
Deep Learning based Moving Target Defence for
Federated Learning against Poisoning Attack in

MEC Systems with a 6G Wireless Model
Somayeh Kianpisheh1, Tarik Taleb2, Jari Iinatti1, and JaeSeung Song3

1Centre for Wireless Communications, University of Oulu, Finland, 2 Ruhr University Bochum, Germany
3 Computer and Information Security Department, Sejong University, South Korea

Emails: somayeh.kianpisheh@oulu.fi, tarik.taleb@rub.de, jari.iinatti@oulu.fi, jssong@sejong.ac.kr

Abstract—Collaboration opportunities for devices are facili-
tated with Federated Learning (FL). Edge computing facilitates
aggregation at edge and reduces latency. To deal with model
poisoning attacks, model-based outlier detection mechanisms
may not operate efficiently with hetereogenous models or in
recognition of complex attacks. This paper fosters the defense
line against model poisoning attack by exploiting device-level
traffic analysis to anticipate the reliability of participants. FL
is empowered with a topology mutation strategy, as a Moving
Target Defence (MTD) strategy to dynamically change the par-
ticipants in learning. Based on the adoption of recurrent neural
networks for time-series analysis of traffic and a 6G wireless
model, optimization framework for MTD strategy is given. A
deep reinforcement mechanism is provided to optimize topology
mutation in adaption with the anticipated Byzantine status of
devices and the communication channel capabilities at devices.
For a DDoS attack detection application and under Botnet attack
at devices level, results illustrate acceptable malicious models
exclusion and improvement in recognition time and accuracy.

Index Terms- federated learning, poisoning attack, MEC,
6G, moving target defence, deep reinforcement learning.

I. INTRODUCTION

The collaboration opportunities for smart devices are fa-
cilitated with Federated Learning (FL) by training a global
model from distributed data while maintaining data privacy
preservation by sharing only model parameters [1]. At each
iteration of the process, locally trained models are transmitted
to an aggregator server to construct a global model which
evolves within iterations. To overcome the issues of intoler-
able latency in a centralized server scenario, exploiting edge
computing is an alternative [2]. Multi-Access Edge Computing
(MEC) capabilities at base stations, can be exploited either
for the aggregation at BSs for a fast response, or for partially
aggregation of the parameters and transfer them to a server for
the global aggregation [2]. Most FL studies in edge computing
assume a secure FL protocol.

A model poisoning attack exploits system vulnerabilities
and injects poisoned local model updates, causing a useless
or less accurate global model. To make the FL robust, defense
mechanisms mainly focus on mitigating model poisoning
attack through outlier detection mechanisms. The studies in
[3], [4] advocate robust aggregation rules that detect outlier
models and remove them in the aggregation. The study in [5]
emphasizes on the performance of the learning process in an

outlier detection application. Cost-efficient method to isolate
the detected attackers has been presented in [6]. The studies in
[7], [8] find unreliable models by analyzing the behaviour of
the clients from the aspect of model performance. Accordingly
they remove them in the aggregation phase. The robustness
of FL against Byzantine clients while preserving privacy has
been investigated in [9].

There are two drawbacks for the mentioned works: First,
the differentiation of malicious from benign model might not
be efficient in heterogeneous local modes, where devices have
driven the models based on part of the data [5]. This is particu-
larly observable at early iterations when there is no knowledge
about the global model [5]. Second, outlier detection-based
mechanisms might not be efficient in the recognition of attacks
with complex patterns or behaviors [10]. To overcome the
mentioned drawbacks, this paper fosters the defense line in
two ways: First, inspired by the fact that the attacker sends
traffic toward a device to perform malicious tasks [11], [12],
[13] (e.g., discover device vulnerabilities, to get control and
update poisoned models), this paper uses device-level traffic
analysis to estimate the reliability of participants in learning.
This estimation can particularly be utilized when model-based
outlier detection may not be efficient. Second, in contrast to
the reactive approach in the literature, a proactive approach
will be applied to reduce the opportunity for poisoning. The
study in [13] reduces the opportunity of poisoning by fooling
the attacker by employing several models to train the main
model. However, the method is not applicable if there is full
control over the training process on compromised devices.

The proactive Moving Target Defence (MTD) concept
reduces cyber-threats by dynamically adjusting network prop-
erties to distort adversary knowledge to trigger the attack [11].
Inspired by the idea of MTD, this paper introduces MTD-
based FL (MTD-FL) which empowers FL with a topology
mutation strategy, as an MTD strategy to distort the assump-
tion of participation of all devices in FL. Based on device-
level traffic analysis, a topology mutation strategy dynamically
changes participants to remove the devices that can be targeted
in the future.

Recurrent Neural Network (RNN) which has shown effi-
ciency in time-series analysis of security applications [14],
[13], is adopted for device-level traffic analysis and poisoning-

occurence prediction. Optimization framework is provided for
topology-mutation based MTD scheme. To provide optimal
MTD strategy in large state/action spaces and under dynamic
nature of wireless communication channels and devices mobil-
ity, a Deep-Reinforcement Learning (DRL) based mechanism
is proposed. For a Distributed Denial of Service (DDoS) attack
detection scenario, the results illustrate an improvement in
accuracy and recognition time.

II. SYSTEM MODEL

Network: The network has N mobile IoT devices, M Base
Stations (BSs) equipped with MEC processing, and a cloud.
The CPU frequency at ith BS i.e., BSi and the cloud are
f cmp
i and f cmp

c , respectively. CPU frequency of the device u
is f cmp

u . Ri,c is the bandwidth of communication between BS
i and the central cloud. Ri is the devices under coverage of the
base station i. Bi is transmission bandwidth of the base station
i to communicate with devices. The device u has data of
size |Du| and denoted by Du = {(xu1 , yu1), ...(xu|Du|, y

u
|Du|)};

where, y is the label for input x.
A global model is constructed by performing FL and data
sharing through MEC/cloud infrastructure. Using local data
in the devices, the global model Mc is trained in iterations. A
device trains a local model at each iteration, based on which
the global model is evolved through the learning process and
the required recognition is performed.

Adversary Knowledge and Operation: At any iteration,
the adversary can exploit devices’ vulnerabilities and com-
promise them to inject poisoned models in learning process.
The compromised devices are Byzantine devices. The attacker
does not have any control over the aggregation process at
MEC, nor over the protocol of the benign devices which
follow a normal implementation of the protocol.

Adversary establishes poisoned model(s) through applying
an algorithm and uploads the malicious model(s) on behalf of
the compromised device(s) when communicating with MEC
for aggregation [7], [13]. This paper’s MTD-based FL scheme
can be applied for either targeted or untargeted attacks. In tar-
geted attacks, malicious models are crafted so that the trained
global model approaches a targeted model [7]. Otherwise, an
untargeted deviation strategy is applied [7].

Defender Objectives: MTD-FL scheme aims to train
global model with applying MTD strategy through iterations
to make the FL robust with a predefined confidence level,
while keeping the performance of FL in terms of accuracy
and recognition time.

III. MOVING TARGET DEFENCE BASED FL SCHEME

The MTD-FL scheme overview, the RNN-based traffic
analysis and the optimization are discussed in this section.

A. Optimization Motivation and Scheme Overview

The participants in FL define the learning topology. The
MTD-FL scheme mutates the topology as an MTD strategy,
to make it harder for an attacker to maintain a foothold.
The topology mutation is performed in response to suspicious

scheme.png

Fig. 1: MTD-FL scheme.
activities in learning iterations. Fig. 1 shows the MTD-FL
scheme. The histories of security events of the devices are
logged. A RNN-based scheme is employed to predict the
poisoning attack threats in the devices. Based on the predicted
values of RNN and the state of the network, the state of the
system is determined. Accordingly, a DRL based scheme is
employed for topology mutation strategy, based on which the
participants in the next iteration are specified. As an example,
in Fig. 1, when an attacker targets device 2, it sends malicious
controlling traffic to device 2 to control and perform malicious
uploading. The RNN model that has been trained with traffic
patterns in the security events of device 2, recognizes the
arrived traffic as abnormal and anticipates that device 2 may
hold a malicious model in the next iterations. Then the FL
topology is adjusted to exclude devices 2.

The optimization of topology mutation demands decision
about participation of devices in federation. The optimal
decision for inclusion of a benign-anticipated device (with
high confidence) in learning depends on the trade-off be-
tween accuracy and time. Since exclusion may reduce the
FL time, particularly if the device has low processing speed
or if the device is straggler with poor channel condition to
communicate with edge. However, the accuracy might be
reduced due the missing of the device knowledge; thereby
the necessity of an appropriate trade-off and optimization.
Furthermore, the dynamicity of the communication channel
makes the optimization challenging. The optimal decision for
exclusion of a Byzantine-anticipated device depends on the
confidence of prediction. For high-confidence exclusion can
increase the chance of poisoning threat mitigation. However,
for middle-range confidence (e.g., 40% till 60%), the accuracy
might be reduced by exclusion of device if the device is
benign, while there is the potential for attack mitigation if
the device is poisoned. Thus, the problem of devices selection
introduces an optimization to properly do the required trade-
off among time and accuracy while ensuring a confidence
for poisoning threat mitigation. Based on devices’ reliability
assessments, performance of FL and wireless communication
channel, the topology mutation is optimized.

B. RNN based Model Poisoning Attack Prediction

Since the adversary sends malicious traffic to compromise
a device and gain control over the upload of the model,
analyzing traffic on devices to detect abnormal patterns can
be a clue in the prediction of the target devices. Through

monitoring, security event sequences on devices is analyzed
to predict target devices in future. Since RNNs e.g., Gated
Recurrent Units (GRU), Long Short-Term Memory (LSTM)
have shown to be promising in security related analysis [15],
[16], we also adopt them for poisoning attack prediction. Let
Eu = {eu1 , ..., eut } be the log collected within time-series
to reflect poisoning-related security events in device u. The
prediction model obtained from neural network is represented
with φ(Xu; θu), with X and θ representing the input and
parameters respectively. The training data is generated as:

[Xu|Yu] =


eu1 eu2 ... euL|e

u
L+1

eu2 eu3 ... euL+1|e
u
L+2

...
eut−L eut−L+1 ... eut−1|eut

 (1)

For each sequence in training set, at time slot t, we have:
X = {eut−L, eut−L+1, ..., e

u
t−1} and Y = eut .

Security events’ features are fed to an RNN layer which
will operate to predict poisoning attack on the device for
the next time step, while Softmax function is applied for the
probability distribution. For training, mean square as the loss
function defines the deviation between actual and predicted
values, while Adam optimization minimizes the loss values.

C. TOPOLOGY MUTATION OPTIMIZATION

Let tp = {x1(τ)...xN (τ)} be the topology of the FL at
iteration τ , defined by participation of devices. Here, xu(τ)
is the variable indicating the participation of device u in FL at
iteration τ (1 for participation and 0 for not-being active). The
objective is to implement the MTD scheme while preserving
the required confidence for attack mitigation and optimizing
the FL performance criteria.

Since the devices evolve their learning model within it-
erations of FL, the time that takes a device receive new
updates, and perform the recognition is recognition time. The
objective function i.e., (2) optimizes accumulated loss and
time experienced by devices. Fu and TInt are the loss and
recognition time experienced at device u, respectively. α, β
defines the priority of loss and time in the optimization.

min
tp(τ)

∑
τ,u

α.Fu(τ) + β.TInt[τ](u), (2)

The optimization should be performed according to the
anticipation profile for Byzantine/benign status of devices,
represented by P = {p1, ...pN}. Constraint (3) identifies
the anticipation profile. Here, φ(Xu; θu) is the anticipated
poisoning probability for the device obtained by RNN.

∀u : pu(τ) = φ(Xu; θu). (3)

Constraint (4) ensures a confidence for attack mitigation.
Here, 1.(B) is 1 if boolean B is true, otherwize it is 0. By
this constraint, the devices that have been predicted to be
Byzantine with a high confidence of CH , will be excluded
in the training phase at iteration τ .

∀u : (1− 1.(pu(τ) ≥ CH)).xu(τ) = xu(τ). (4)

Time calculation. The recognition time in one iteration
of FL, for a device is the time to take the new parameters
and inference for the input sample. As calculated by (5), it
includes: a) the time slots for local training, b) the up-link
parameter transmission and the aggregation Tag , c) the down-
link parameter transmission Tdown. d) The inference time.

T cInt(u) = max
u

K.
|Du|.fcmps

fcmpu
+ Tag + Tdown(u) +

f infu

fcmpu
, (5)

In (5), K is the local training iterations, f cmp
s and f infu are the

number of CPU cycles to train unit of sample and to recognize
for a given input using the learning model, respectively. In the
rest, we explain the components involved in (5).

The time for partial aggregation at a BS includes the
parameters transmission time, and the aggregation operation.
Eq. (6) is the calculation. Here, |wg| is the number of global
weights and f cmp

w is the number of required CPU cycles to
aggregate one unit of data.

T iag = max
u∈Ri

|wg |
Ru,i

+
|Ri|.|wg |.fcmpw

fcmpi

, (6)

The aggregation time includes the time for partial aggrega-
tion, the parameters transmission and final aggregation at the
cloud:

Tag = max
i=1..M

(T iag +
|wg |
Ri,c

) +
M.|wg |.fcmpw

fcmpc
. (7)

Downloading the parameters takes time depending on the
parameters size and the available transmission rates:

Tdown(u) =
|wg |
Rc,i

+
|wg |
Ri,u

, (8)

According to the 6G wireless communication model in [15],
[17], [18], the transmission rate available for a device to
communicate with the BS is estimated as follows:

Ru,i = Bi ln(1 +
Ptu.gu

η
), (9)

gu = Cg .d
−α
u,i , (10)

where Ptu, gu, η are respectively, transmission power of
the device, channel gain and background noise power. The
channel gain which depends on the path loss fading coefficient
i.e., Cg , distance between device u and base station i i.e., du,i,
and path loss exponent i.e., α, is given in (10).

D. Deep Reinforcement Learning for Topology Mutation

The search space order is exponential with dynamicity
in channel communication and malicious behaviors. MDP
and RL has been used in the network applications to solve
the optimization in an adaptive manner and under dynamic
situations. We employ them due to: (i) Function (2) can
be explained as the sum of loss and time values, in the
current interval and the function value in the previous interval;
thereby having the memoryless property (ii) Considering the
parameters determining the current state e.g., malicious profile
of devices, devices participation in FL, transmission rates,
every action that is performed by the agent ends to a new
state transition which depends on the current state. (iii) The

Fig. 2: (a) Policy networks. (b) Simulation grid.

function (2) is in the form of accumulated rewards. Through
an iterative process of state observation, action performing and
feedback receiving, the Q-values are estimated by Bellman
equation [19]. Training based on observing all states/actions
is impractical for the high dimension of the states/actions and
dynamic state transitions, thereby inefficiency of conventional
RL. To solve the issue, we adapt DRL [19], that generalizes
experienced states/actions to non-observed ones through a
neural network-based approximation of Q-values.
MDP Elements: MDP Elements include:
State: The features of the state of network at time τ , are:
• The transmission rates represented with matrix Rd,e(τ),

at which the entry at row i and column j is the trans-
mission rate between device i and BS j, at iteration τ .
The variation in available bandwidth, location of devices,
and channel gain causes dynamicity of the transmission
rates.

• Available CPU cycle at BSs and devices, represented by
vector of Fe(τ), and devices Fd(τ) respectively.

• The current FL topology denoted by vector TP(τ) at
which each entry indicates a device participation in FL.

• The anticipated malicious behavior profile of devices
P(τ), where each entry specified the probability that a
device will be Byzantine in the next iteration.

Actions: The action is decision about the FL topology muta-
tion. The topology is mutated by defining the participants in
FL for the next iteration (values of xu(τ)).
Reward: To ensure constraint 4, if any of the devices which
have been anticipated to be Byzantine with high confidence of
CH , be selected as a participant, the reward is 0. Otherwise,
to optimizing the objective function, the reward is calculated
as inverse proportion of accumulated of loss and time expe-
riences at participants, as below:

R(s(τ), a(τ)) =
1∑

u α.Fu(τ) + β.TInt[τ](u)
(11)

Training: Using N policy networks, the decision policy
is derived by training them. The Neural Networks (NNs)
represent the topology mutation policy, such that each NN
specifies the participation of a device in FL. The input neurons
are the state features. There is a Fully-Connected (FC) layer,
with Softmax activation function. There are two neurons at
the output layer. The first neuron in the output layer of NN
u, indicates the Q-value for the participation of the device u
in the next iteration. The second neuron indicates the Q-value
of the action of not-participation of the device in federation.
(See Fig. 2.a). Each episode consists of a run of FL. There are
variation in security-related and network-related parameters at

each FL iteration. Arrival traffic at devices varies and will be
malicious in the case that a device is under attack. Network
parameters e.g., network communication status, location of
devices, and compromised devices change within iterations
to reflect dynamicity in attack and network. Training is done
through two steps performed at every iteration:
• Topology Mutation Exploration: According to ε−greedy

policy, with a 1 − ε probability a device will either
participate or does not participate, randomly (according
to a uniform distribution). Otherwise, the current state
features is given as input to the NNs. After neural
operations, the highest Q-value at output layer defines
the participation. If the highest value is for the first
neuron, the device will participate. Otherwise, it will not
participate.

• Updating the weights: After the topolody mutation ex-
ploration, reward is calculated, accordingly the NNs’
weights are updated by Gradient Descent (GD) method,
and using Bellman equation [19].

The training can be performed offline and the topology
mutation decision can be done in o(N).

IV. EXPERIMENTAL RESULTS

Simulation has been done by Python using an Intel(R)
Xeon(R) Platinum 8358 CPU with 2.6 GHz frequency and
64 GB RAM. TensorFlow and Keras have been used to
implement the deep learning. 10 devices with random CPU
frequency in the range of 1.9 up to 2.4 GHz and transmission
power of 23 db [18] are moving by vehicles and perform
FL for a DDoS attack detection. Recent studies e.g., [15],
[20] have shown FL can enhance accuracy of DDoS attack
detection through sharing detection models, in comparison
with individual learning approaches.

There is a a 4 × 4 grid environment with 100 m width
for each cell, where grid lines are bidirectional roads (Fig.
2.b). We have used SUMO simulator [21] for generating mo-
bility traces of vehicles. Mobility traces have been generated
according to Manhattan model in urban areas [21] with the
mean mobility speed of 45 km/h, probability of 0.5 for go-
straight and 0.25 for turn-right/lef at conjunctions.

The learning is performed in the level of edge. In the
locations [50, 50], [350, 350], two BSs with coverage radius
of 300 m, provide MEC with CPU frequencies of 3.2 and 2.6
GHz [18]. The transmission bandwidth of BSs are 28 and 30
MHz [15]. The transmission power of BSs is 34 db. Path loss
exponent is 5 and background noise power is -174 db.m [18].

We used CICDDoS 2019 data set [22] comprising legit-
imate traffic and traffic for DDoS attacks of UDPLag and
SYN DDoS attacks, through protocols of HTTP, FTP. The
dataset provides 87 IP flow features e.g., source/destination IP
addresses/ports, protocols, flow packet statistics, flag-related
information etc., based on which the attack is detected. At
each iteration, in the range of 2000 to 10000 instances are
randomly distributed among devices for training. 2500 random
instances are distributed for test. We found GRU with hidden
layer size of 8 neurons and Adam optimization efficient for

attack detection [15]. The feature matrix for the packets in a
flow forms rows of patterns which is given as input to the
GRU. The out-layer predicts the occurrence probabilities of
packets as a function of previous observations. A flow (with
size of 10 packets) is malicious if the ratio of the malicious
packets is higher than a threshold 0.7. We discussed the details
and efficiency of the model parameters in [15].

FL is applied in a system without attack (FL) and a system
with poisoning attack. At each episode, the adversary targets
2 to 4 random devices and sends malicious traffic to the com-
promised devices to take control. We used the Botnet attack
trace in [12] to generate the malicious traffic. It has recorded
the legitimate and attack traffic features (total of 78 features)
e.g., traffic duration, total packets, packet/flow/header/segment
statistics etc. The Botnet attack provides capabilities for
the attacker to attack devices and do e.g., remote sell, file
upload/download, key logging [12], thereby enabling taking
control for intervening in FL process. In this regard, a traffic
flow i.e., 11 sequences from the Botnet trace which illustrate
an attack occurrence at the end, are sent to a compromised
device (L = 10). Then, the attacker emulates malicious local
models for updating. Two attacks have been simulated:
• Attack 1: The attack in [7] has been adopted. The attacker

tries to deviate from global model with an arbitrary ma-
licious model. Poisoned model is calculated by updating
global model with a learning rate based on the difference
between the malicious target model and the global model.
To maximize the effect of poisoning, we set learning rate
as 1 and the target model parameters as −10 times of
global model parameters.

• Attack 2: It is adopted from attack in [10]. Using a
Gaussian-based statistics, it deviates each dimension of
the model parameter from the mean with a fraction of the
standard deviation. [10] gives the mathematical details
(See [10] for the fraction calculation).

For attacks implementation, global model is estimated by
averaging the weights of devices and mean and standard
deviation are calculated over the devices’ models. The DRL
process has more explorations in earlier episodes, and the
exploitation gradually increases up to the greedy selection of
98% in the last episode. Discount rate of 0.1 and ADAM
optimization in DRL operated efficiently. Channel conditions
(due to devices mobility), the compromised devices varies in
iterations. CH is 0.75. The results are average of 25 runs.

TABLE I: The results of Botnet attack anticipation.
Model Accuracy FP FN
GRU 5 0.87 0.06 0.92
GRU 8 0.77 0.24 0.27
GRU 11 0.51 0.49 0.37
LSTM 8 0.70 0.26 0.76
LSTM 11 0.88 0.06 0.88
LSTM 16 0.71 0.26 0.62

We exploited 12000 and 30000 random sequences of be-
nign/attack events in the Botnet trace, in the training and the
test phases, respectively. Table I shows the performance. We
evaluated GRU and LSTM with 5, 8, 11, 16 hidden neurons.
LSTM 11 has achieved the highest accuracy of 88% and a

Fig. 3: Reward variation during training.
False Positive (FP) of 0.06. However its False Negative (FN)
is 88% which is high. GRU with 8 hidden neurons has gained
accuracy of 77% and a lower FN of 0.27 and a FP of 0.24.
Indeed, it recongnizes attacks and benign traffic with precision
of 73% and 76%, respectively. As the nature of attacks in [12]
is complex, we could not get a better performance. However,
this performance is promising in the DDoS attack detection.

Fig. 3 shows the cumulative reward gain within episodes
in MTD-FL. The cumulative reward has increased up to 35
and become stable after episode 3600, which illustrates the
evolution of the topology mutation policy and convergence.

Fig. 4. compares MTD-FL performance with baselines: i)
FL is the scenario of FL without attack. ii) FL-With Attack
which is the scenario after poisoning attack. iii) RND-MTD
where topology mutation happens by blocking 2 or 4 random
participants at each iteration. The bars with bold boarders are
for Attack 2 scenarios, and the rest are for Attack 1 scenarios.

Fig. 4.a illustrates the accuracy of DDoS attack detection.
Due to federation, the accuracy of attack detection increases
from 75% in the first iteration to 92% in the fifth iteration.
After Attack 1, when there is no MTD strategy, the accuracy
decreases to 15% in the first iteration. The side effect worsens
in iterations, reaching 5% in the last iteration, due to more
injection of poisoned models. RND-MTD with blocking 2 de-
vices to form FL topology, has a chance to exclude malicious
devices and increases the accuracy up to 57%. However the
accuracy reduces when it blocks 4 devices in federation. The
reason is that it probably excludes more benign models due
to random topology mutation policy. For attack 1, MTD-FL
raises the accuracy up to 88%. The reason is that it recognizes
the malicious models by traffic analysis and excludes them
in the federation through a DRL-based optimization. In early
iteration there is accuracy loss in comparison with FL without
attack. The loss is mainly due to FP (See Table I) and possible
blocking of benign models. However, the accuracy loss is
rather compensated in later iterations when more models
are federated. For Attack 2 scenario, even after poisoning
the accuracy is competitive with the case that there is no
attack. Since, as discussed in [10], this attack manipulates
the distribution in bounds of other distributions of devices.
MTD-FL gains accuracy up to 86%. We envision with lower
FP accuracy can be competitive with scenario without attack.

Fig. 4.b shows the ratio of excluded malicious models.
Generally, for Attack 1, MTD-FL has outperformed RND-
MTD and could exclude 92%-96% of malicious models in the
aggregation phase. The reason is that in contrast with random
topology mutation strategy in RND-MTD, in MTD-FL the

Fig. 4: Comparison of MTD-FL vs. baselines. a) accuracy, b) ratio of excluded malicious models, c) recognition time.

topology mutation is optimized based on anticipation profile
for Byzantine/benign status of devices, thereby omitting the
Byzantine anticipated models to maximize the reward. Under
Attack 2, MTD-FL could exclude 87%-94% of malicious
models. In [10], Attack 2 has shown to be unrecognizable
by most outlier detection methods. Generally, even nontrivial
detectable attacks like Attack 2, still have the potential for
global model manipulation, particularly by targeted and smart-
crafted Byzantine parameters. MTD-FL through traffic analy-
sis can detect malicious model, thereby promising to reduce
the attacker intervening chance in the learning process.

Fig. 4.c illustrates the recognition time. The recognition
time of FL is around in the range of 1.94 to 1.95 ms. In RND-
MTD (2), 8 devices participate in learning, and less time will
be spent on trainig and parameter transmission thereby, lower
recognition times are experienced. Time becomes slightly
lower in RND-MTD (4) due to the participation of 6 devices in
federation. MTD-FL has reduced recognition time by 1.6 ms
in comparison with FL by considering time in optimization
and saving time slots required for training and parameters
transmission of devices that are anticipated to be malicious.

V. CONCLUSION

This paper exploits device-level traffic analysis to anticipate
the Byzantine status of devices and provides a MTD-based FL
that empowers FL against model poisoning attack. RNN-based
mechanism for traffic analysis and establishing security profile
of devices has been given. Optimization framework for MTD
strategy and a deep reinforcement mechanism with capability
of adaption with malicious activities and wireless commu-
nication status have been provided. The method has been
evaluated with two attacks. Simulation results for a DDoS
attack detection scenario, illustrate reduction of recognition
time and improvement in accuracy.

ACKNOWLEDGMENT

This work was supported in part by the European Union’s
Horizon program through the RIGOUROUS project (Grant
No. 101095933) and 6G-SANDBOX project (Grant No.
101096328). The paper reflects only the authors’ views. The
Commission is not responsible for any use that may be made
of the information this paper contains.

REFERENCES

[1] B. McMahan et al., “Communication-efficient learning of deep networks
from decentralized data,” in Artificial intelligence and statistics, 2017,
pp. 1273–1282.

[2] J. Zhou et al., “A differentially private federated learning model against
poisoning attacks in edge computing,” IEEE Trans. on Dependable and
Secure Computing, 2022.

[3] E. M. El Mahdi, R. Guerraoui et al., “The hidden vulnerability of
distributed learning in byzantium,” in Conf. on Machine Learning, 2018,
pp. 3521–3530.

[4] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in International
Conf. on Machine Learning, 2018, pp. 5650–5659.

[5] L.-Y. Chen, T.-C. Chiu, A.-C. Pang, and L.-C. Cheng, “Fedequal: De-
fending model poisoning attacks in heterogeneous federated learning,”
in IEEE Global Communications Conf., 2021, pp. 1–6.

[6] S.-M. Huang, Y.-W. Chen, and J.-J. Kuo, “Cost-efficient shuffling
and regrouping based defense for federated learning,” in IEEE Global
Communications Conf., 2021, pp. 1–6.

[7] R. Al Mallah et al., “Untargeted poisoning attack detection in federated
learning via behavior attestation,” IEEE Access, 2023.

[8] X. Pan et al., “Justinian’s gaavernor: Robust distributed learning with
gradient aggregation agent,” in USENIX Security Symp., 2020.

[9] J. So et al., “Byzantine-resilient secure federated learning,” IEEE J. on
Selected Areas in Communications, 2021.

[10] G. Baruch, M. Baruch, and Y. Goldberg, “A little is enough: Cir-
cumventing defenses for distributed learning,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[11] T. Zhang et al., “When moving target defense meets attack prediction in
digital twins: A convolutional and hierarchical reinforcement learning
approach,” IEEE Journal on Selected Areas in Communications, 2023.

[12] I. Sharafaldin, A. H. Lashkari, A. A. Ghorbani et al., “Toward gener-
ating a new intrusion detection dataset and intrusion traffic characteri-
zation.” ICISSp, vol. 1, no. 2018, pp. 108–116, 2018.

[13] S. Kianpisheh, C. Benzaid, and T. Taleb, “Multi-model based federated
learning against model poisoning attack: A deep learning based model
selection for MEC systems,” in IEEE Global Communications Conf.,
DOI: 10.1109/GLOBECOM52923.2024.10901544, 2024.

[14] M. V. Assis et al., “A gru deep learning system against attacks in
software defined networks,” J. Network and Computer Applications,
vol. 177, p. 102942, 2021.

[15] S. Kianpisheh and T. Taleb, “Collaborative federated learning for 6G
with a deep reinforcement learning based controlling mechanism: A
ddos attack detection scenario,” IEEE Trans. on Network and Service
Management, vol. 21, pp. 4731–4749, 2024.

[16] C. Feltus, “Learning algorithm recommendation framework for is and
cps security: Analysis of the rnn, lstm, and gru contributions,” J. Systems
and Software Security and Protection, vol. 13, no. 1, pp. 1–23, 2022.

[17] Z. M. Fadlullah and N. Kato, “HCP: Heterogeneous computing platform
for federated learning based collaborative content caching towards 6G
networks,” IEEE Trans. on Emerging Topics in Computing, 2020.

[18] Y. Lu et al., “Low-latency federated learning and blockchain for edge
association in digital twin empowered 6G networks,” IEEE Trans. on
Industrial Informatics, vol. 17, no. 7, pp. 5098–5107, 2020.

[19] V. Mnih et al., “Human-level control through deep reinforcement
learning,” J. Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[20] J. Li et al., “Fleam: A federated learning empowered architecture to
mitigate ddos in industrial iot,” IEEE Trans. on Industrial Informatics,
vol. 18, no. 6, pp. 4059–4068, 2021.

[21] “Sumo: https://www.eclipse.org/sumo/.”
[22] I. Sharafaldin et al., “Developing realistic distributed denial of service

attack dataset and taxonomy,” in Conf. on Security Technology, 2019.

