more than 60% of the Internet traffic, e.g., in North
America’s fixed access networks during peak periods [6].
Until a couple of years ago, videos on the Internet were
mostly recorded by devices, edited and then uploaded to big
platforms such as Youtube and Dailymotion. Thanks to the
processing capabilities of today’s smart devices, live streaming
has become possible for everyone. Nowadays, every major
social network from Facebook to Twitter and Instagram allows
users to broadcast live videos so that their followers can watch
and interact with them in real time. Currently, the customers
demand high quality videos and better performance in terms
of bandwidth utilization from today’s broadband applications.
In order to meet subscribers’ expectations in terms of high
level of quality and performance, there is an obvious need
for an online transcoding system for live transcoding and
broadcasting.

Recent studies, given by CISCO, confirm that the data traffic
utilization has increased more than twice within the last four
years (from 2013 to 2017), whereby the online video traffic
present more than 70% of the total data traffic in the Internet
[7]. The same study expects that the online video traffic will
be around 82% of the Internet data traffic by 2020. Every

second, nearly a million minutes of video content will cross
the network by 2020 [7]. However, transcoding videos is
a challenging and time consuming process [8]–[10]. Variant
techniques of video transcoding have been reviewed in [11],
[12]. In order to improve the Quality of Experience (QoE) of
live streaming services, above all in a cost-efficient manner,
the following should be taken into account:

• Scalability; the solution must scale up/down automati-
cally to meet the users’ demands while optimizing re-
source utilization.

• Availability; the system should be available to respond to
the clients’ requests in a timely manner.

• Maintainability or the future proof technology; the system
should be easy to upgrade for supporting new types
of video resolutions, such as 4k with new codecs and
formats.

In this paper, we propose a new framework for performing
online transcoding and live streaming on top of multiple
clouds. Indeed, both online transcoding and live streaming
services will run as Virtual Network Functions (VNFs) on top
of multiple cloud domains. The use of ETSI-NFV model for
offering online transcoding and live streaming services have
manifold benefits:

• The Capital Expenditures (CAPEX) would be reduced by
eliminating the wasteful over-provisioning of hardwares
by supporting pay-as-you-grow model.

• The Operations Expenditure (OPEX) would be reduced
as per reducing the disk resource utilization and server
maintenance requirements, and as per simplifying the
management of network services.

• Agility and flexibility can be gained by scaling up/down
and in/out variant VNFs based on the changing demands
of the end-users. If there is an overwork on a VNF, the
system will, automatically, scale up/out by creating new
instance(s) for serving the overload. Otherwise, if the
VNF is underloaded, the system scale down/in and stops
few instances for reducing the cost.

Regarding the last benefit, in this paper, we have conducted a
set of real experiments for benchmarking the capability of each
flavor to perform the online transcoding and live streaming
services. The obtained results from the experiments would help
the orchestrator to make the right decisions, such as scaling
up/down and in/out, at the right time.

The remainder of this paper is organized as follows. Section
II summarizes the fundamental background topics of this work
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and discusses some related research work. An overview of
the proposed framework along with its main components is
presented in Section III. Section IV illustrates the experimental
setup and discusses the obtained results. Finally, the paper
concludes in Section V.

II. RELATED WORK

In this section, we present the literature research work
most relevant to our research work. In [13], authors have
proposed a hybrid video transcoding framework that enables
the transcoding and live streaming of on-demand videos using
cloud services by taking into account the Quality of Service
(QoS) requirements. Due to the large disk resources taken
by pre-transcoded videos, the framework reduces the required
disk resources and optimizes the cloud resource cost by
transcoding the videos in lazy manner. In [14], C. Wang et
al. proposed a solution that receives one video as input and
converts it to many qualities with more than 2x complexity
reduction. Meanwhile, the authors in [15] have proposed a
framework that is based on a load prediction model to dy-
namically allocate Virtual Machines (VM) in an Infrastructure
as a Service (IaaS) environment to transcode variant videos.
The work in [16] presents an efficient video coding encoder
adaptation scheme that takes into account QoE of all users. X.
Li et al. [17] presented a video live streaming framework that
uses the cloud service architecture to handle the transcoding of
the high video quality, using a scheduling method that meets
the QoS demands of the live streaming viewers. Authors in
[18] implemented a solution that uses the cloud infrastructure
for allocating resources dynamically, taking into account that
the users’ demands change when streaming variant videos.

Building on research work conducted in the recent literature,
the work presented in this paper explores how to maintain
online transcoding and live streaming on cloud-based systems,
based essentially on the ETSI-NFV model for improving QoE
while reducing the incurred cost [19], [20]. We also present a
testbed experiment to measure CPU utilization during online
transcoding and live streaming of videos in multiple cloud
domains.

III. PROPOSED FRAMEWORK

A. Framework overview

Fig. 1 depicts the architecture envisioned for managing
the streaming of a high number of live videos leveraging
multiple cloud domains. The proposed architecture enables the
live streaming of videos hosted on multiple cloud domains
while ensuring the network scalability and guarantying QoE.
In the proposed architecture, live adaptive bitrate streaming
technique is considered. It enables the streaming of the same
video content to users using multiple resolutions according to
their network bandwidth and device capabilities [21]. ETSI-
NFV [1] defines a reference architecture in order to create stan-
dardized solutions and ensure network scalability. The NFV
architecture also supports elasticity and flexibility for creating
different VNFs, such as virtual streaming and transcoding

servers, across multiple domains. As depicted in Fig. 1, the
proposed architecture consists of four main components:

1) Users: A set of users that would be interested in watch-
ing a set of live streaming videos from a cloud network.
These users are grouped into different sets according
to: i) Videos of interest; ii) Network bandwidth; and
iii) Features of their multimedia devices. Indeed, users
who are interested in the same video content, and
have similar network bandwidth and multimedia devices,
would be considered in the same group, and practically
will receive the same stream.

2) Cloud networks: Each cloud network is managed by a
Virtual Infrastructure Manager VIM (e.g., OpenStack)
[22]. In order to provide Virtualized Infrastructure Man-
agement functionality, the cloud networks run different
virtualization technologies (e.g., KVM, XEN or Con-
tainers - LXC or Docker) that allow the management of
different virtual resources on top of hardware resources
(e.g., Computing, Storage and Network). VIM allows the
instantiation of different VNF instances with different
virtual resources using pre-stored VNF images (e.g.
streaming or transcoding). Different resources in a cloud
network are defined through a set of flavors, whereby
each flavor represents the amount of virtual resources
(i.e. number of Virtual cores CPU, memory and storage)
that could be dedicated to a specific VNF instance. The
cost of a VNF changes according to the size of its flavor.

3) Streaming and Transcoding VNFs: The transcoding
VNFs enable the transforming of already-compressed (or
encoded) content with a specified resolution to another
compressed content with another resolution to satisfy the
requirements of a group of users in terms of network
bandwidth and multimedia device capabilities. Mean-
while, the streaming VNFs enable the live streaming of
video contents to different users while satisfying their
required QoE.

4) Global transcoder: In the proposed architecture, there
can be one or multiple global transcoders, distributed
over a specific geographical area. A global transcoder
may run on top of a physical machine (i.e., dedicated
server) or another VNF that has more powerful resources
using a bigger flavor.

5) Orchestrator: The envisioned orchestrator offers a
RESTful API that allows the administrator to specify
different management rules and policies for the instanti-
ation and auto-scaling of different VNFs (i.e., streaming
or transcoding) instances. According to the policies
and the service level agreement (SLA) received from
the administrator, the orchestrator enforces these rules
by ensuring the communication with the corresponding
VIM. The orchestrator would receive requests from
different users, then decide on how to manage the live
streaming flows between the transcoder and streamer
VNFs, from one side, and the streamer and users from
the other side.



Fig. 1. Main overview of the proposed architecture.

Fig. 2. Sequence diagram of the proposed solution.

B. Framework description

The proposed architecture adopts two protocols, namely the
Dynamic Adaptive Streaming over HTTP (DASH) and HTTP
Live Streaming (HLS) for serving variant clients [23], [24].
Both protocols ensure that the same video content will be
streamed to the end user at a variety of resolutions. Each
resolution is subdivided into small chunks of fixed time dura-
tion. The proposed framework leverages both DASH and HLS
protocols for serving large number of users over the Internet
using the HTTP protocol. Nowadays, most of cloud providers
adopt the pay-as-you-go model [25], [26], whereby a user will
pay only for the resources that he has indeed used, including
computing, memory, storage and traffic communication [27].
Therefore, for reducing the cost, the proposed solution should
use carefully the available resources in terms of network
storage, CPU and memory. The use of network storage should
be minimized as much as possible, as well as the different
VNFs should be created/launched only when they are needed
for reducing the cost. In the previous approaches, for serving
users with variant resolutions, each video is pre-transcoded to
those resolutions before the streaming process, which demands
high amounts of storage, and consequently increases the cost.
In order to overcome this problem, the proposed framework

adopts the online transcoding and live streaming of variant
videos throught the Real time Message Protocol (RTMP). The
RTMP module, integrated with FFMPEG at the transcoding
VNF, allows the generation of multiple live streaming flows
from the same video content, whereby each stream flow
refers to a specific resolution. These streaming flows would
be received by the streaming servers that are responsible
for streaming each flow to an intended group of users by
taking into account the network bandwidth and their devices’
features.

In order to reduce the cost while ensuring the QoE for
different users, an intelligent algorithm would be proposed that
will be executed at the orchestrator level. Mainly, the algorithm
would decide on the number and the location (i.e. on which
cloud network) of streaming and transcoding VNFs that should
be created in the network. Moreover, the algorithm should
select the streaming and transcoding VNFs for each video
content and resolution flow, such that the cost is minimized
and the QoE is maximized. According to the popularity of the
video, CPU, memory and network storage costs, the algorithm
decides for each video content the resolutions that should
be pre-transcoded. Fig. 2 shows the sequence diagram of
the proposed architecture. When a user is interested in a
specific live video, a request would be sent to the orchestrator.
According to the existing flow of that video, the resolution
needed by that user and the expected QoE, the orchestrator
performs the following test: If a streaming flow that meets the
user’s requirements and ensures the QoE already exists, the
orchestrator informs the concerned streaming and transcoding
VNFs, as well as the user (Fig. 2: Arrow 3). Then, the
user starts getting different chunks from the streaming and
transcoding VNFs (Fig. 2: Arrows 7 − 10). Otherwise, if the
respective streaming flow does not exist, one of the following
options would be executed (Fig. 2: Arrow 4):

1) Available CPU and memory resources: A new live
streaming flow would be created in existing streaming
and transcoding VNFs that meet the user’s requirements
and ensure QoE. Then, the orchestrator informs the



concerned streaming and transcoding VNFs, as well as
the user about the new streaming flow.

2) CPU and memory resources are unavailable: If the
CPU and memory resources are unavailable, one of the
following options will be carried out according to the
video’s popularity, CPU, memory and network storage
costs:

a) Streaming the video without live transcoding: If the
available resources, in terms of CPU and memory,
at the streaming VNFs is sufficient, as well as
the available network storage, then the orchestrator
informs the global transcoder to transcode the
video content to the desired resolution. Then, the
orchestrator will inform the concerned streaming
VNF, as well as the user about the new streaming
flow. Note that the new streaming flow needs only
packaging (no live transcoding), which consumes
too much CPU resources as will be shown in
Section IV.

b) Scaling up the streaming and/or transcoding VNFs:
The orchestrator will communicate with the VIM
in order to scale-up (add more virtual resources
in terms of CPU and memory) to the existing
streaming and transcoding VNFs in order to meet
the user’s requirements and ensure the QoE. Then,
the new streaming flow will be created in these
VNFs. Later, the orchestrator will inform the con-
cerned streaming and transcoding VNFs, as well as
the user about the new streaming flow. Note that
when a set of live streaming flows are finished, the
orchestrator can scale-down some VNFs in order
to release their resources, thereby reducing their
otherwise incurred cost.

c) Scaling out the streaming and/or transcoding
VNFs: Assigning a new set of users to the stream-
ing and transcoding VNFs that are located in far
away geographical areas can affect the QoE expe-
rienced by the users. For this reason, if the existing
streaming and transcoding VNFs cannot serve the
incoming users with the required QoE, then new
instances, that ensure QoE, should be created for
serving those users. If so, the orchestrator would
request the creation of new streaming and transcod-
ing VNFs from the VIMs of variant clouds. Then,
the orchestrator would establish communication
with the new streaming and transcoding VNFs
in order to generate the needed streaming flows
to serve those users. Moreover, the orchestrator
informs the users about their streaming flows. Note
that when the live streaming flows, created in these
VNFs, are finished, the orchestrator can delete
(scale-in) these VNFs to release the resources,
thereby reducing the cost.

In order to find the set of appropriate thresholds for the
aforementioned policies, it is essential to find the maximum

Fig. 3. Testbed experiment used for performing the performance benchmark-
ing.

number of: i) Online transcoding flows that a transcoding
VNF can process using variant flavors; ii) Live streaming
without transcoding (i.e., packaging) that a transcoding VNF
can process using different flavors. This will help us get the
appropriate aforementioned policies in a proactive manner,
thus ensuring the continuity of services.

IV. TESTBED AND EXPERIMENTAL EVALUATION

We benchmarked the streaming and transcoding VNFs by
varying both the CPU and memory resources. Our virtualized
environment is set up on a KVM Hypervisor in a dual Intel
E3 − 1231 computer node. In this setup, three flavors were
considered for benchmarking the streaming and transcoding
VNFs as detailed in Table I.

TABLE I
DEPLOYMENT FLAVORS.

Deployment Flavor Mini Small Medium
CPU 1 core 2 cores 4 cores

RAM (GB) 2 4 8

We have conducted three sets of experiments: i) video
streaming only without transcoding (i.e. Packaging); ii) video
transcoding and streaming in only one resolution; and iii)
video transcoding and streaming in two different resolutions.
The impact of the streaming and transcoding process is eval-
uated in terms of the following metrics:

• Percentage of CPU usage that shows the ability of each
flavor in handling the streaming and transcoding pro-
cesses. This metric gives the main overview on the cost
that would be incurred by the live streaming and online
transcoding in the proposed framework;

• Response time that represents the impact of streaming
and transcoding processes, using different flavors, on the
QoE.

In order to perform the benchmarking, we use the testbed
depicted in Fig. 3. The testbed consists of four VMs:

• Storage server that contains different videos that would be
streamed. The NGINX, with mod.264 enabled, software
is installed on that server for enabling live transcoding
over HTTP;



(a) 1-Core CPU and 2GB as memory. (b) 2-Core CPU and 4GB as memory. (c) 4-Core CPU and 8GB as memory.

Fig. 4. The percentage of CPU usage measured when different flavors are used for instantiating VNFs.

• Transcoder server that is responsible for the live transcod-
ing of the different stored videos with different qualities.
It is also responsible for creating different streaming flows
using the RTMP module;

• Streaming server that is responsible for streaming the
different flows to end-users;

• The streaming controller API, which is a restful web ser-
vice, that is responsible for receiving users’ requests and
forwarding them to the transcoding server. In addition, we
have developed a metric component that is installed at the
transcoding server, which is responsible for measuring the
CPU usage and the response time.

As depicted in Fig. 3, for launching the streaming and/or
transcoding process, a request is sent to the streaming con-
troller API component. The latter would then send two dif-
ferent messages: i) the first message is sent to the transcoder
server and includes the following information: a) the video
path in the storage server; b) the desired resolutions; and
c) the IP address of the streaming server (step 2); ii)
The second message launches the metric component at the
transcoding server in order to start measuring the CPU usage
and the response time (Step 3). For starting the streaming and
transcoding processes, the transcoder starts getting the required
videos from the storage server using HTTP (Steps 4 and 5).
Then, the transcoder starts forwarding the chunks to the clients
through the streaming server, using the RTMP module [28],
while the metric component simultaneously measures the CPU
usage and the response time (Steps 6 and 7).

A. Percentage of CPU usage

Fig. 4 shows the impact of streaming and transcoding
processes on the CPU usage. Figs. 4(a), 4(b), and 4(c) depict
the CPU utilization when the Mini, Small, and Medium flavors
are used, respectively. The first observation that can be drawn
from these figures is that the live transcoding and streaming
process requires too much resources (i.e., CPU and memory)
in comparison to when performing only online live streaming
(i.e., packaging). For example, it is possible to stream up to
60 videos using only one CPU-core and 2 GB as memory
as depicted in Fig. 4(a). Using the same flavor, it is not
possible to transcode live more than 5 videos with one or
two resolutions. As shown in Figs. 4(b) and 4(c), 90 and 170

stream flows could be successfully created using the 1st and
2nd VM flavor, respectively. In contrast, it was not possible
to transcode live more than 5 and 10 videos for one or two
resolutions using the 1st flavor and the 2nd flavor, respectively.
The figure also reveals the fact that the transcoding operation
of the same video to one or two resolutions requires almost
the same amount of resources in terms of CPU usage. This
is mainly attributable to the fact that for performing live
transcoding, FFMPEG needs to decode and encode videos
again. The decoding process requires more CPU resources
than the encoding. For transcoding the same video into two
different resolutions, FFMEG needs only one decoding and
two encoding processes. For this reason, transcoding to one
or two resolutions exhibit similar performance.

B. QoE and response time

Fig. 5 shows the impact of the streaming and transcoding
processes on QoE and the response time. Figs. 5(a), 5(b), and
5(c) show the response time when using one CPU-core and
2 GB as memory, 2 CPU-cores and 4 GB as memory, and
4 CPU-cores and 8 GB as memory, respectively. From this
figure, we observe that the response time when performing
only the live streaming (packaging) process is intuitively better
than when performing both live transcoding and streaming
processes. For example, as depicted in Fig. 5(a), for one CPU-
core and 2 GB as memory, while the response time does not
exceed 4400 milliseconds when the live streaming process
is performed, it exceeds 6400 milliseconds when both the
live transcoding and streaming processes are performed. We
also observe that the VNF’s resource has a positive impact
on the response time. Clearly, the higher a VNF’s resources
are, the better the response time becomes. Moreover, from
these figures, we observe that the gaps between performing
only the live streaming process and performing both live
transcoding and streaming process is reduced by increasing
the amount of CPU and memory resources used by VNFs.
As depicted in Fig. 5(a) and Fig. 5(c), the gap is reduced
from 1850 milliseconds to 350 milliseconds when using the
3rd configuration (i.e., 4 CPU-cores and 8GB as memory)
instead of the 2nd configuration (i.e., One CPU-core and 2GB
as memory).
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Fig. 5. The response time measured when different flavors are used to instantiate VNFs.

V. CONCLUSION

In this paper, we proposed a framework that allows live
transcoding and streaming on top of multiple cloud domains
for ensuring high QoE while reducing the cost. We have
also benchmarked the streaming and transcoding VNFs by
varying both CPU and memory resources. The benchmarking
results will help for making the right decisions about scaling
up/out and down/in different streaming and transcoding VNFs
to reduce the cost and to ensure QoE. In the near future,
We plan to use the obtained results to devise an intelligent
algorithm for delivering different policies at the orchestrator.
The algorithm will leverage different optimization techniques,
including game theory, linear integer programing and convex
optimization, for making the right decisions.
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