
MIRA!: An SDN-based Framework for
Cross-Domain Fast Migration of Ultra-Low Latency

5G Services
Rami Akrem Addad1, Diego Leonel Cadette Dutra2, Tarik Taleb1, Miloud Bagaa1

and Hannu Flinck3
1 Aalto University, Espoo, Finland

2 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
3 Nokia Bell Labs, Espoo, Finland

Abstract—Given the constantly growing demand for inter-
data-center services that 5G networks are bringing, live mi-
gration has become a covet and very challenging technology.
Meanwhile, the emergence of Software Defined Networking
(SDN) and Network Function Virtualization (NFV) technologies
has completely transformed modern networks by offering more
flexibility and at the same time more complexity. So far, investiga-
tions have been confined to integrating the live migration process
with SDN/NFV paradigms in order to ensure the desired Quality
of Experience (QoE). However, the simple integration is not
sufficient to handle unexpected cases such as resources’ unavail-
ability, networking issues, and system control. For this purpose,
we present MIRA!, a novel framework for managing reliable live
migrations of virtual resources across different Infrastructure as
a Service (IaaS), handling unexpected cases, while ensuring high
QoS and a very low downtime without human intervention using
an SDN aware solution. To validate our proposed framework,
we performed a set of experimental evaluations under different
configurations. The obtained results of our proposed framework
show a 21% time reduction compared to a prior work and an
interesting behavior while modifying the number of allocated
CPU cores.

I. INTRODUCTION

The emergence of Software Defined Networking (SDN)
and Network Function Virtualization (NFV) technologies has
completely transformed modern network infrastructures by
enabling softwarization and efficient management of the net-
work resources [1]. Softwarization represents one of the main
enablers for the 5G’s use cases [2], reducing the Capital
Expenditures (CAPEX), the Operating Expenditure (OPEX),
and allowing a flexible deployment schema. Softwarization
achieves this through the use of virtualization, represented
by the hardware and software virtualizations tools. The hard-
ware virtualization tool refers to the conventional virtual
machine (VM), while the software virtualization is lead by
the lightweight container technologies. Meanwhile, the mass
deployment of the connected objects, smart vehicles, and
the Unmanned Aerial Vehicles have created the need for
computing resources at the edge of the network, called Multi-
Access Edge Computing (MEC) nodes [3]. However, it is
unusual for MEC nodes to dispose of enough computational
resources for hosting standard virtualization technologies typ-

ically used in large data-centers (VMs and servers). Therefore,
due to the advantages in terms of management facilities, quick
deployment and startup time [4], container technologies define
an alternative technology in the MEC environment. Moreover,
these technologies also permit a faster replication [5]–[7],
live service migration and scaling methods than traditional
VMs [8].

The aforementioned live migration procedure support is one
of the essential features that allow us to use containers as
a virtualization technique, as it is used across both physical
machines and virtual machines to achieve load balancing, fault
tolerance, and failure recovery. Live migration, in general,
is comprised of at least two big steps: i) the copy of the
disk; ii) and the copy of the memory pages. The two main
approaches to live migration are Pre-copy and the Post-
copy [9], and in both migration approaches, we have a period,
called downtime, during which the service is unavailable.

In a conventional network, after each migration process, we
consider a reactive approach for detecting the modification by
using the concept of late detection of the new virtualization
instances and the traffic is redirected using optimization
algorithms such as Dijkstra or max flow principle. In another
term, the switch will leverage MAC tables and the Address
Resolution Protocol (ARP) protocol to find the new migrated
instance; increasing the standard downtime in a critical situ-
ation such as live migration. However, an inter-data-center
migration cannot be envisaged due to the impossibility of
doing ARP broadcasting over the Internet [10]. A possible
solution is to use the new trend of networking, namely
SDN [11]. SDN provides a proactive approach to handle the
flow resumption and eliminates the added discovery time. The
flow resumption can be executed by the SDN controller in
parallel with the last iteration in case of pre-copy migration
(that we are using in our case) and before the restore part.
This approach can enable the cross data-centers migration
because of the ability to manipulate the switches even in a
decentralized environment using the overlay network based
on the VXLAN and the GRE technologies [12]. Nonetheless,
a successful live migration demands more than the SDN
technology.



In this context, a complete framework is needed to provide
an autonomic migration and handle unexpected cases, e.g.,
similar internal IP address, the presence of a container with
the same name on the destination host, and resource shortage
in the target host which can destroy the entire system instead
of regularizing it. In this paper, we present MIRA!, a novel
framework to remedy the unexpected cases ensuring high QoS
and delivering a lower downtime without human intervention.
To the best of our knowledge, there is no existing framework
able to handle all these cases.

The remainder of this paper is organized as follows.
Section II outlines the related works. A design overview of
the proposed framework and the implementation are presented
in Section III. Section IV illustrates the experimental setup
and discusses the obtained results. Finally, we conclude the
paper and introduce future research challenges in Section V.

II. RELATED WORK

The migration based on the lightweight virtualization tech-
nology and assisted by an SDN controller constitutes one of
the most suitable solutions to handle the ultra-low latency in
the upcoming 5G technologies. Mann et al. [13] presented a
network architecture that provides layer agnostic and seamless
live and off-line VM mobility across multiple data centers.
Their work leverages SDN and uses the principle of location
independence to handle the inter-data-center limits. In some
tests, they outperform the default Layer-2 approach by up
to 30%. The proposed architecture was a valuable initiative
to start working with the overlay network. However, as
mentioned before, it was shown that software virtualization
(system containers, application level container) achieves better
overall time compared to the legacy VMs.

Machen et al. [14] presented a multi-layer framework for
migrating active applications in MEC environment, using
containers technologies instead of VMs. Their experimental
results showed an average downtime of 2s in the blank
container case. However, the authors were focusing on the
system aspect of the migration without giving much interest
to the network side of the migration, which means that they
opted for a traditional network approach.

Bemby et al. [15] proposed ViNO (Virtual Network Over-
lay), an orchestration service used to create arbitrary network
topologies with OVS (Open vSwitch) switches and VMs.
ViNO creates an abstraction and allows the users to connect
and use services through an overlay network, and enables as
a use case a live migration based on container technologies
and RYU SDN controller. Zhang et al. [16] extended the
aforementioned work, describing both a theoretical model
and a real testbed implementation. Their main focus was
on the mathematical side of the problem. They showed the
NP-completeness of the migration and proposed a heuristic
algorithm to solve it. Nonetheless, in both works, we noticed
the absence of a global framework that handles all the
prerequisites in terms of system dependencies and the resource
limits which usually influence the reliability of the migration
process.

III. MIRA!: DESIGN AND IMPLEMENTATION

A. Design

Our proposal is a novel framework to manage live migra-
tion across multi-domain clouds and that is based on LXC
containers [17]. The MIRA! framework provides functions
to control container-based applications for many use cases
including live streaming, enabling the Follow Me Edge Cloud
(FMC) [18]–[20] concept and parallel migrations while en-
suring the network scalability and guaranteeing the desired
QoE. The proposed system allows the management of all
basic operations in an SDN environment such as create, start,
stop, and delete LXC containers through REST APIs or the
available web interface. Furthermore, it enables the service
migration over different edge clouds, by ensuring service
connectivity through integration with SDN networking. Fig. 1
depicts the main components of the envisaged system.

1) Host Node (HO): The computational resources used to
host a container in MIRA! can be a physical or a virtual node.
Each host node must include the virtualization infrastructure,
i.e., the LXC container engine and Open vSwitch (OVS). The
service connectivity is guaranteed using OVS switches that
are appropriately installed in the hosts and interconnected
through VXLAN and GRE tunnels to enable the overlay
network, decoupling the virtual network from the physical
infrastructure.

2) The SDN controller: The SDN controller may run on
top of a physical machine (i.e., dedicated server) or another
VM that has more powerful resources in any cloud provider
domain. In our implementation, we used ONOS [21], which
can manage the OVS switches and installs the flows required
for steering the traffic directed to the services.

3) MIRA! Global Orchestrator (MGO):
The MIRA! Global Orchestrator (MGO) is in charge of

managing the container migration which is composed of
several steps. First, a client can trigger the service migration
through either a web interface or a high-level RESTful API
by sending a request to MGO (step 1 in Fig. 1). After
that, our framework enables a checking process, monitoring
behavior, flows composition through the SDN controller and
enables a parallel logic in order to allow a seamless migration
as represented by steps 2, 3 and 4 in Fig. 1. Finally, we
order the migration and the path redirection using the SDN
controller (steps 5 & 6 in the architecture). All these features
are provided by the MGO that is composed of different
submodules:

a) Checking Module: Enables the verification of re-
sources on both the source and target host before starting
a seamless live migration of a service over multiple cloud
domains. The collection of information on the host includes:
i) the size of the disk; ii) the available memory, and finally;
iii) the CPU. This analysis is necessary to check if there
are enough resources in the destination node to host the
migrated services while ensuring the desired performance.



Fig. 1: MIRA! Architecture

Different strategies were developed according to the resource
estimation:

• Conservative Approach: It considers the total utilization
limits of the main memory and CPU on the destination
node of all host containers, both interrupted and running.
These values are then computed to verify that the host has
enough resources to receive the services to be migrated.
This approach ensures that containers are unable to
interfere with the resources of others and guarantees
the desired QoE to all users; i.e., even when a user
starts his container off on the host, it will still have its
resources reserved. However, this solution can involve an
underutilization of the system, if the containers turned off
are not reactivated.

• Semi-Conservative Approach : It only considers the lim-
its of consumption of memory and CPU in the destination
host from its running containers, and based on these
values, it verifies if this host has enough resources
to receive the to-be-migrated services. However, some
issues in terms of resource shortfall can be experienced
if stopped containers are reactivated, while different
migration procedures are performed.

• Live Consumption Approach: It considers the current
consumption of memory and CPU in the destination
host of all running containers. These values are then
subtracted from the free memory and the numbers of
available CPU cores to verify that the host has enough
resources to also host the to-be-migrated services. This
approach aims to maximize the usage of resources in
the destination host. However, potential resource shortage
can be experienced, requiring appropriate countermea-
sures to balance the load in the system.

We developed these three approaches to guarantee both a
trade-off between the execution time and the consistency of
the resources in the MEC environment, and to also allow
diversity of choice in the implementation phase.

b) Monitoring Module: Enables a live resource control
on the source host and allows to trigger a seamless live
migration of services across multiple cloud domains. Several
thresholds, e.g., CPU, Memory, and Disk, can be fixed to
enable an automatic migration. The autonomic migrations
process can be used to attain the high availability needed for
the different 5G use cases.

c) SDN Module: MGO integrates an SDN module to
interact with the SDN controller component defined earlier.
This module provides an SDN-based networking for both the
normal communication and in case of handling the traffic
redirection (path redirection) after the live migration. As
discussed earlier, to remove the issue of the added delay due
to the network legacy discovery mode (ARP request and MAC
table), we leverage the Intent-based logic of ONOS to enable
proactive path redirection [22].

d) Concurrent access & parallel logic Module: MGO
guarantees concurrent access to the computational resources.
The concurrency control must guarantee the correct execution
of conflicting requests, e.g., a user does a migration of
containerX , meanwhile, another tries to delete containerX .
Furthermore, if enough computational resources are available,
the MGO can enable the parallel live migrations of several
containers.

e) Partial migration Module: The partial migration
module was designed to check the availability of either base
container images (for instance xenial, trusty and so on) or
clone based images which provide a customized version
of the image with installed applications (a typical example
would be to have in addition to a base image of xenial,
an application (NGINX web server) already present). Having
such a module will be tantamount to drastically reduce the
total time migration by either eliminating the need of base
image transfer during the first part of the migration (copy of
the disk) in case of the base image approach or eliminate the
entire first part of migration and focus only on the second part



represented by the memory copy. In the worst case scenario
(neither the base image is present nor the cloned image is
available), a full migration will be considered.

f) Retry Module for the efficiency of the live migration:
The retry module is developed due to the need for high

efficiency of the live migration. This module was designed to
solve an issue that occurs in the last part of the live iterative
migration in the second phase (memory copy). We observed
failure cases in the last iteration. As a solution, we elaborated a
mechanism able to detect the failure of the last step and trigger
an automatic retry to ensure a highly efficient migration that
meets the requirements of the 5G networks.

B. Implementation

Fig. 2: Architecture of the implementation.

In the remainder of this section, we describe the imple-
mentation of the proposed framework. Our solution is based
on an overlay network that uses SDN logic, which means
that independently from the physical architecture, our solution
takes advantage of the basic interconnectivity of data-centers
and elaborates the required overlay network. In addition, our
monitoring mechanism constantly checks the containers’ state,
and in case a predetermined threshold is reached, the system
can activate an automatic migration across data-centers.

Fig. 2 shows the destination and the source virtual hosts
(respectively Machine1 and Machine2). They contain all the
virtualization software to deploy LXC container engine and
programmable switches OVSs. The MIRA! framework is also
running in Machine1 and is configured to implement the
semi-conservative logic accounting for available resources
in the implementation environment. Commonly, system-level
containers (i.e LXC) work only with bridges, which are
non-programmable level-2 switches (not suitable for SDN
networking). To overcome this issue, we proposed a solution
that works with multiple bridges per HO. In the proposed

solution, we exploit the fact that each container has an inner
network interface named (ethx) that may be mapped to a
virtual interface (veth) in order to connect with the level 2
switch (i.e bridge) and each bridge related to a given container
is connected to the OVS switches. The OVS switches are
configured through the SDN controller, i.e., ONOS which is
deployed in Machine3.

To link the SDN switches (OVS) to each other, taking into
account the fact that they are situated in different physical
hosts, we leverage on encapsulation protocols, i.e, VXLAN
and/or GRE. We also added another interface (veth2 in the
figure presented earlier) to the client container to allow
Internet access.

1) MIRA!-based migration: The proposed container solu-
tion is based on an iterative migration procedure, which has
been widely adopted for VM migration aiming to decrease the
downtime during the migration process and is often known
as pre-copy technique. In this framework, we use system
commands provided by the CRIU utility and implemented
verification steps to ensure the correct execution of pre-copy
phase [23]. During each run, only the memory pages that have
changed since the last run are transferred to the destination
host. This technique can lead to great improvements in cases
where the dirty page rate is lower than the transfer rate.
Initially, we use a well-defined page number in order to
guarantee the shortest possible downtime. Then, we use a
fixed iteration number to avoid the scenario of the infinite
loop, so to avoid the case when the system never reaches a
number below the selected threshold, usually caused by the
rate of page dirty being greater than transfer rate.

At the initialization of our algorithm, we established an
initial end-to-end (E2E) path between a given client and the
desired service. This step is carried out using the proactive
approach enabled by SDN. When the migration procedure is
issued, MIRA! starts the disk and memory copy using the
CRIU tool. At the end of the last phase of the copy of the
memory and before the end of the envisaged downtime, our
framework interacts with the ONOS controller to ensure the
continuity of the service by guaranteeing the management of
the network side and establishing the E2E final connectivity
before launching the restoration phase and cleaning (removal
of the container in the source host). Our system adopts the
Intent-based logic of ONOS in order to permit a proactive
path redirection.

IV. EXPERIMENTAL EVALUATION

We experimentally evaluated our proposed framework
using one physical server as shown in Fig. 3. The server has
48 cores with VT-X support enabled, 256 GB of memory,
1Gbps interconnection, and Ubuntu 16.04 LTS with the 4.4.0-
77-generic kernel and QEMU-KVM installed. Each VM has
a 16 cores CPU, 16GB of main memory, the same OS as the
host node, and the container environment was based on LXC
2.8 and CRIU 2.6, both stable versions. Finally, we use an
additional machine to access the test environment from the
external network using virtual manager software. It shall be



noted that our current experiments aim to show the behavior
of the service migration under MIRA! supervision. Indeed,
as we scale the number of nodes, this peer-to-peer migration
holds. However, the shared network resources may increase
both the downtime and the total migration time.

Fig. 3: Testbed Architecture.

In Fig. 3, the KVM server contains three virtualized com-
puter nodes: machine 1 is the source from where the migration
starts, machine 2 represents the target host and the ONOS
machine represents the virtual machine hosting the SDN
controller in order to handle the flow resumption.

The benchmark used in our evaluation is the streaming
of a video with the characteristics described in Table I
through an NGINX HTTP server. Moreover, we compared
the performance of MIRA! against a Basic Solution that we
developed based on an interactive migration using LXC and
CRIU. Fig. 4 presents an overall comparison of the total
migration time for both the Basic Solution and MIRA!. In
this figure, we plot the OY-axis in seconds and the OX-axis
shows each solution evaluated, the red bar represents the time
it took to migrate the container between two hosts and the
blue bar shows the control overhead imposed by MIRA!.

TABLE I: Test video specifications.
Type Configuration
Codec H.264
Duration 442s
Bit rate 1, 560 Kbps
Quality 720p
File size 93.5 MB

The mean Total Migration Time of 10 executions for the
basic solution was 28.7880s, with Standard Deviation (STD)
of 0.8729s, a 95% Confidence Interval (CI) of 0.6582s, and
Coefficient of Variation (CV) 0.0303, Meanwhile, MIRA!
mean Total Migration Time was 22.6271s, that can be the
breakdown on 20.3737s caused by the Migration process itself
and 2.2544s of MIRA! Control Time overhead. The STDs for

both Total Migration Time and Control Time is 2.1084s and
0.4562s, with 95% CI of 1.5898s and 0.6334s, respectively.
It is important to note that with a CV of 0.2024, the Control
Time shows greater variability during the experiments when
compared to the 0.1034 of CV generated by Total Migration
Time of MIRA!. The proposed framework was able to reduce
the Total Migration time by about 21.4009%, although with
a higher coefficient of variation, mainly caused by its control
component which shows that our proposal is a promising
solution. The achieved results in terms of Total Time migra-
tion reduction rely mainly on the developed partial migration
module that was explained earlier in Section III-A3e.

Fig. 4: Total Migration Time in case of the Basic Solution
and MIRA!.

Fig. 5: Parallel migrations.

Fig. 5 shows how the number of parallel migrations impacts
the total migration time when we vary the number of CPU



cores. The OY-axis in seconds is the migration time, while the
OX-axis is the number of parallel migrations. In Fig. 5, the
blue curve shows the behavior of sequential migrations, the
green curve presents the parallel migrations over two 4-core
servers, and the red curve is the evaluation of MIRA!’s parallel
migrations support over a 16-core hardware testbed. As an-
ticipated, the sequential migrations show a linear behavior as
we increase the number of migrations from one to four, which
allows us to use this scenario as an upper bound on the total
migration time. The 4-core testbed experiment manifested a
distinctive linear behavior as to sequential migration since the
total migration time had a slower increase rate for 2 migrations
than for 3 and 4. Moreover, the results for the 16-core testbed
exhibit a similar behavior seen in the 4-core case, albeit
with the derivative changing after 3 parallel migrations. This
behavior was caused as a result of the computational resource
sharing between the containers and the MIRA! management
system which limits the number of parallel migrations the
server can support.

V. CONCLUSION AND FUTURE WORK

In this article, we proposed a framework that enables live
migration across data-centers belonging to multiple adminis-
trative domains. The framework ensures short downtime and
supports service continuity leveraging SDN. In addition to
the SDN paradigm, the proposed framework integrates a full
mechanism to handle resources’ unavailability, network issues,
and system control. The MIRA! framework is fully developed
in the MOSA!C Lab research group [24] and is available as
an open source project on Github [25]. We also validated the
proposed framework by implementing an SDN-based testbed.
The obtained results serve as a basis for future research work,
where we will consider more complicated scenarios based on
arbitrary network topologies with a high number of OVSs
(Open vSwitch) switches and VMs. In these scenarios, the
SDN-based migration can be formulated as an optimization
problem of multiple objectives and constraints with higher
complexity. In addition, the mobility of end-users will be
investigated to achieve the follow me edge cloud concept for
the upcoming 5G mobile systems.

ACKNOWLEDGMENT

This work was supported in part by the Academy of Finland
Project CSN under Grant No. 311654. The work was also
supported in part by a direct funding from Nokia Bell Labs,
Espoo, Finland.

REFERENCES

[1] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing; softwarization: A survey on principles, enabling technologies;
solutions,” IEEE Communications Surveys Tutorials, vol. PP, no. 99,
pp. 1–1, 2018.

[2] N. Alliance, “5G white paper,” Tech. Rep., February 2015.
[Online]. Available: https://www.ngmn.org/uploads/media/NGMN 5G
White Paper V1 0.pdf

[3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5g net-
work edge cloud architecture and orchestration,” IEEE Communications
Surveys Tutorials, vol. 19, no. 3, pp. 1657–1681, thirdquarter 2017.

[4] Wubin, Li and Ali, Kanso, “Comparing Containers versus Virtual
Machines for Achieving High Availability,” in 2015 IEEE International
Conference on Cloud Engineering, Tempe, AZ, 2015, pp. 353-358.

[5] I. Farris, T. Taleb, A. Iera, and H. Flinck, “Lightweight service repli-
cation for ultra-short latency applications in mobile edge networks,” in
2017 IEEE International Conference on Communications (ICC), May
2017, pp. 1–6.

[6] I. Farris, T. Taleb, M. Bagaa, and H. Flick, “Optimizing service
replication for mobile delay-sensitive applications in 5g edge network,”
in 2017 IEEE International Conference on Communications (ICC), May
2017, pp. 1–6.

[7] I. Farris, T. Taleb, H. Flinck, and A. Iera, “Providing ultra-short
latency to user-centric 5g applications at the mobile network
edge,” Transactions on Emerging Telecommunications Technologies,
vol. 29, no. 4, p. e3169, e3169 ett.3169. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3169

[8] Y. C. Tay, K. Gaurav, and P. Karkun, “A performance comparison of
containers and virtual machines in workload migration context,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
Workshops (ICDCSW), June 2017, pp. 61–66.

[9] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in 2nd
Symposium on Networked Systems Design and Implementation (NSDI
2005), May 2-4, 2005, Boston, Massachusetts, USA, Proceedings.,
2005. [Online]. Available: http://www.usenix.org/events/nsdi05/tech/
clark.html

[10] U. Kalim, M. K. Gardner, E. J. Brown, and W. c. Feng, “Seamless mi-
gration of virtual machines across networks,” in 2013 22nd International
Conference on Computer Communication and Networks (ICCCN), July
2013, pp. 1–7.

[11] J. H. Cox, J. Chung, S. Donovan, J. Ivey, R. J. Clark, G. Riley, and
H. L. Owen, “Advancing software-defined networks: A survey,” IEEE
Access, vol. 5, pp. 25 487–25 526, 2017.

[12] T. L. Foundation, “Connecting vms using tunnels,” Tech. Rep., (Last
visit on : 16-4-2018). [Online]. Available: http://docs.openvswitch.org/
en/latest/howto/tunneling/

[13] V. Mann, A. Vishnoi, K. Kannan, and S. Kalyanaraman, “Crossroads:
Seamless vm mobility across data centers through software defined
networking,” in 2012 IEEE Network Operations and Management
Symposium, April 2012, pp. 88–96.

[14] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live ser-
vice migration in mobile edge clouds,” IEEE Wireless Communications,
vol. PP, no. 99, pp. 2–9, 2017.

[15] S. Bemby, H. Lu, K. H. Zadeh, H. Bannazadeh, and A. Leon-Garcia,
“Vino: Sdn overlay to allow seamless migration across heterogeneous
infrastructure,” in 2015 IFIP/IEEE International Symposium on Inte-
grated Network Management (IM), May 2015, pp. 782–785.

[16] S. Q. Zhang, P. Yasrebi, A. Tizghadam, H. Bannazadeh, and A. Leon-
Garcia, “Fast network flow resumption for live virtual machine migra-
tion on sdn,” in 2015 IEEE 23rd International Conference on Network
Protocols (ICNP), Nov 2015, pp. 446–452.

[17] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, Sept 2014.

[18] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated
clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,
pp. 12–19, September 2013.

[19] A. Aissioui, A. Ksentini, A. Gueroui, and T. Taleb, “On enabling
5g automotive systems using follow me edge-cloud concept,” IEEE
Transactions on Vehicular Technology, vol. PP, no. 99, pp. 1–1, 2018.

[20] A. Ksentini, T. Taleb, and F. Messaoudi, “A lisp-based implementation
of follow me cloud,” IEEE Access, vol. 2, pp. 1340–1347, 2014.

[21] O. team, “Onos,” Tech. Rep., (Last visit on : 16-4-2018). [Online].
Available: https://onosproject.org/

[22] ——, “Onos,” Tech. Rep., (Last visit on : 16-4-2018). [Online]. Avail-
able: https://wiki.onosproject.org/display/ONOS/Intent+Framework

[23] C. team, “Iterative migration,” 2016. [Online]. Available: https:
//criu.org/Iterative migration

[24] MOSA!C Lab research group , 2016. [Online]. Available: www.mosaic-
lab.org

[25] ——, “MIRA! framework,” 2018. [Online]. Available: https://github.
com/MOSAIC-LAB-AALTO/MIRA-

https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3169
http://www.usenix.org/events/nsdi05/tech/clark.html
http://www.usenix.org/events/nsdi05/tech/clark.html
http://docs.openvswitch.org/en/latest/howto/tunneling/
http://docs.openvswitch.org/en/latest/howto/tunneling/
https://onosproject.org/
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://criu.org/Iterative_migration
https://criu.org/Iterative_migration
www.mosaic-lab.org
www.mosaic-lab.org
https://github.com/MOSAIC-LAB-AALTO/MIRA-
https://github.com/MOSAIC-LAB-AALTO/MIRA-

	Introduction
	Related work
	MIRA!: Design and Implementation
	Design
	Host Node (HO)
	The SDN controller
	MIRA! Global Orchestrator (MGO)

	Implementation
	MIRA!-based migration


	Experimental evaluation
	Conclusion and future work
	References

