
Service-Aware Network Function Placement for
Efficient Traffic Handling in Carrier Cloud

Miloud Bagaa∗, Tarik Taleb§ and Adlen Ksentini‡
∗ Department of Theories and Computer Engineering, CERIST, Algiers, Algeria. Email:bagaa@mail.cerist.dz

§ NEC Europe Heidelberg, Germany. Email: taleb@ieee.org
‡ IRISA, University of Rennes 1, Rennes, France Email: adlen.ksentini@irisa.fr

Abstract—Carrier Cloud is a promising concept towards the
decentralization of mobile networks, to, in turn, alleviate mobile
traffic load and reduce mobile operator cost. Carrier cloud
is enabled by two main approaches, namely virtualization of
the mobile network functions and networking over federated
cloud. For intelligent carrier cloud dimensioning, the placement
of mobile network functions over federated cloud is of vital
importance. In this vein, this paper argues the need for adopting
service/application type and requirements as metrics for (i)
creating virtual instances of the Packet Data Network Gateways
(PDN-GW) and (ii) selecting adequate virtual PDN-GWs for User
Equipment receiving specific application type. After modeling this
procedure as a nonlinear Optimization Problem and proving it
as a NP-hard problem, we propose three solutions to solve it. The
proposed solutions are evaluated through computer simulations
and encouraging results are obtained.

Index Terms—Carrier Cloud, Mobile Cloud, Mobile Networks,
Network Function Virtualization, Load Balancing.

I. INTRODUCTION

Building mobile networks, on demand and in an elastic

manner, represents a vital solution for mobile operators to

cope with the modest Average Revenues per User (ARPU)

and the ever-increasing mobile data traffic. The key enabler

of such elasticity is the virtualization of the mobile network

functions, and the allowing of mobile networks through car-

rier cloud. The concept of carrier cloud is perceived as an

important long-term solution for mobile operators to cope

with the tremendous increase in their mobile data traffic and

to get into the cloud computing area, seeking new business

opportunities and defining new business models and strategies.

As an important enabler of the carrier cloud concept, network

function virtualization (NFV) is gaining great attention among

industries. NFV aims for decoupling the software part from the

hardware part of a carrier network node, traditionally referring

to a dedicated hardware, single service and single-tenant box,

and that is using virtual hardware abstraction [1]. Network

functions become thus a mere code, runnable on a particular,

preferably any, operating system and on top of a dedicated

hardware platform. The ultimate objective is to run network

functions as software in standard virtual machines (VMs) on

top of a virtualization platform in a general purpose multi-

service multi-tenant node (e.g., Carrier Grade Blade Server).

A suitable Software Defined Networking (SDN) technology

can be used to interwork between the different virtualized

network functions on the different VMs within the same data

center or across multiple data centers, to ultimately realize

a flexible, dynamic, rapidly deployable, and elastic mobile

network on the cloud. It is important to note that SDN is

considered as complementary technology, network function

can be virtualized and deployed without SDN.

To create an efficient carrier cloud that meets the general

requirements of a mobile operator, the placement of network

functions, namely the mobile Radio Access Network (RAN)

functions, the mobile core network functions, and the caches or

servers for the Packet Data Network, is of utmost importance

and shall be based on different metrics such as application

type, data center location, data center load, end-to-end Quality

of Service (QoS)/Quality of Experience (QoE), that shall

render the overall end-to-end communications optimal [2].

The objective of this paper is to propose a new algorithm to

create virtual instance of the PDN-GW network functionality

and its placement in the federated cloud. The number of PDN-
GW and the adequate selection of the PDN-GW to UEs are

not only based on the geographical location but also on the

application type and the traffic load balancing. The number of

PDN-GW for each traffic type would be reduced as much

as possible, to reduce the cost of network operator, while

ensuing user QoE. The process of creating PDN-GW and

affecting these virtual instances to each UE is modeled in

this paper through a nonlinear Optimization Problem (OP),

where it is proved as an NP-hard problem. Accordingly, we

proposed three heuristics to solve it, namely: Optimal Network

Function Placement for Load Balancing Traffic Handling

(ONPL), Greedy and Repeated Greedy algorithms.

The reminder of this paper is organized in the following

way. Sections II is dedicated to related works on mobile

network decentralization and the concept of carrier cloud.

In section III we present the nonlinear optimization model

of the PDN-GW instantiation and their assignment to UEs.

This section includes also the details of the three proposed

heuristics. Section IV presents the simulation results. Finally,

we conclude this paper in Section V.

II. RELATED WORK

Due to the high increase in mobile data traffic, there

is a general trend towards the decentralization of mobile

operator networks. Decentralization will enable network op-

erator to implement cost-effective methods to accommodate

the increasing mobile traffic. Usually, there is a fundamental

IEEE WCNC'14 Track 3 (Mobile and Wireless Networks)

978-1-4799-3083-8/14/$31.00 ©2014IEEE 2402

technology and cost related trade-off behind the adoption of

either centralized or decentralized network architecture. Costly

network equipment are usually shared, creating centralized

architectures. This was the case in the initial phase of 3G

deployment, wherein a centralized architecture was chosen to

share core network utilities and processing resources, while

keeping the base station cost low [3]. However, the evolution

of computer technology has significantly reduced equipment

costs, advancing their deployment flexibility. Therefore, it is

possible to implement cost-effective network decentralization

by placing small-scale network nodes with mobility and IP

access functionalities towards the network edge. Such decen-

tralization architecture opens up a new way to further reduce

data traffic either by using techniques like data offloads while

accommodating user QoE, or by selecting the anchor gateway

not only based on geographical location but also by using

application type and requirement. Beside the standardized

Selected IP Traffic Offload (SIPTO) and Local IP Access

(LIPA) concepts, which were introduced by the SA2 3GPP
group, there are different solutions that addressed the data

offload issue. In [4] the authors proposed a traffic upload

technique for cellular architecture, which includes Home eN-

odeB (HeNodeB) heterogeneous access cells. Based on SIPTO
architecture, they proposed to implement a Traffic Offload

Function (TOF) on both H(e)Nodes (Home eNodeB) gateway

and H(e)NodeBs. In [5] the authors presented the Bearer Based

Offload Mechanism In the Core Network (B2OMICN) mech-

anism. The TOF used in B2OMICN is based on the bearer

information, such as APN (Access Point Name), destination

IP, address range and port number, and implemented at the

PDN-GW level. In [6] the authors presented Dynamic SIPTO
mechanism, which combines the Fast Fourrier Transform

(FFT) based IP traffic classification with the dynamic traffic

offload path selection algorithm. The FFT technique is used

to classify the traffic and according to the QoS of each

traffic a dynamic offload path is selected. Another way to

identify the traffic is by using a DNS server as presented in

[7]. According to the requested application, the DNS server

informs a UE of the gateway (offloading point) to connect to

for establishing a connection. The gateway selection is solely

based on the geographical proximity of the UE to the gateway

and the gateway load. Unlike the precedent solutions which

are based on SIPTO architecture, the authors in [8] presented a

generic data offloading solution, which requires that a UE can

support multi-PDN connections. The proposed solution aims

at enabling a UE to know how and when to establish a new

optimized PDN connection for launching new IP sessions to

a particular APN, while avoiding compromising the ongoing

PDN connection for the same APN.

In most of the above mentioned offload solutions, the gateway

selection is only based on geographical proximity and/or

load, which is not sufficient [9]. Accordingly, the authors

in [9] proposed a new PDN gateway selection, which in

addition to load balancing and geographical/topological prox-

imity considers end-to-end connection optimization and/or the

application type. Indeed, certain type of application requires

specific functionalities, such as content caches or machine type

communication service, which are available only at certain

PDN-GW.

Meanwhile, network decentralization can benefit with the

virtualization of mobile network functions and the enabling of

carrier cloud networking, where a mobile networks are created

on demand and in a flexible manner. However, an efficient

decentralized mobile network cannot be built without efficient

algorithms for the placement of network function over the

federated cloud. In [10] the authors propose a network function

placement, particularly for creating mobile gateway function-

alities (Serving Gateway - (S-GW)) and their placement in the

federated cloud. To create these virtual instances and hence

building the Serving Area planning, the authors considered

gateway relocation as metric. In other words, the aim is to find

a trade-off between minimizing the UE handoff between SA,

and minimizing the number of created instance of the virtual

S-GW. In the present paper, we address the network placement

and instantiation of another mobile network functionality,

which is data anchoring or P-GW creation/selection.

III. PROPOSED SOLUTION

A. Notations

The notations used throughout the paper are summarized in

Table I.

Notation Description
M Number of traffics types in the network.
UE User equipment.

PDN-GW Packet data network gateway.
UEi UE whose identifier is i.

PGWk(i) PDN-GW of UEi for traffic k
PAk(i) Set of UEs that select the same PDN-GW

for traffic k. Also, PAk(i) is called PDN
Area i for traffic k.

SPAk Set of PAk(i) that use the same
traffic k. Formally, SPAk =
{PAk(1), PAk(2), · · · }, where
∀i �= j, PAk(i) ∩ PAk(j) = ∅

nPGWk Number of PDN-GW created in the network
to manage traffic k. In other word, nPGWk

is the number of PAk(i) in SPAk . For-
mally, nPGWk =| SPAk |.

λk(i) The amount of traffic k generated by UEi

during a period of time.
μk(i) The amount of traffic k generated by a

PAk(i) during a period of time. Formally,
μk(i) =

∑

UEj∈PAk(i)

λk(j).

Nk Number of UEs that use traffic k. Formally,
Nk =

∑

PAk(i)∈SPAk

| PAk(i) |.

PGWMAXk

the maximum capacity of PGWk to handle
the traffic of type k generated by the UEs.

TABLE I: Notations

B. Problem formulation

Let us we assume that there are M APN, where each

APN gives access to one or several services/applications.

Therefore, M PDN-GW types would be considered to satisfy

UEs requests, wherein each PDN-GW is associated to an APN.

Based on the analysis of the traffic generated by each UE
in the past, we assume that we can predict: (i) the number

of UEs which are interested by each traffic k and hence the

IEEE WCNC'14 Track 3 (Mobile and Wireless Networks)

2403

APN name; (ii) the amount of traffic generated by an UE for

each type of traffic. Let us we denote by Nk the number of

UEs which are interested by traffic k and λk(i) the amount

of traffics of type k generated by UEi, during a period of

time. Further, we assume that each PDN-GW has a maximum

capacity (PGWMAXk), in terms of supported amount of

traffic to handle. Each UE can generate one or several type

of traffic (noted k). Accordingly, the proposed solution aims

to instantiate the number of PDN-GW that supports traffic

k (noted PGWk), and select the adequate virtual PDN-GW
to be used by each UEs. The objective of the proposed

solution is to reduce the cost of network operator and increase

the network performance. The cost reduction is achieved by:

(i) decreasing the number of virtual PDN-GW per type of

traffic to create nPGWk, while ensuring high user QoE ; (ii)
ensuring load balancing between PGWk, such as each PGWk

would manage the same amount of traffics.

To represent the affectation of each PDN-GWs supporting

traffic k (PGWk) to UEs, we use a binary symmetric matrix

(Nk × Nk) called adj(PGWk). An element in adj(PGWk)
denotes the case whether or not two UEs are using the same

PDN-GWk(u) for a specific traffic type k.

adji,j(PGWk) =

{
1 if PGWk(i) = PGWk(j) ∨ i = j
0 Otherwise

(1)

Let PGWMAXk is the maximum capacity of PGWk to
handle the traffic generated by the UEs. Let ψk a vector rep-

resented as follows: ψk = (λk(1), · · · , λk(Nk)). We denote

by Zk the capacity vector of PGWk. Formally, Zk is defined

as follows:

Zk = (zk(1), · · · , zk(Nk)) = ψk × adj(PGWk)
i.e.,

for i = 1 · · ·Nk, zk(i) =
Nk∑
j=1

λk(j)× adji,j(PGWk)

Each zk(i) denotes the traffic load of a PAk. The redundancy

in adj(PGWk) creates also a redundancy in zk(i), and hence

the number of PGWk is lower or equals to the number of

elements in Zk. Although it may exist two UEs i and j
with i �= j, it is possible that zk(i) and zk(j) represent the

traffic load of the same PGWk. This means that UEs i and

j are using the same PGWk. Since the proposed solution

objective is to ensure the constraint: ∀i ∈ {1, · · ·Nk}, zk(i) ≤
PGWMAXk, therefore the proposed solution is formulated

into an optimization problem (OP) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Objectives: max
Nk∑
i=1

Nk∑
j=1

adji,j(PGWk)

min
Nk∑
i=1

Nk∑
j=i+1

| zk(i)− zk(j) |
Constraints:

for i = 1 · · ·Nk, zk(i) =
Nk∑
j=1

λk(j)× adji,j(PGWk)

for i = 1 · · ·Nk, zk(i) ≤ PGWMAXk

for i, j = 1 · · ·Nk, adji,j(PGWk) ∈ {0, 1}
for i, j = 1 · · ·Nk, adji,j(PGWk) = adjj,i(PGWk)
for i, j, l = 1 · · ·Nk, adji,j(PGWk)× adji,l(PGWk) =

i �= j �= l adjj,i(PGWk)× adjj,l(PGWk)
(2)

The first objective aims to increase as much as possible the

number of UEs using the same PGWk. This reflects the fact

that reducing the number of virtual instance of PDN-GW (i.e.,

number of PAk), and hence the operator cost. The second

objective addresses the load balancing between PGWk, by

reducing the euclidean distances between the traffics handled

by the PGWks. It is important to note that since the euclidean

distances between the same PGWk is zero, the redundancy

in Zk does not have an impact on the second objective.

Meanwhile, the constraints in OP are used to ensure the

following statements:

1) Constraints 1 and 2: Ensure that each PGWk is affected

to UEs while its maximum capacity is not exceeded.

2) Constraint 3: Ensures that adji,j(PGWk) is a binary

matrix.

3) Constraint 4: Ensures that adji,j(PGWk) is a symmetric

matrix.

4) Constraint 5: Ensures the transitivity in adji,j(PGWk).
If there is three, u, v and w, such that adju,v(PGWk) =
1 and adju,w(PGWk) = 1, then adjv,w(PGWk)
and adjw,v(PGWk) should be 1 (i.e., {u, v, w} ⊆
PAk(i)). In constraint 5, if adju,v(PGWk) = 1
and adjv,u(PGWk) = 1, then u and v should have

the same relation with other UEs in adj(PGWk)
(i.e., line adju(PGWk) equals to line adjv(PGWk) in

adj(PGWk)).

The OP formulated in inequality 2 becomes a multi-objectives

nonlinear OP. The aim is to maximize the number of UEs that

use the same PGWk and minimize the traffics difference be-

tween PGWks (load balancing). Usually, it is more practical to

resolve an OP that aims to minimize (resp., maximize) all the

objectives. For this reason, in what follows we will reformulate

the OP presented in inequality 2. The maximization of number

of UEs that use the same PGWk is equivalent to reduce the

number of UEs that do not use the same PGWk. In other

word, we aim to minimize the number of zero in adj(PGWk).
Moreover, to remove absolute value in the objective, Least

absolute deviations is used, which adds two constraints to the

OP. This latter can be simplified as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Objectives: min
Nk∑
i=1

Nk∑
j=1

1− adji,j(PGWk)

min
Nk∑
i=1

Nk∑
j=i+1

Tk(i, j)

Constraints:

for i = 1 · · ·Nk, zk(i) =
Nk∑
j=1

λk(j)× adji,j(PGWk)

for i = 1 · · ·Nk, zk(i) ≤ PGWMAXk

for i, j = 1 · · ·Nk, adji,j(PGWk) ∈ {0, 1}
for i, j = 1 · · ·Nk, adji,j(PGWk) = adjj,i(PGWk)
for i, j, l = 1 · · ·Nk, adji,j(PGWk)× adji,l(PGWk) =

i �= j �= l adjj,i(PGWk)× adjj,l(PGWk)
for i = 1 · · ·Nk and j > i, Tk(i, j) ≥ zk(i)− zk(j)
for i = 1 · · ·Nk and j > i, Tk(i, j) ≥ −(zk(i)− zk(j))

(3)

The OP presented in inequality 3, can be simplified by

reducing the number of objectives to one by using weighted-

sum technique. To do so two parameters, α ∈]0, 1] and

IEEE WCNC'14 Track 3 (Mobile and Wireless Networks)

2404

β ∈]0, 1], are added. If these parameters are fixed, then a

priority between the two objectives is introduced. Otherwise,

an optimal solution will be achieved for any α and β values.

The OP presented in inequality 3, can be reformulated as

follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Objective: min α×
Nk∑
i=1

Nk∑
j=1

1− adji,j(PGWk)

+ β ×
Nk∑
i=1

Nk∑
j=i+1

Tk(i, j)

Constraints:

for i = 1 · · ·Nk, zk(i) =
Nk∑
j=1

λk(j)× adji,j(PGWk)

for i = 1 · · ·Nk, zk(i) ≤ PGWMAXk

for i, j = 1 · · ·Nk, adji,j(PGWk) ∈ {0, 1}
for i, j = 1 · · ·Nk, adji,j(PGWk) = adjj,i(PGWk)
for i, j, l = 1 · · ·Nk, adji,j(PGWk)× adji,l(PGWk) =

i �= j �= l adjj,i(PGWk)× adjj,l(PGWk)
for i = 1 · · ·Nk and j > i, Tk(i, j) ≥ zk(i)− zk(j)
for i = 1 · · ·Nk and j > i, Tk(i, j) ≥ −(zk(i)− zk(j))
α > 0
α ≤ 1
β > 0
β ≤ 1

(4)

Algorithm 1 ONPL solution: PDN-GW planing algorithm

Input:
L = {UEk(1) · · ·UEk(Nk)}: set of UEs that use

traffic k.
ψk = {λk(1) · · ·λk(Nk)}: the amount of UEs’

traffic k.
Output:

SPAk: planning of PAk .
nPGWk: number of PDN-GW k.

1: nPGWk = Nk;
2: for all i ∈ {1 · · ·Nk} do
3: PAk(i) = {UEk(i)};

4: μk(i) = λk(i);
5: end for
6: SPAk = {PAk(1) · · ·PAk(Nk)};
7: while True do
8: PAk(i) = Min(SPAk);

9: PAk(j) = Min(SPAk − {PAk(i)});

10: UEu = MinUE(PAk(i));
11: if μk(j) + λk(u) > PGWMAXk then
12: Break;
13: end if
14: PAk(j) = PAk(j) ∪ {UEu};

15: PAk(i) = PAk(i)− {UEu};

16: μk(j) = μk(j) + λk(u);

17: μk(i) = μk(i)− λk(u);
18: if PAk(i) == ∅ then
19: SPAk = SPAk − PAk(i);

20: nPGWk = nPGWk − 1;
21: end if
22: end while

C. Algorithms for PGWk planing

For each kind of traffic k, the number of variables in OP

4 equals to (Nk)
2 + Nk×(Nk−1)

2 + Nk and the number of

constraints equals to (Nk)
2 × (Nk − 1). In order to resolve

OP 4, we have reduced the number of variables to N2
k by

exploiting symmetric feature of adj(PGWk). Accordingly,

the complexity of existing algorithms that can resolve this

optimization problem is exponential. Usually the number of

UEs (i.e., NbUE) in the mobile network is very high, it can

exceed one million. By consequence, resolving the OP 4 using

an exact solution is NP-Hard.

In order to resolve the OP 4, we propose three heuristics:

(i) Optimal Network Function Placement for Load Balancing

Traffic Handling (i.e., ONPL); (ii) Greedy (i.e., GR); (iii)
Repeated Greedy (i.e., RGR).

1) ONPL: The different steps of ONPL are depicted

in Algorithm 1. The ONPL will be executed for each

traffic k to assign a set of PDN-GW (i.e., PGWk) to

UEs. For each traffic k, ONPL generates SPAk =
{PAk(1), PAk(2), · · ·PAk(nPGWk)}, where PAk(i) is a

set of UEs managed by the same PDN-GW. To construct

SPAk, ONPL first starts by an inefficient solution, in which

each PGWk is selected only by one UE i.e., ∀i, | PAk(i) |=
1 (Algorithm 1: Lines 1−6). Afterward, ONPL is executed in

iterations, in each one ONLP is improved and then converges

to the optimal solution. In each iteration the number of PDN-

GW (i.e., nPGWk) is decreased while ensuring the load

balancing. Function Min(), in Algorithm 1 line 8, allows to

select PAk(i) that has the smallest μk(i), whereas function

MinUE() in line 10 allows to select UEu that has the smallest

λk(u) from PAk(i). To reduce nPGWk, ONPL is executed

in iterations, in each one ONPL aims to remove PAk(i) that

has the smallest amount of traffic by distributing its UEs over

other PAk. To ensure the load balancing between PAk in

SPAk − PAk(i), in each iteration, ONPL moves UEu from

PAk(i) that has the smallest amount of traffic to another PAk

that has the smallest amount of traffic in SPAk−PAk(i). To

do so, ONPL, from SPAk, selects PAk(i) and PAk(j) that

have the smallest amount of traffic μk(i) and μk(j) (Algorithm

1: Lines 8− 9), respectively. And then, UEu is selected from

PAk(i) as the UE which has the smallest amount of traffic

λk(u) (Algorithm 1: Line 10). A test is done on λk(u) and

μk(j). If μk(j)+λk(i) ≤ PGWMAXk, UEu will be moved

from PAk(i) to PAk(j) (Algorithm 1: Line 14−15). Also, the

amount of traffic μk(j) (resp., μk(i)) will be increased (resp.,

decreased) by λk(u) (Algorithm 1: Lines: 16−17). If PAk(i)
is empty, it will be removed from SPAk, as well as nPGWk

will be decreased. Otherwise, μk(i)+μk(j) > PGWMAXk,

ONPL cannot reduce more the number of PAk i.e., the best

solution is achieved for traffic k.

2) Greedy: Algorithm 2 illustrates the different steps of the

greedy solution. Similarly to ONPL, the greedy solution will

be executed for each kind of traffic k to generate SPAk =
{PAk(1), PAk(2), · · ·PAk(nPGWk} and nPGWk. Initially,

there is no PDN-GW in the network, and then the following

tasks will be done: (i) nPGWk is initialized to zero (Al-

gorithm 2: Line 1) and its traffic amount (i.e., μk(1)) with

zero (Algorithm 2: Line 3); (ii) the first PAk is created

and initialized with empty set (Algorithm 2: Line 4); (iii)
SPAk is created and initialized by the first PAk (Algorithm

2: Line 5). Afterwards, the UE in L will be pushed on PAk

while ensuring that the maximum capacity of PGWk (i.e.,

PGWMAXk) is not exceeded (Algorithm 2: Lines 14− 15).

Otherwise, a new PAk is created and pushed on SPAk, as

IEEE WCNC'14 Track 3 (Mobile and Wireless Networks)

2405

 0

 2

 4

 6

 8

 10

 12

 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 n

P
G

W
k

Number of UEs

Optimal solution

ONPL

GR

RGR

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 35 40 45 50

E
uc

lid
ea

n
di

st
an

ce
 b

et
w

ee
n

P
A

k

Number of UEs

Optimal solution

ONPL

GR

RGR

(b)

Fig. 1: Comparison between proposed algorithms and the optimal solution

well as nPGWk is increased (Algorithm 2: Lines 7 − 13).

When all UEs are processed, the best solution is achieved for

traffic k.

Algorithm 2 Greedy solution: PDN-GW planing algorithm

Input:
L = {UEk(1) · · ·UEk(Nk)}: set of UEs that use

traffic k.
ψk = {λk(1) · · ·λk(Nk)}: the amount of UEs’

traffic k.
Output:

SPAk: planning of PAk .
nPGWk: number of PDN-GW k.

1: nPGWk = 0;

2: i = 1;

3: μk(i) = 0;

4: PAk(i) = {};

5: SPAk = {PAk(i)};
6: for all UE ∈ L do
7: if μk(i) + λk(UE) > PGWMAXk then
8: nPGWk = nPGWk + 1;

9: i = i + 1;

10: μk(i) = 0;

11: PAk(i) = {};

12: SPAk = SPAk ∪ PAk(i);
13: end if
14: μk(i) = μk(i) + λk(UE);

15: PAk(i) = PAk(i) ∪ UE;
16: end for

3) Repeated Greedy: Repeated greedy solution (i.e.,

RGR) is an enhancement of the greedy solution. To

generate SPAk = {PAk(1), PAk(2), · · ·PAk(nPGWk)}
and nPGWk, repeated greedy executes greedy algorithm

Nk times through circular permutation. In each one i,
greedy algorithm is executed with a new arranging of

UEs (i.e., Li). Initially, L1 equals {UEk(1), · · ·UEk(Nk)},
then the second UE in L2, it is shifted left i.e.,

L2 = {UEk(2), · · ·UEk(Nk), UEk(N1)}. Last but not least,

LNk
= {UEk(Nk), UEk(1) · · · , UEk(NNk−1)} is the last set

of UEs which is considered. The best solution is selected from

the greedy algorithm results as the one which generates the

lowest number of PDN-GW (it has the lowest nPGWk). If

a tie, more than one greedy solution which have the lowest

nPGWk, the best solution is selected as the one which creates

less euclidean distance between PAks.

IV. PERFORMANCE EVOLUTION

The proposed heuristics (i.e., ONLP, GR and RGR) are

evaluated through computer simulation. To show the efficiency

of the proposed schemes, we compare their performances

with the optimal (or exact) solution. The performances of

the optimal solution are obtained by resolving OP 4 through

Mathematica [11] software. Due to the complexity of OP 4,

during our experiments, the number of UEs does not exceed 50
in the optimal solution. The proposed schemes and the optimal

solutions are evaluated in terms of the following metrics:

• Required number of PDN-GW: This metric reports the

number of PAk (i.e., nPGWk) that should be created to

satisfy all UEs in the network.

• Euclidean distances between PAks: This metric reports

the load balancing between the PDN-GW in the network

to ensure QoS and QoE for users. It is defined as the

average euclidean distance between μks. If the euclidean

distance between PAks is higher, then there is some

PAks in the network which are overloaded than the

others.

The algorithms evaluation is performed by varying the

number of UEs in the network and traffic types. During the

experiments, the amount of traffic of each UE is selected ran-

domly from 1 and 10 Mega Bytes (MB). We conduct two sets

of experiments: firstly, the proposed solutions are compared to

the optimal one by varying the number of UEs until 50, while

considering only one type of traffic. PGWMAXk of consid-

ered traffic is fixed to 30 MB. Secondly, only a comparison

between the proposed solutions is done by considering three

kinds of traffic and varying the number of UEs until 20000.

PGWMAXk values of considered traffic are fixed to 30, 100
and 1000 MB, respectively.

A. Required number of PDN-GW

Fig. 1(a) shows a comparison of the proposed schemes with

the optimal solution in terms of required number of PDN-
GW. The first observation we can draw from Fig. 1(a) is

that the proposed solutions have performances near to the

optimal one. Greedy and repeated greedy solutions slightly

outperform ONPL one. In all the solutions, we note that the

number of required PGWk is proportional to the number

of UEs. This is intuitive as the PGWk has a maximum

capacity, and increasing the number of UEs involves the need

for more PGWk instances to handle the generated traffic.

The same trend is seen in Fig. 2(a), which compares the

performance of only the proposed solutions when increasing

IEEE WCNC'14 Track 3 (Mobile and Wireless Networks)

2406

 1

 10

 100

 1000

 10000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

N
um

be
r

of
 n

P
G

W
k

Number of UEs

ONPL: PGWMAXk = 1000
GR: PGWMAXk = 1000

RGR: PGWMAXk = 1000
ONPL: PGWMAXk = 100

GR: PGWMAXk = 100
RGR: PGWMAXk = 100
ONPL: PGWMAXk = 30

GR: PGWMAXk = 30
RGR: PGWMAXk = 30

(a)

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

E
uc

lid
ea

n
di

st
an

ce
 b

et
w

ee
n

P
A

k

Number of UEs

ONPL: PGWMAXk = 1000
GR: PGWMAXk = 1000

RGR: PGWMAXk = 1000
ONPL: PGWMAXk = 100

GR: PGWMAXk = 100
RGR: PGWMAXk = 100
ONPL: PGWMAXk = 30

GR: PGWMAXk = 30
RGR: PGWMAXk = 30

(b)

Fig. 2: Comparison between proposed solutions

the number of UEs more than 50 and for different values

PGWMAXk. We recall that the exact solution is obtained

only when the number of UEs is less than 50. We observe

that augmenting the number of UEs leads to increase the

number of virtual instance of PDN-GW. But, the number of

required PGWk is inversely proportional to PGWMAXk

value, which is logical as augmenting PDN-GW capacity has

a positive impact on the number of UEs supported by each

PDN-GW. Moreover, we see in Fig. 2(a) that the Greedy

and repeated greedy solutions slightly enhance ONPL when

PGWMAXk = 30 MB. However, all the proposed heuristics

have the same performances when PGWMAXk = 100 MB

or PGWMAXk = 1000 MB.

B. Euclidean distances between PAks

Fig. 1(b) and Fig. 2(b) illustrate the load balancing between

the PDN-GW as a function of UEs. Note that in Fig. 2(b), we

used a logarithmic scale to represent the y axe (Eucledian

distance). We clearly remark from these two figures that the

capacity of the PDN-GW has a direct impact on the Eucledian

distance and hence on the load balancing metric. In fact,

increasing of PGWMAXk (i.e., the capacity of PGWk)

leads to reduce the number of PDN-GW required by the

network, which has a negative impact on the distribution of

the traffic load among the PDN-GW instances. This is well

confirmed in Fig. 2(b) for the case of Greedy algorithm.

In this algorithm, a worst performance are achieved when

PGWMAXk has a higher value. Moreover we notice that

the performances of the repeated greedy solution is near

to the optimal one when UEs number is less than 50, and

outperforms the other solutions for high number of UEs. We

argue this by the fact that the repeated greedy solution is able

to find near optimal solution as it is repeated N times, which

allows it to explore different solutions and select the best one,

which is not the case of the two others solutions.

V. CONCLUSION

In this paper we have presented one of the important

component of the carrier cloud vision, as to know Network

Virtualization Function. We focused on the data anchor (PDN-
GW) virtualization, and more specifically on how instantiating

and assigning the virtual PDN-GW to UEs. Rather than

using only geographical location, we proposed to consider

applications/services type when selecting a PDN-GW to UEs.

We modeled this process through a nonlinear optimization

problem and showed that the optimal solution is NP-hard.

Accordingly, we proposed three heuristics to deal with this is-

sue. Simulation results have proved that the proposed schemes

have a performance near to the optimal one, in terms of two

objectives: (i) the created number of virtual PDN-GW; (ii)
ensuring fair load balancing among these PDN-GW. The first

one is for reducing the operator costs, and the second objective

is for ensuring high QoS/QoE for users.

ACKNOWLEDGMENT

The research work presented in this paper is conducted as

part of the Mobile Cloud Networking project, funded from

the European Union Seventh Framework Program under grant

agreement number [318109].

REFERENCES

[1] Authored by network operators, “Network Functions Virtualization: An
Introduction, Benefits, Enablers, Challenges, & Call for Action,” Oct.
2012

[2] T. Taleb and A. Ksentini, “Follow Me Cloud: Interworking Federated
Clouds & Distributed Mobile Networks,” to appear in IEEE Network
Magazine.

[3] P. Bosch, L. Samuel, S. Mullender, P. Polakos, and G. Rittenhouse, “Flat
Cellular (UMTS) Networks”, in Proc. IEEE WCNC Hong Kong, Mar
2007.

[4] J. Roh, Y. Ji, YG. Lee, T. Ahn, “Femtocell traffic offload scheme for core
networks”, in Proc. IFIP International Conference on new Technologies,
mobility and security, Paris, France, 2011.

[5] L. Ma, W. Li, “Traffic offload mechanism in EPC based on bearer type”,
Internationale Conference on Wireless Communications, networking and
Mobile Computing (WiCOM), Wuhan, China, 2011.

[6] H. Han, Y. Han, Y. Zhou, L. Huang, M. Qian, J. Hu, J. Shi, “FFT
traffic classification-based dynamic selected IP traffic offload mechanism
for LTE HeNB networks”, Springer Mobile Network Application, doi
10.007/s11036-012-0426-7.

[7] T. Taleb, K. Samdanis, S. Schmid, “DNS-based solution for operator con-
trol of selected IP traffic offload”, in Proc. IEEE International Conference
on Communications (ICC), Kyoto, Japan, 2011.

[8] T. Taleb, Y. Hadjadj-Aoul, and S. Schmid, “Geographical Location and
Load based Gateway Selection for Optimal Traffic Offload in Mobile
Networks,” in Proc. IFIP Networking, Valencia, Spain, May 2011.

[9] T. Taleb and A. Ksentini, “On Efficient Data Anchor Point Selection
in Distributed Mobile Networks,” in Proc. IEEE ICC 2013, Budapest,
Hungary, Jun. 2013.

[10] T. Taleb and A. Ksentini, “Gateway Relocation Avoidance-Aware Net-
work Function Placement in Carrier Cloud”, in Proc. ACM MSWIM,
Barcelona, Nov. 2013.

[11] Wolfram Mathematica Ver 9. [Online]. Available:
http://reference.wolfram.com/mathematica/guide/Mathematica.html.

IEEE WCNC'14 Track 3 (Mobile and Wireless Networks)

2407

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

