
Received 30 November 2017; Revised XXX; Accepted YYY

DOI: xxx/xxxx

ARTICLE TYPE

Enhancing IoT Security through Network Softwarization and
Virtual Security Appliances

Alejandro Molina Zarca1 | Jorge Bernal Bernabe*1 | Ivan Farris2 | Yacine Khettab2 | Tarik
Taleb2 | Antonio Skarmeta1

1Department of Information and
Communication Engineering (DIIC) ,
University of Murcia, Spain

2Department of Communications and
Networking, Aalto University, Finland

Correspondence
*Jorge Bernal Bernabe, Facultad de
Informatica, Universidad de Murcia, S/N
30100, Espinardo, Murcia, Spain. Email:
jorgebernal@um.es

Summary

Billions of IoT devices are expected to populate our environments and provide novel
pervasive services by interconnecting the physical and digital world. However, the
increased connectivity of everyday objects can open manifold security vectors for
cyber-criminals to carry out malicious attacks. These threats are even augmented
by the resource constraints and heterogeneity of low-cost IoT devices, which make
current host-based and static perimeter-oriented defense mechanisms unsuitable for
dynamic IoT environments. Accounting for all these considerations, we reckon that
the novel softwarization capabilities of Telco network can fully leverage its privi-
leged position to provide the desired levels of security. To this aim, the emerging
Software Defined Networking and Network Function Virtualization paradigms can
introduce new security enablers able to increase the level of IoT systems protection.
In this paper we design a novel policy-based framework aiming to exploit SDN/NFV-
based security features, by efficiently coupling with existing IoT security approaches.
A Proof of Concept testbed has been developed to assess the feasibility of the pro-
posed architecture. The presented performance evaluation illustrates the benefits of
adopting SDN security mechanisms in integrated IoT environments and provides
interesting insights in the policy enforcement process to drive future research.

KEYWORDS:
Security, SDN, NFV, Internet of Things

1 INTRODUCTION

A huge amount of smart devices is expected to drastically change industrial and home environments by enabling new advanced
services for human-beings. The Internet of Things vision aims at seamless integrating the sensing and actuation features of
common objects by leveraging their network capabilities to create pervasive information systems1. To this aim, the sensing
measurements generated by IoT devices can provide contextual and valuable information of the surrounding environments. The
relevant data analysis systems can then derive appropriate control decision, which can be enforced in the physical world through
the actuation features of smart devices. The envisioned benefits are boosting the adoption of IoT solutions in a broad range of
application scenarios.
On the other hand, the increased connectivity can be exploited by malicious attackers to exploit devices vulnerabilities2.

Indeed, accounting for the heterogeneity of IoT devices, ranging from smart industrial machinery to simple wearable sensors,

2 Jorge Bernal BernabeET AL

it results extremely complex to ensure the same desired protection over different programming environments. Furthermore, the
majority of host-centric security mechanisms do not typically fit into the resource constraints of IoT devices. The absence of
automated software updates, as well as users’ misconfiguration can notably increase the potential vulnerabilities, especially due
to the unavailability of vendors’ support along the whole IoT product lifecyle. Last but not the least, current network security
solutions present low responsiveness and can unlikely cope with the dynamic IoT environments. All these security vectors claim
for new advanced mechanisms able to meet the desired defense levels.
We strongly believe that network environments can exploit their privileged positions in providing capillary connectivity to

provide the desired defense mechanisms for IoT ecosystem. In this vein, Telco networks are progressively facing a drastic trans-
formation by embracing Software Defined Networking (SDN) and Network Function Virtualization (NFV)3. SDN introduces
a new level of network programmability, by decoupling control and data plane. This network model can enable novel security
defense mechanisms, such as promptly managing malicious traffic and enabling secure network zone. NFV leverages virtualiza-
tion technologies to deploy network elements as software instances, thus allowing an increased level of flexibility and elasticity in
service provisioning. Furthermore, NFV can enable remarkable reduction in CAPEX/OPEX costs, by replacing dedicated hard-
ware with commodity servers able to host software-based network appliances, including virtual security functions. Leveraging
the SDN and NFV features, notable benefits can be achieved by offloading the security of IoT systems within network.
In this paper we aim at investigating the opportunities that software-based network mechanisms jointly offer in coping

with security threats against IoT systems. The paper evolves a previous position paper published in a conference4, extending
the related work, detailing the policy refinement and enforcement processes, as well as the implementation and performance
evaluation of the solution. The main contributions of the paper are the following:

• We provide a comprehensive analysis of the security features introduced by SDN and NFV technologies. Thus, we
emphasize their benefits to cope with IoT security threats.

• We design a novel framework to provide security protection mechanisms through the envisioned software-based network
enablers and to create added-value services accounting for potential integration with existing IoT security mechanisms.
To account for the heterogeneity of the security enablers, the security policies management include different levels of
abstractions, so to decouple the desired defense intent from the low-level configuration of the underlying components
and to enable a technology-agnostic refinement process. Specific focus concerns the orchestration features, which need to
enforce the desired security controls over heterogeneous domains, such as SDN, NFV and IoT networks, by interfacing
with relevant control and management modules.

• We present a Proof of Concept (PoC) implementation of the proposed framework to assess its feasibility and performance.
The envisioned modular environment include the main component and can be easily extended to allocate further security
mechanisms and to perform quick, scalable, and automated testing.

• We provide a comprehensive analysis of the policy enforcement, pointing out the benefits of SDN-based security
mechanisms in integrated IoT scenarios with respect to conventional countermeasures.

The paper is organized as follows. In Section 2 we analyze the novel security features introduced by SDN and NFV, providing
an overview of relevant state-of-the-art security solutions for IoT systems. Section 3 describes the envisioned framework, high-
lighting the main components and policy-based refinement processes to enforce the desired security mechanisms. In Section 4
two promising use cases are presented to assess the introduced security features. In Section 5 we illustrate the PoC implemen-
tation of the envisioned architecture, reporting the experimental results to enforce SDN security mechanisms in integrated IoT
environments. Conclusions and future research activities are drawn in Section 6.

2 BACKGROUND ON SDN/NFV-BASED SECURITY ENABLERS FOR IOT NETWORK

Network softwarization is drastically modifying the telecommunication industries, potentially enabling added-values services.
SDN and NFV can play key roles as security enablers, ensuring the network environments to cope with a broad range of security
threats of IoT systems. In the following subsections we will briefly present these two paradigms, emphasizing their relevant
security features.

Jorge Bernal BernabeET AL 3

2.1 Software-defined network security mechanisms
SDN is a network architecture which aims to guarantee enhanced network programmability, by decoupling the control and
forwarding functions. In this way, network management can be done separately, without affecting data flows network, and can be
carried out by a centralized controller. As a consequence, the complexity of the underlying switching devices is notably reduced
in comparison with traditional networks. The derived SDN network results into a simpler programmable environment, allowing
external applications to define the network behavior.
Open Networking Foundation (ONF), a non-profit consortium dedicated to development, standardization, and commercial-

ization of SDN, has suggested a reference SDN architecture model composed of three layers. The data plane includes network
elements (e.g., switches, routers, etc.) which are exploited to process packets based on the rules provided by a controller, and
for collect network status information, such as network topology and traffic statistics. The control plane bridges the application
plane and the data plane, translating applicationsâĂŹ requirements into appropriate forwarding rules to be enforced over the
underlying network switches. To this aim, the south-bound interface (e.g., Openflow) allows the SDN controller to access func-
tions provided by the switching devices. These functions may include reporting network status and managing packet forwarding
rules. On the other hand, the north-bound interface provides service access points in various forms, e.g., Application Program-
ming Interfaces (APIs), to the application plane. In this way, SDN applications can communicate their network requirements to
the SDN controller, so to dynamically modify network behavior and request new packet forwarding strategies.
SDN networks are gaining high momentum within the IoT ecosystem and several recent works have investigated its effective

adoption for interconnecting IoT devices. Sensor OpenFlow5 has been specifically devised to extend the use of Openflow to
sensing nodes, by addressing the technical challenges of adopting SDN in wireless sensor networks. SDN-WISE6 goes beyond
providing stateful mechanisms for the definition and handling of flow tables. In7 an architecture with multiple controllers is
proposed within the WSN to better manage the control traffics.
This increased network programmability is boosting the use of SDN also in the security research communities8. In the follow-

ing, we comprehensively analyze the major SDN features which can be explored to provide advanced security countermeasures
for IoT systems.

• Dynamic flow control: By leveraging the decoupling of control and data planes, a network application canmanage network
flows dynamically. Indeed, when an SDN switch does not have a flow rule to process a specific packet, a relevant request
is forwarded to the controller which can decide the relevant packet processing based on specific application policies. This
feature can enable a dynamic access control function, which is commonly implemented to protect a network according to
the specified privileges and policies.

• Traffic isolation: SDN can be exploited to enable forwarding of different network traffics over the same physical network
infrastructure, while guaranteeing the desired level of isolation and network abstraction9. This feature can drastically
limit the propagation and damages of security attacks between different network domains. This represents a fundamental
feature in IoT system, where sensitive operations can depend on data generated by other objects. In this scenario, the
prompt isolation of compromised IoT nodes becomes compelling and SDN flexibility can be used to separate malicious
(or suspicious) network flows dynamically.

• Network-wide visibility and monitoring: All SDN data traffic are managed by a centralized controller which is in charge
of flow rule configuration. In addition, through the control plane, network status information can be collected from each
data plane by sending statistics query messages. Therefore, a network application running on the control plane can have
updated status of relevant data plane and flow request messages through the northbound APIs. In this way, SDN can ease
the network-wide monitoring and the detection/defense of network-wide attacks. For example, the network administrator
can implement anomaly analysis to identify network-wide attacks by monitoring the network state changes, for example
to detect anomalous traffic peaks generated by distributed botnet of compromised IoT devices.

• Network Programmability: Since data forwarding in an SDN network can be controlled by a network application program,
SDN provides an enhanced flexibility to enable new network security functions. In this vein, the OpenFlow features have
been exploited in10 to develop the FRESCO framework to simplify the development of security network functions through
the modular composition of OpenFlow-enabled detection and mitigation modules.

In11 several examples of SDN-based security applications are described, while the feasibility of deploying various security
functions at the SDN control level has been investigated in12. Another survey13 focused on SDN’s strengths and weaknesses
against Distributed Denial of Service (DDoS) attacks in cloud computing environments.

4 Jorge Bernal BernabeET AL

Software Defined Networks are starting to be exploited in IoT environments to deal with cyber-threats. Xu et al.14 describe
an smart security mechanism to defend against new-flow attack in SDN-based IoT, through using a dynamic access control
prior adding new flows to the SDN-switch. Authors in15 suggest a network architecture in which the DDoS defense is carried
out by limitation of flow amount for the same application per data source. Chakrabarty et al.16 present a SDN architecture
for secure Internet of Things (IoT) networking and communications, securing both, the meta-data and the payload within each
layer of an IoT communication packet while utilizing the SDN centralized controller as a trusted third party for secure routing
and optimized system performance management. In17 authors propose the use of an SDN gateway as a distributed means of
monitoring the traffic originating from and directed to IoT based devices, enabling the detection of anomalous behaviour and
then, performing an appropriate response (blocking, forwarding, or applying Quality of Service). Flauzac et al.18 propose a
multi-domain distributed SDN security solution for wired, wireless, ad-Hoc and sensor networks, showing how to distribute the
security rules across different security controllers in order not to compromise the security of one domain. Choi et al.19 propose
strategies for establishing a security framework based on a software-defined IoT environment and efficient provision of security
services such as authentication, access control, and lightweight encryption. The aforementioned works do not exploit the NFV
benefits to increase on-demand scalability and dynamic deployment of virtual security functions within the network.

2.2 Virtualized security network functions
The deployment of virtualized network services provides remarkable benefits in terms of increased flexibility, improved cap-
ital efficiency, and enhanced operational efficiencies in Telco networks. ETSI ISG NFV has designed a high-level functional
architectural framework for the management of virtualized network functions20, which includes three domains. The Network
Functions Virtualization Infrastructure (NFVI) comprises the hardware resources providing necessary processing, storage, and
network capabilities, as well as the virtualization software components, to create the virtualization environment. The Virtualized
Network Function (VNF) domain refers to the virtual network functions (VNFs) which are executed leveraging the virtualized
resources offered by the underlying NFVI. The Management and Orchestration (MANO) block is in charge of all the resources
in the infrastructure layer for the efficient deployment of the VNFs. To this aim, it interacts with both the NFVI and the VNF
blocks.
By leveraging the cloud delivery models of on-demand service provisioning, the NFV paradigm can drastically enhance

the the Telco network embracing the concept of Security-as-a-Service21. In this vein, the Cloud Security Alliance (CSA) has
defined guidelines for cloud-delivered defense solutions, to assist enterprises and end-user to widely adopt this security paradigm
shift. The NFV approach presents remarkable advantages with respect to the hosting in remote cloud data centers, since the
virtualized security functions can be deployed along the forwarding path, avoiding inefficient traffic detouring. Furthermore,
the provisioning of security functions towards the edge of the network can better scale with the expected huge amount of traffic
generated by IoT devices.
In this regard, we provide a critical analysis of the main features which boost the adoption of NFV paradigm for supporting

novel security enablers and to improve the management of virtualized security functions for dynamic IoT environments.

• Decoupling security functions from hardware: the increased abstraction introduced by virtualization technologies is boost-
ing the replacing of dedicate middlebox hardware with equivalent software instances running on top of commodity servers.
This aspect can be introduce notable benefits in the network security domain, introducing virtualized instances of fire-
walls, DPIs, etc. The on-demand provisioning of network-based security mechanisms enables the offloading of security
functions from constrained IoT devices22 23.

• On-demand scalability: Another key feature of virtualized security function is represented by the elasticity to scale
instances up/down according to the current workload. This higher level of scalability is also strictly dependent on the
security application development, which can notably impact the overall performance. To this aim, a characterization of
security functions is required to achieve the desired performance in a virtualized environment.

• Mobility support: Different IoT application scenarios, such as wearable sensors and smart vehicles, are characterized by
mobility features. In this vein, the offloading of security functions towards the network edge allows to process and monitor
the traffic near to the devices. To keep the desired performance, the support of mobility will guarantee the desired security
performance features, avoiding traffic re-routing and enabling short response time.

Jorge Bernal BernabeET AL 5

• Flexible network service provisioning: The software-based deployment allows for increased efficiency in the deployment
of services over a shared physical infrastructure. In24 an approach towards the adoption of security policies management
with dynamic network virtualization is presented, although this work does not specifically deal with IoT features. Further-
more, leveraging software-based networking, different components can be dynamically integrated along the forwarding
paths. This can enable the creation of appropriate security service chains where user traffic is appropriately processed
according to security policies.

To sum up, SDN and NFV features are extremely promising to improve the security of IoT systems, but their joint use is
currently at a preliminary stage and significant efforts are still required to fully exploit their benefits. Our research work proposes
a holistic policy-based security management framework for the IoT that relies on SDN and NFV security enablers to strengthen
the overall security and mitigate IoT cyber-attacks.

3 AN SDN/NFV-BASED SECURITY FRAMEWORK FOR IOT

3.1 Architecture overview
The envisioned security framework aims at exploiting the features of SDN/NFV-based security enablers to ensure self-protection,
self-healing, and self-repair capabilities in IoT systems, complementing conventional security approaches. To this aim, security
policies are defined according to different level of abstraction, so ensure higher flexibility and manage security controls over
heterogeneous networks. The required security actions can be enforced in different kinds of physical/virtual appliances, including
both IoT networks and software-based networks. The proposed architecture includes three main planes, as shown in Figure 1 .

3.1.1 User Plane
The user plane provides interfaces and tools allowing end-users to specify the desired policy definition, service monitoring
and management. Its policy editor provides an intuitive and user-friendly tool to configure security policies in high level secu-
rity language, governing the configuration of the system and network, such as authentication, authorization, filtering, channel
protection, and forwarding.

3.1.2 Security Orchestration plane
The Security Orchestration plane enforces policy-based security mechanisms and provides run-time reconfiguration and adap-
tation of security enablers, thereby providing the framework with intelligent and dynamic behavior. It is an innovative layer of
our architecture and provides dynamic reconfiguration and adaptation in case of deviation from the expected behaviour.
The Policy Interpreter module plays a key role in the refinement of security policies. The high-level policies are first translated

into medium-level security policy language, which allows to specify security mechanisms in a technology-agnostic way. Then,
these policies are refined in specific low-level configurations according to the selected enablers. The policy refinements process
are further detailed in Section 2 .
The Security Enablers Provider identifies the available security enablers according to the required capabilities and their

relevant resource requirements. It also manages the security enabler plugins to generate low-level security configurations.
The Monitoring component collects security-focused real-time information related to the system behavior from physical/vir-

tual appliances. Its main objective is to provide alerts for the reaction module in case something is misbehaving. Security probes
are deployed in the infrastructure domain to support the monitoring services. Then, the Reaction component is in charge of pro-
viding appropriate countermeasures, e.g., by selecting policies stored in the relevant repository and by requiring reconfiguration
of the security enablers to cope with the detected threat.
The Security Orchestrator supervises the orchestration of the security enablers to be deployed into the Security Enforcement

Plane according to the policy requirements. In addition, at run-time, it analyses the reaction outcomes and applies the corre-
sponding countermeasures. In this way, the overall framework can guarantee self-healing and resilience abilities, by constantly
ensuring the satisfaction of the security requirements defined in the end-user policies.
Although it is not shown in Fig. 1 , the envisaged architecture is also endowed by a transversal plane called Seal Management

Plane that combines security and privacy standards. This plane provides users with a run-time indication of the overall level of
trust in the system, combining normative approaches and run-time monitoring. Its normative approaches include analysis and

6 Jorge Bernal BernabeET AL

User Plane

Security Enforcement
Plane

Security Orchestration
Plane

Infrastructure Domain

VNF Domain

Virtualization Layer

Control and Management Domain

SDN Controller NFV MANO

NFVO

VNF
Manager

VIM

Security
Orchestrator

Policy Editor Tool

VNF #1 VNF #2

Storage Compute

. . .
VNF #N

Network

IoT Domain

IoT Controller

Policy Interpreter

Security
Enablers
Provider

Security
Enablers

Repository

Reaction
Module

Monitoring
Module

High to Medium

Medium to Low

OpenC2
with MSPL

Security
Policies

Repository

FIGURE 1 Architecture high level overview.

integration with international standards, such as the regulation of the European General Data Protection, security related ISO
standards, and methodologies for security and privacy labeling.

3.1.3 Security Enforcement Plane
The security enforcement plane manages the resource usage, network connectivity and real-time operation of the security
enablers over heterogeneous environments. It also includes the components required for their management.
The Control and Management domain modules supervise the usage of resources and run-time operations of security enablers

deployed over software-based and IoT networks. A set of distributed SDN controllers takes charge of communicating with the
SDN-based network elements to manage connectivity in the underneath virtual and physical infrastructure. NFV ETSI MANO-
compliant modules support secure placement and management of virtual security functions over the virtualized infrastructure.
As the envisioned framework aims to cover legacy IoT scenarios, different IoT controllers can be used to manage IoT devices
and low power and lossy networks (LoWPANs). These IoT controllers are usually deployed at the network edge (e.g., gateways)
to enforce security functions in heterogeneous IoT domains.
It leverage NFV and SDN by considering additional components of the IoT control component an the Physical Network

Functions (PNF) component that embrace the functionality required to support management of IoT devices and covers legacy
scenarios that are not NFV/SDN-enabled. Special kind of IoT controllers are used to manage devices in more heterogeneous
scenarios that include IoT or low power and lossy networks (LoWPANs).

Jorge Bernal BernabeET AL 7

The Infrastructure and Virtualization domain comprises all the physical machines capable of providing computing, storage,
and networking capabilities, as well as the virtualization technologies, to provide an Infrastructures as a Service (IaaS) layer.
This domain also includes the network elements responsible for traffic forwarding, following the SDN controllerâĂŹs rules, and
a distributed set of security probes for data collection to support the monitoring services.

VNF domain accounts for the VNFs deployed over the virtualization infrastructure to enforce security within network services.
Specific mechanisms will be developed to verify the trustworthiness of VNFs and to continuously monitor their key parameters.
Specific attentions will be addressed to the provisioning of advanced security VNFs (such as virtual firewall, IDS/IPS, channel
protection, etc.), capable to provide the defense mechanisms and threat countermeasures requested by security policies.

IoT domain comprises the IoT devices to be controlled. This includes the security enablers, actuators or software agents
needed to enforce the security directives coming from the orchestration plane and managed, at the enforcement plane, by the
IoT Controller. For instance, a special kind of local security agent can be deployed in IoT devices to protect the communications
between two devices. In this regard, the CoAP-EAP25 protocol can be used as lightweight authentication service that uses
EAP (Extensible Authentication Protocol) transported by means of CoAP (Constrained Application Protocol) messages, with
two purposes: authenticate two CoAP endpoints and derive cryptographic material to protect the exchanges between them to
bootstrap security associations at different levels of the protocol stack. In this way, if a Datagram Transport Layer Security
(DTLS) channel has to be established, a Premaster secrect can be derived from the Master Secret Key (MSK) that results from
the EAP authentication.

3.2 Policy refinement and enforcement workflows
In this section we provide a more detailed overview of the policy refinement and enforcement processes. The first policy refine-
ment process is depicted in the sequence diagram of figure 2 . As it can be seen, the Policy Interpreter module firstly receives as
input the policies specified in High-level security policy language (HSPL). HSPL remains at a high abstraction level, specially
though for non-technical users, or coarse-grained operations. It can be generated by the user through the Policy Editor. Once the
Interpreter has received the HSPL policies, it identifies the capabilities needed to enforce them. To this aim, the Interpreter inter-
acts with the Security Enablers Manager to identify the available SDN/NFV-based enablers, performing a matching among the
discovered capabilities required by the HSPL policies and the one supported by each available Enabler (capability matching).
Currently, the security policy models are evolving, making the framework supports capabilities like Authentication, Authoriza-
tion, Network Filtering/Forwarding and Channel Protection (OpenVPN, IpSec, DTLs). Once the Interpreter obtains the list of
security enablers capable to deal with the discovered capabilities, it verifies if the received list contains enough security enablers
in order to cover all capabilities. If it is not the case, the Interpreter returns a non-Enforzable analysis notification.
On the other hand, if the refinement process is possible, the Policy Interpreter generates a set of policies defined in a Medium-

level Security Language (MSPL) from HSPL policies. MSPL policies provide enough information in order to apply the security
policies in independent way of the underlaying technology. An example of the correspondence among HSPL and the generated
MSPL policy can be observed in listings 1 and 2. Listing 1 shows an example of HSPL policy definition, which aims to deny
access to the Internet to a certain IoT sensor. Moreover, listing2 shows an example of policy refinement for the previous HSPL
policy. In this case we can see the Interpreter has generated some specific infrastructure information from a most general one
(e.g. get the ip address from the sensor name). This is happening due the policy refinement process requires the resolution of
different high level terms by using different contextual information. The proposed policy refinement process needs to take into
account some extra parameters that fill the lack of information of human concepts defined at HSPL level. To this aim, the set
of extra parameters is defined in what is called Context Information that, together with the HSPL policy, forms the input to the
translation process which will generate the medium-level security policy.
The Context Information maintained and managed by the Control and Management Domain layer of the framework, provides

business dependent data needed to interpret the concepts expressed in the HSPL. The Context Information encompasses the
environmental data retrieved from the enforcement Plane, the monitoring information, along with the real time instantiated
system model, that can bed defined in a common language such as CIM (Common Information Model)26 from DMTF. CIM
provides a modeling mechanism to model different types of information regardless the implementation or repository, indeed,
some operating systems and platforms already support retrieving the current and instantiated status of the system in CIMmodel,
providing detailed information about the system being managed. This description can be used to retrieve information about
which capabilities are provided by different system components, as well as particular network configurations, in order to perform
the policy refinement from HSPL to MSPL. The DTMF also provides other standard models to represent specific components

8 Jorge Bernal BernabeET AL

12/3/2018 155.54.210.172:8000/svg/bPJHQi8m58QlxLC4hpgOBr16OGp71ifaxd8tfydH7eX9I5AXU_ebAbPBhFMc5FBd-_EVSn9el5RDhaAR6R2UE1…

http://155.54.210.172:8000/svg/bPJHQi8m58QlxLC4hpgOBr16OGp71ifaxd8tfydH7eX9I5AXU_ebAbPBhFMc5FBd-_EVSn9el5RDhaAR6R2UE1b… 1/1

Policy Editor Tool

Policy Editor Tool

Policy Interpreter

Policy Interpreter

Security Enablers
Provider

Security Enablers
Provider

Security Enablers
Repository

Security Enablers
Repository

Security Policy
Repository

Security Policy
Repository

Security
Orchestrator

Security
Orchestrator

1 defineHighLevelPolicy()

2 refine(highLevelPolicy)

3 identifyCapabilities()

4 identifyEnablers
(List<Capability>)

5 getEnablers
(List<capability>)

6 List<Enabler>

7 List<Enabler>

8 nonEnforzableAnalysis()

9 early non-enforzable
analysis report

loop [For each capability]

10 generateMediumLevelPolicy
(capability)

11 complete non-enforzable
analysis report>

12 uploadMSPLPolicy(MSPL,List<Enabler>)

13 enforceMSPL(MSPL,List<Enabler>)

FIGURE 2 High to Medium Security Policy language translation

of the underlying virtual environment, such as OVF, VMAN, CIMI and hardware infrastructure (e.g. SMASH, Redfish). For
example, a FilteringPolicy should be applied by a firewall element which has network traffic filtering capabilities, and the needed
extra information such as network IP addresses associated to a user or device identifier can be resolved and obtained from the
instantiated system model.

Listing 1: High Level Policy Example
< t n s : h s p l s u b j e c t=" SensorA " i d="HSPL0" >

< t n s : a c t i o n>n o _ a u t h o r i s e _ a c c e s s< / t n s : a c t i o n>
< t n s : o b j e c t H> I n t e r n e t _ t r a f f i c< / t n s : o b j e c t H>

</ t n s : h s p l>

Listing 2: Medium Level Policy Example
<c o n f i g u r a t i o nR u l e>

<c o n f i g u r a t i o nRu l eA c t i o n x s i : t y p e=" F i l t e r i n g A c t i o n ">
<F i l t e r i n gA c t i o nT y p e>DENY</ F i l t e r i n gA c t i o nT y p e>

</ c o n f i g u r a t i o nRu l eA c t i o n>

<c o n f i g u r a t i o nC o n d i t i o n x s i : t y p e=" F i l t e r i n g C o n f i g u r a t i o n C o n d i t i o n ">
<p a c k e t F i l t e r C o n d i t i o n>

<SourceAddre s s>192 . 1 6 8 . 1 . 1 2< / Sou rceAddre s s>
</ p a c k e t F i l t e r C o n d i t i o n>

</ c o n f i g u r a t i o nC o n d i t i o n>
</ c o n f i g u r a t i o nR u l e>

The second policy refinement process is related the translation fromMSPL policies to specific enablers configurations or tasks,
as sketched in Figure 3 . In this case, after receiving the MSPL policies to apply, the Security Orchestrator selects the enablers
to be effectively deployed and configured, according to the enablers’ requirements, the available resources in the underlying
infrastructure, and optimization criteria. Then, the Security Orchestrator requests to the Policy Interpreter for a refinement
process of theMSPL policies into enabler configurations. In this sense, the Policy Interpreter invokes specific plugins, offered by
the Security Enabler Provider, to translate MSPL policies to specific low-level configuration/tasks for the specific enabler. When
all configurations/tasks capable to enforce the policy are obtained, they are populated and returned to the Security Orchestrator.

Jorge Bernal BernabeET AL 9
12/3/2018 155.54.210.172:8000/svg/bPBBJiCm44NNpLTOMQLI-mCHoWB40gc8Y6xPEEuqZ1HiQpn6vEzn7fLIi4FPM9OzS-wTX_HijFzeW38hYL6XbPf5VWJb2RaNBwJUmJ59DfHVnzIcGzMB9yr0bY2SUGBog6NJ0RatB…

http://155.54.210.172:8000/svg/bPBBJiCm44NNpLTOMQLI-mCHoWB40gc8Y6xPEEuqZ1HiQpn6vEzn7fLIi4FPM9OzS-wTX_HijFzeW38hYL6XbPf5VWJb2RaNBwJUmJ59DfHVnzIcGzMB9yr0bY2SUGBog6NJ0RatB… 1/1

Security Orchestrator

Security Orchestrator

Policy Interpreter

Policy Interpreter

Security Enablers
Provider

Security Enablers
Provider

Security Enablers
Repository

Security Enablers
Repository

1 selectBestEnablers(List<MSPL>,List<Enabler>)

2 translateMSPL(MSPL,enabler)

3 getPlugin(enabler)

4 getPlugin(enabler)

5 enablerPlugin

6 enablerPlugin

7 executePlugin(MSPL,enablerPlugin)

8 populateEnablerConfiguration(SecurityEnablerConfiguration)

9 enforceConfiguration(List<SecurityEnablerConfiguration>)

FIGURE 3 Medium Security Policy language to low level configurations

Listings 3 and 4 provide examples of the low-level configuration obtained by means of the IPTABLES plugin and SDN plugin
for OpenDayLight Controller respectively. Both plugins take as input the MSPL policy defined in listing 2, generating different
outputs depending on the specific technology.

Listing 3: Low Level Conf Example-IpTables conf
∗ f i l t e r
:INPUT ACCEPT [0 : 0]
:OUTPUT ACCEPT [0 : 0]
:FORWARD ACCEPT [0 : 0]
−A FORWARD −p TCP −s 1 9 2 . 1 6 8 . 1 . 1 2 − j DROP
−A FORWARD −p UDP −s 1 9 2 . 1 6 8 . 1 . 1 2 − j DROP
COMMIT

Listing 4: Low Level Conf Example-SDN conf
<flow xmlns=" u r n : o p e n d a y l i g h t : f l o w : i n v e n t o r y ">
<flow−name>Dropper< / flow−name>
<match>
<e t h e r n e t −match>
<type>0x0800< / t ype>
</ e t h e r n e t −match>
<ipv4−s ou r c e> 192 . 1 6 8 . 1 . 1 2 < / ipv4−s ou r c e>
</ match>
<id>Dropper< / i d>
< t a b l e _ i d>0< / t a b l e _ i d>
<apply−a c t i o n s>
<a c t i o n>
<o r d e r>0< / o r d e r>
<drop−a c t i o n />
< / a c t i o n>
</ apply−a c t i o n s>
</ f low>

Regarding the enforcement phase, currently, ANASTACIA encompasses different security enablers that can be enforced in
the system either through the SDN Controller, NFV MANO or the IoT Controller. As virtual security appliances, our pro-
posed framework considers different VNFs deployed through the NFV MANO. Namely, Virtual Firewall, Virtual IDS, Virtual
IPS, Virtual Switch/Router, Virtual Honeypot / Honeynet, Virtual Secure Web Proxy, Virtual VPN, Virtual Bandwidth control.
Additionally, the SDN Controller is in charge of dealing with basic security mechanisms for SDN tasks, such as Traffic Flow
Forwarding, Traffic Flow Dropping, Traffic Flow Mirroring, Traffic Flow Bandwidth Reduction. Finally, the IoT Controller
offers different APIs to deal with basic security mechanisms for IoT, such as Power management, Interface management, Traffic
protection management. The Security enablers provider supports different plugins to generate automatically configurations for
those security enablers.
When the Security Orchestrator receives the configuration for one of the aforementioned security enabler, it must start an

orchestration process accounting for the whole vision of the underlaying infrastructure. The main security orchestration process
is shown in figure 4 . Thus, the Security Orchestrator is in charge of efficiently managing the enforcement over different environ-
ments, such as IoT, NFV, SDN, by interacting with relevant control and management modules. In case of SDN, the Northbound
APIs of the SDN controller can be exploited to require the enforcement of relevant flow rules either in the Infrastructure Domain
or in the VNF domain. The SDN controller will interact with physical/virtual SDN switches to install the required traffic flow
rules. In case that the enforcement affects the IoT domain, then, the IoT Controller manages directly the IoT devices by means
of different interfaces accessed through CoAP over DTLs.

10 Jorge Bernal BernabeET AL

12/3/2018 155.54.210.172:8000/svg/ZP7DJiD038JFx5DOES6XBu2gI8Ye4WVIGwkUk6ot3goKUYl7My7ROtvK9KvIkAx7i_EDVPP4-RX7TZSdpn93F7…

http://155.54.210.172:8000/svg/ZP7DJiD038JFx5DOES6XBu2gI8Ye4WVIGwkUk6ot3goKUYl7My7ROtvK9KvIkAx7i_EDVPP4-RX7TZSdpn93F7aI… 1/1

Security Orchestrator

Security Orchestrator

IoT Controller

IoT Controller

SDN Controller

SDN Controller

NFV MANO

NFV MANO

VNF Domain

VNF Domain

Infrastructure Domain

Infrastructure Domain

IoT Device

IoT Device

1 enforce
(IoTenablerConf)

2 enforce
(SDNenablerConf)

3 enforce
(VNFenablerConf)

4 configure
(IoTenablerConf)

5 configure
(SDNenablerConf)

alt [VNF does not exist]

6 <<create>>

7 configure
(VNFenablerConf)

8 configure
(SDNenablerConf)

FIGURE 4 Security enablers orchestration

The process carried out to instantiate and configure the virtual appliance through the NFV MANO is showed in figure 5 .
The Service Orchestrator (SO) is responsible for end-to-end service orchestration and provisioning. The SO stores the VNF
definitions and NS catalogs, manages workflow of the service deployment and can query the status of already deployed services.
The Resource Orchestrator (RO) is used to provision services over a particular IaaS provider in a given location. It supports
Openstack, OpenVIM, Vmware and AWS. Finally, the VNF Configuration and Abstraction (VCA): module performs the initial
VNF configuration using Juju Charms (SSH access to the VNFs).

SecurityOrchestrator

SecurityOrchestrator

ServiceOrchestrator

ServiceOrchestrator

ResourceOrchestrator

ResourceOrchestrator

VNFConfigurationAbstraction

VNFConfigurationAbstraction

JujuController

JujuController

Openstack

Openstack

VNF

VNF

CreateNetworkService(request)

GetFromCatalog(request.VNFD)

Instantiate(request.VNFD.request.Site)

Create(request.VNF)

Create()

GetState()

VNFState.Running

VNFState.Running

CreateCharm()

Configure(SSH_Credentials)

Configure(VNF.charm)

FIGURE 5 VNF Instantiation and Configuration with NFV MANO

Jorge Bernal BernabeET AL 11

4 USE CASES

The huge amount of IoT devices may cause network congestion, thereby making the system prone and vulnerable to DDoS
attacks when it has been compromised. Besides, the centralized nature of SDN can bring and stress those kinds of availability
and other routing security threats when employed in IoT scenarios, as the controller might become overwhelmed and main
point of failure and hacked. In this regard, distributed and redundant deployment of SDN controllers can minimize the impact
of those attacks. In addition, the massive data exchange required in IoT, the authentication and management of heterogeneous
devices and gateways, as well as the convergence of security policies across different domains, are some others inconveniences
that aggravates the security problems in IoT.
In this regard,27 et al. provides an analysis of security threats and vulnerability for cyber-physical systems. They identified

different attacks at the three main layers, i.e. Physical , Network and Application Layer. Our framework aims at mitigating
mainly networks security threats in IoT. The following attacks and threats can be identified27 at that layer: DDoS, Routing
attack, Sink node attack, Direction misleading attack, Black hole attack, Flooding attack, Trapdoor, Sybil attack, Sinkhole attack,
Wormhole attack, Routing loop attack, HELLO flooding attack, Spoofing attack, Selective forwarding, Tunnel attack, False
routing information.
To cope with those attacks the main countermeasures at network layer, focus nowadays on ensuring confidentiality, integrity

and availability. To this aim, novel end-to-end encryptionmechanism specially devised for IoT at different levels (e.g. 6LowPANs
encryption, Ipsec tunnels, DTLs), including Peer to Peer authentication and key negotiation management, can be orchestrated
and configured on demand as VNFs through our security framework.
Regarding availability and DDoS attacks mitigation, vIDS deployed dynamically as VNFs by our framework can be employed

to detect infected bots, and then dynamically drop the malicious traffic through new SDN flow rules and vFirewalls, enforced
directly in the IoT network by the controller. At the same time, as part of the reaction plan, different operational policies, directly
executed over the IoT devices through the IoT controller, such as switch off the compromised IoT devices, can be enforced to
mitigate the attacks.
The following subsections illustrate two use cases to describe the potential benefits of the proposed framework in realistic

scenarios.

4.1 Exploiting MEC ecosystem against IoT-based attacks
A broad range of IoT-based applications, such as autonomous cars, industrial automation systems, and Tactile Internet, present
demanding requirements in terms of tolerable latency and traffic generation. To face these challenges, the Multi-access Edge
Computing (MEC) paradigm is gaining high momentum, boosting increased processing and storage capabilities towards the
network edge28.
Edge environments can also represent a strategic position in the network infrastructure to enforce security features. Indeed,

accounting for the increased number of attacks related to IoT devices, the IoT system administrators are interested to gain a higher
level of protection. To guarantee the required security features, the Telco operator will adopt the proposed framework within its
system, by appropriately integrating it with the existing network and service mechanisms, such as SDN, NFV, and cloud edge
computing technologies. In this way, the Telco provider will be able to offer advanced Security-as-a-Service solutions, exploiting
its capillary and flexible cloud-based network infrastructure. To meet the security requirements of the IoT systems, virtualized
security network functions, such as Intrusion Detection Systems, can be deployed on-demand over edge nodes. These virtual
network probes can monitor the traffic generated by the IoT devices with increased scalability and send valuable information to
the Monitoring module, which triggers security alerts in case of potential threats. Then, appropriate security countermeasures,
such as the isolation of the compromised IoT devices, can be applied by the Security Orchestrator exploiting SDN capabilities
to dynamically reconfigure the devices’ connectivity. By interacting with the SDN controller, secure network zones are created
enforcing proper rules in the physical/virtual SDN switches deployed at the network edge.
This exemplary use case aims at highlighting how the joint management of NFV and SDN approaches can bring remarkable

benefits to provide on-demand security features in software-based networks. The increased capabilities of Edge infrastructure
can even augment the efficiency of the envisioned security solutions, by enabling prompt reactions near the IoT devices.

12 Jorge Bernal BernabeET AL

4.2 Building Management system use case
In smart buildings, all the electrical and mechanical devices are controlled and monitored by a centralized Building Manage-
ment System (BMS). As part of the supported services, the building usually is equipped with a Heating, Ventilation and Air
Conditioning (HVAC) system which allows to remotely sensors, controllers, actuators, and equipment are accessible via Internet
connectivity. In this way, multiple services, such as remote monitoring, reporting, billing, predictive maintenance, and remote
control, can be enabled by leveraging networked cyber-physical solutions.
However, the BMS system can be subject to many attacks of cybercriminals, breaching commercial buildings such as data-

centers, supermarkets, etc. The proposed security framework provides new methodologies and tools to increase the resilience
of BMS upon cyber-attacks. Various scenarios of cyber-attacks on the network of embedded systems, software systems and
Internet connected devices that are part of the diverse building operations can be envisaged.
For instance, in the scope of the HVAC, our framework will effectively deal with man-in-the-middle attacks, where the

attacker manipulates some sensors introducing corrupted temperature values. This kind of attack in BMS targets might produce
long term financial impact, due to the imagery loss in reaching the set-point. Our proposed framework can detect uncommon
temperatures and the system can react and enforce security policy to isolate the compromised sensor from the rest of the BMS
system, for a time period until further investigation takes place. In addition, as a result of that attack detection, the framework
can react improving the security between certain IoT devices or within devices in some networks, enforcing a security policy
for isolate the sensor or enforce a network channel protection. For instance, DTLS could be dynamically established to protect
the communication among the devices.

5 PERFORMANCE EVALUATION

5.1 PoC Implementation and testbed description
In order to validate the feasibility of our proposal, we have implemented and deployed a Proof of Concept (PoC) of the archi-
tecture defined in Section 3. This PoC allows carrying out tests to evaluate the performance of the solution. In our analysis, we
have focused on the policy-based approach for provisioning SDN-based security mechanisms. Since the enforcement could be
done employing different technologies, we have also compared the SDN approach against a more traditional approach, using a
virtual firewall VNF appliance configured through NETCONF and iptables. By means of the aforementioned technologies, the
testbed starts from a detected man-in-the-middle attack as described in the BMS in 4.2, and deals with it mitigating the attack
by isolating the compromised sensors.
As it can be seen in Figure 6 , the deployment encompasses several interconnected virtual machines covering the functionality

for policy refinement and enforcement in the scope of IoT, NFV, and SDN integration. Specifically, it has been performed using
virtual machines as well as LXC and Docker containers, thereby promoting the re-usability of the following components:

• The Security Orchestrator has been developed in Python and it is in charge of driving the policy refinement through the
Policy Interpreter, indicating the enablers to use and, then, requesting the enforcement of the configurations obtained in
the MSPL to Low level configurations refinement process.

• The Policy Interpreter also has been developed in python, extending the policy models defined on the European project
SECURED29. It performs two different levels of policy refinement, from HSPL to MSPL, and from MSPL to specific
enablers configurations or tasks. For this PoC deployment, we have also developed three different plugins. Two of them
are responsible of the translation from MSPL filtering policy to SDN Controllers Northbound API configuration (both
ONOS and OpenDaylight), and the third one is used to get the IPTables configuration from a MSPL filtering policies. The
proper plugin is chosen by the Security Orchestrator on runtime.

• As SDN Controller, it has been deployed two different virtual machines with ONOS and OpenDaylight respectively. Both
SDN controllers receive from the Orchestrator the configuration rules via Northbound API using their corresponding
JSON models.

• For the enforcement of the filtering policy through SDN we are using a virtual machine running Open Virtual Switch
(OVS), which has been configured connecting with the SDN controller using OpenFlow as SDN protocol.

Jorge Bernal BernabeET AL 13

5

Security
Orchestrator

Interpreter

High to
Medium

Medium
to Low

OVS

Gateway
6LoWPAN

IoT
Application

CoAP

xml/json

xml/json

VMVM

VM VM

VM

VM

Contiki
Emulator

VMVM

NETOPEER

NETCONF

SDN Controller

IoT Domain

FIGURE 6 Virtual Testbed Deployment

• For the enforcement through a more traditional approach, the testbed includes a virtual machine as virtual router running
a NETOPEER NETCONF server. Besides, the Orchestrator has been endowed with a NETCONF client that introduces
the iptables configuration in a yang model and performs the request to the server. In addition, the NETCONF server has
been equipped with a function that receives the IpTables configuration and applies it over the virtual router.

• Regarding the IoT domain, a virtual machine which contains a Cooja Contiki emulator has been deployed, running several
IoT sensors and a border router. The IoT sensors are connected through 6LoWPAN protocol with the border router, which
is connected to the OVS, in the same way as the NETCONF Server.

• Finally, The IoT Application is deployed in a different IPv6 network and can reach the IoT Domain through the virtual
router. In the testbed scenario, the IoT Application is a virtual machine which performs recurrent requests to the IoT
sensors.

Once deployed the architecture, the main use case that has been addressed consists on the enforcement isolation policies
over sensor. Thus, when a security alert about an IoT sensor raises (e.g. the sensor is exceeding the data-rate), the reaction
countermeasure enforces a filtering policy with the aim of isolating the compromised sensor. Namely, the HSPL filtering policy,
enforced by the Orchestrator in real time, indicates to drop all packets coming from the specific sensor. The Orchestrator triggers
the refinement process through the Interpreter, generating a refined MSPL policy. Then, the last translation step from MSPL
to lower configuration is requested, indicating one of the three kinds of enforcement plugins, either through ONOS, ODL or
directly with iptables and NETCONF. Thus, depending on the selected enabler, the Orchestrator will request the corresponding
enforcement to the specific point (SDN Controllers or the virtual router). The testbed ends up with either an installation of a
new IPTABLES filtering rule using NETCONF or an installation of a new SDN filtering flow with OpenFlow, thereby blocking
the communication between the specified sensor and the IoT Application.

14 Jorge Bernal BernabeET AL

5.2 Performance results
Since it is important to react as soon as possible when we are facing an attack, the proposal has been validated by analyzing the
times required for each processes involved in the attackmitigation once the attack has been detected. These are : (i) The time taken
since the policy interpreter receives a HSPL to MSPL refinement requests, until the refinement process has finished providing
the MSPL. (ii) The time taken since the policy interpreter receives the MSPL policy translation requests, until the translation
process has finished providing the security enabler configuration/task. (iii) Finally, the time taken since the Orchestrator requests
the enforcement of the configuration to the Enabler, until the device applies it. While the first two points are measured by
taking the times the APIs take to perform their processes, the last point is different depending on the technology used. In the
NETCONF case, the virtual router responses to the enforcement request once the policies have been enforced. On the other hand,
in the SDN cases, the SDN controller responses when it receives the flows modifications request, so, in this case we decided to
record the flow modification times directly in the virtual switch in order to take the enforcement time as the difference among
the enforcement request and the virtual switch flow modification timestamp. It is also important to highlight the fact that we
have configured both the Northbound API and the Southbound API of the SDN approaches to use SSL in order to set up a fair
comparison with Netconf which also uses SSH.
Regarding the methodology and infrastructure, the tests have been performed enforcing progressively different amount of

policies multiple times for each technology. Specifically, the testbed performs 100 iterations of policy refinement, translation
and enforcement from 1 to 1000 (increments of 200) filtering policies in pro of analyzing the time taken by the main identified
processes, and also for verifying the scalability of the solution. The aforementioned tests have been carried out using separated
virtual machines with Ubuntu 16.04.2 as operating system, Open vSwitch 2.5.2 version as virtual switch, NETOPEER 0.8.0
version as NETCONF server in the virtual router, ONOS 1.9.0 (Junco) version and OpendayLight (Carbon) version as SDN
Controllers respectively. Regarding the IoT domain, the official instant Contiki 3.0 virtual machine has been used for the emulated
sensors. All virtual machines have been configured with one CPU, excepting the interpreter virtual machine that was configured
with two. The virtual machines executing OVS, the Virtual Router and Monitoring have been configured with 256MB of RAM,
while the SDN Controller virtual machines have been configured with 1GB. The Contiki virtual machine was executed with
1.5GB of RAM, and the Orchestrator and the Interpreter with 1.5GB RAM. The whole testbed environment has been deployed
on top of a workstation equipped with Intel Core i7-2600 and 8GB of RAM.

1 200 400 600 800 1000

ODL

Number of policies

T
im

e
(s

)

0
2

4
6

8
10

12
14

HSPL−>MSPL

MSPL−>LOW

Enforcement

FIGURE 7 Testbed Results. Enforcement with ODL.

The main performance results are shown in Figures 7 , 8 and 9 . They show the average time for the HSPL to MSPL policy
refinement process, the translation from the MSPL to the Enabler configuration process and finally, the policy enforcement for
each different considered technology. As it can be seen, since the HSPL to MSPL refinement process is independent of the
underlaying technology, the measures are similar in the different cases, getting the policy refinement for the most expensive case
(1000 policies) in about 10 seconds. On the other hand, since the MSPL to Enabler configuration translation depends on the
complexity of the translation for the specific Enabler technology, the ONOS (Figure 8) and ODL (Figure 7) cases are quite
similar (both use JSONwith similar structures), getting results near to 14 seconds. The iptables translation process (Figure 9) is

Jorge Bernal BernabeET AL 15

1 200 400 600 800 1000

ONOS

Number of policies

T
im

e
(s

)

0
2

4
6

8
10

12
14

HSPL−>MSPL

MSPL−>LOW

Enforcement

FIGURE 8 Testbed Results. Enforcement with ONOS.

1 200 400 600 800 1000

NETCONF−IPTABLES

Number of policies

T
im

e
(s

)

0
2

4
6

8
10

12
14

HSPL−>MSPL

MSPL−>LOW

Enforcement

FIGURE 9 Testbed Results. Enforcement with classical IpTables

faster because iptables sentences are lighter than the JSON generation for the Northbound APIs of the SDN controllers, getting
results near to 12 seconds. As it can be observed, the translation step represents the most heaviest part of the policy deployment
workflow. Finally, regarding the enforcement time in the SDN case, both, ODL and ONOS are getting results below a second,
offering ODL a slightly better handling of the flow management than ONOS. In the NETCONF case, the most expensive use
case obtains results near to 5 seconds, which represents a considerable difference with the previous ones. At this point, it is
important to highlight the NETCONF option uses a SSH channel for each request, whereas in the SDN case, once the TLS
channel is established in the Southbound, it is maintained.
Table 1 provides the average results for each process involved on the policy enforcement and for each underlaying selected

technology. As it can be observed, regardless of the chosen technology, the testbed allows to deploy and enforce a big amount
of filtering security policies in less than 30 seconds. When it comes to the enforcement, the results are also providing a clear
difference among the SDN approaches and the traditional approach, offering the first one a significant improvement. However,
as global result, the time impact in the last case is absorbed by the translation phase, that provides better results.
The framework results can be considered promising, as the solution provides high level of abstraction and governance over the

full infrastructure through the policy enforcement. It can be considered important desirable properties in order to face challenges
like the vast heterogeneity of the IoT domain.
However, the proposal has also different challenges to face due to its complexity. Firstly, from the user perspective, the

administrators should be aware that in return for the benefits provided by the framework, they should now pay attention to
the deployment and maintenance of new modules that did not previously exist in their architecture. Secondly, while high-level
policies are designed to model aspects of coarse grain security, avoiding high technical knowledge, mid-level policies requires
a good knowledge of the models to take advantage of their features. Thirdly, from the architectural point of view, one of the

16 Jorge Bernal BernabeET AL

Technology Refinement Translation Enforcement Total (s)
ODL 10.33 14.01 0.12 24.47
ONOS 10.68 13.28 0.40 24.38

NETCONF 10.43 11.68 5.23 26.35

TABLE 1 1000 Filtering Policies deployment times by technology

challenges, and our ongoing work, is the management of the IoT heterogeneity across different domains. The framework allows
managing inter IoT domain scenarios, with IoT devices located in remote places. Nonetheless, special adapters, and monitoring
agents will need to be implemented and deployed to in particular IoT scenarios to populate a common system and context data
models in order to enable the policy-based network security management described in this paper.

6 CONCLUSIONS

The increased adoption of IoT solutions raise notable security threats, which can bring dramatic consequences over manifold
domains. Accounting for the challenges in terms of scalability and heterogeneity, new security mechanisms are required to
efficiently cope with IoT security vectors. We have presented a novel security framework which aims at providing automated
and self-configurable SDN/NFV-based security mechanisms in IoT scenarios, able to complement conventional approaches. In
particular, the security orchestration plane has been devised to include different abstractions in the security policies management,
thereby improving notably the flexibility in the configuration of the selected security enablers. We have developed a Proof of
Concept of the envisioned architecture to demonstrate its feasibility. The performance assessment has highlighted the benefits
of enforcing SDN-based security countermeasures with respect to conventional approaches.
In our future research activities, wewill extend the evaluation considering additional VNFs and IoT security mechanisms, so to

assess an integrated policy-based orchestration solution.Wewill also analyze the impact in the selection of the enablers according
for the status of the underlying infrastructure and application criteria. Finally, accounting for the potential vulnerabilities of
SDN and NFV environments30 31, we also aim at enhancing the proposed framework with mechanism to guarantee the inherent
security of the envisioned SDN and NFV security enablers.

ACKNOWLEDGMENTS

This work was partially supported by the ANASTACIA project, that has received funding from the European Union’s Horizon
2020 Research and Innovation Programme under Grant Agreement 731558. The research has been also supported by a post-
doctoral INCIBE grant within the "Ayudas para la Excelencia de los Equipos de Investigacion Avanzada en Ciberseguridad"
Program, with code INCIBEI-2015-27363.

Financial disclosure
None reported.

Conflict of interest
The authors declare no potential conflict of interests.

References

1. Atzori Luigi, Iera Antonio, Morabito Giacomo. Understanding the Internet of Things: definition, potentials, and societal
role of a fast evolving paradigm. Ad Hoc Networks. 2017;56:122–140.

Jorge Bernal BernabeET AL 17

2. Sicari Sabrina, Rizzardi Alessandra, Grieco Luigi Alfredo, Coen-Porisini Alberto. Security, privacy and trust in Internet of
Things: The road ahead. Computer Networks. 2015;76:146–164.

3. Taleb T.. Toward carrier cloud: Potential, challenges, and solutions. IEEE Wireless Communications. 2014;21(3):80-91.

4. Farris I., Bernabe J. B., Toumi N., et al. Towards provisioning of SDN/NFV-based security enablers for integrated protection
of IoT systems. In: :169-174; 2017.

5. Luo Tie, Tan Hwee-Pink, Quek Tony QS. Sensor OpenFlow: Enabling software-defined wireless sensor networks. IEEE
Communications Letters. 2012;16(11):1896–1899.

6. Galluccio Laura, Milardo Sebastiano, Morabito Giacomo, Palazzo Sergio. SDN-WISE: Design, prototyping and experi-
mentation of a stateful SDN solution for WIreless SEnsor networks. In: :513–521IEEE; 2015.

7. De Oliveira Bruno Trevizan, Gabriel Lucas Batista, Margi Cintia Borges. TinySDN: Enabling multiple controllers for
software-defined wireless sensor networks. IEEE Latin America Transactions. 2015;13(11):3690–3696.

8. Ali Syed Taha, Sivaraman Vijay, Radford Adam, Jha Sanjay. A survey of securing networks using software defined
networking. IEEE transactions on reliability. 2015;64(3):1086–1097.

9. Sherwood Rob, Gibb Glen, Yap Kok-Kiong, et al. Flowvisor: A network virtualization layer. OpenFlow Switch Consortium,
Tech. Rep. 2009;:1–13.

10. Shin SW, Porras Phillip, Yegneswaran Vinod, FongMartin, Gu Guofei, TysonMabry. Fresco: Modular composable security
services for software-defined networks. In: NDSS; 2013.

11. Shin S., Xu L., Hong S., Gu G.. Enhancing Network Security through Software Defined Networking (SDN). In: :1-9; 2016.

12. Yoon Changhoon, Park Taejune, Lee Seungsoo, Kang Heedo, Shin Seungwon, Zhang Zonghua. Enabling security functions
with SDN: A feasibility study. Computer Networks. 2015;85:19 - 35.

13. Yan Q., Yu F. R., Gong Q., Li J.. Software-Defined Networking (SDN) and Distributed Denial of Service (DDoS) Attacks
in Cloud Computing Environments: A Survey, Some Research Issues, and Challenges. IEEE Communications Surveys
Tutorials. 2016;18(1):602-622.

14. Xu T., Gao D., Dong P., Zhang H., Foh C. H., Chao H. C.. Defending Against New-Flow Attack in SDN-Based Internet of
Things. IEEE Access. 2017;5:3431-3443.

15. Choi Yanghee. Implementation of content-oriented networking architecture (CONA): a focus on DDoS countermeasure.
In: ; 2010.

16. Chakrabarty S., Engels D. W., Thathapudi S.. Black SDN for the Internet of Things. In: :190-198; 2015.

17. Bull P., Austin R., Popov E., Sharma M., Watson R.. Flow Based Security for IoT Devices Using an SDN Gateway. In:
:157-163; 2016.

18. Flauzac O., GonzÃąlez C., Hachani A., Nolot F.. SDN Based Architecture for IoT and Improvement of the Security. In:
:688-693; 2015.

19. Choi Seongho, Kwak Jin. Enhanced SDIoT Security Framework Models. International Journal of Distributed Sensor
Networks. 2016;12(5).

20. ETSI ISG NFV . ETSI GS NFV-SEC 003 NFV; Architectural Framework V1.2.1. 2014.

21. Furfaro Angelo, Garro Alfredo, Tundis Andrea. Towards security as a service (secaas): On the modeling of security services
for cloud computing. In: :1–6IEEE; 2014.

22. Yu Tianlong, Sekar Vyas, Seshan Srinivasan, Agarwal Yuvraj, Xu Chenren. Handling a trillion (unfixable) flaws on a billion
devices: Rethinking network security for the Internet-of-Things. In: :5ACM; 2015.

18 Jorge Bernal BernabeET AL

23. Hafeez Ibbad, Ding Aaron Yi, Suomalainen Lauri, KirichenkoAlexey, Tarkoma Sasu. Securebox: Toward Safer and Smarter
IoT Networks. In: :55–60ACM; 2016.

24. Basile Cataldo, Lioy Antonio, Pitscheider Christian, Valenza Fulvio, Vallini Marco. A novel approach for integrating
security policy enforcement with dynamic network virtualization. In: :1–5IEEE; 2015.

25. Garcia-Carrillo Dan, Marin-Lopez Rafael. Lightweight CoAP-Based Bootstrapping Service for the Internet of Things.
Sensors. 2016;16(3).

26. Common Information Model (CIM), DMTF. http://www.dmtf.org/standards/cim.

27. Gao Y., Peng Y., Xie F., et al. Analysis of security threats and vulnerability for cyber-physical systems. In: :50-55; 2013.

28. Farris I, Taleb T, Flinck H, Iera A. Providing ultra-short latency to user-centric 5G applications at the mobile network edge.
Transactions on Emerging Telecommunications Technologies. 2017;.

29. SECURity at the network EDge https://www.secured-fp7.eu/.

30. Li Wenjuan, Meng Weizhi, Kwok Lam For. A survey on OpenFlow-based Software Defined Networks: Security challenges
and countermeasures. Journal of Network and Computer Applications. 2016;68:126–139.

31. Lal S., Taleb T., Dutta A.. NFV: Security Threats and Best Practices. IEEE Communications Magazine. 2017;PP(99):2-8.

Jorge Bernal BernabeET AL 19

AUTHOR BIOGRAPHY

Alejandro Molina Zarca is currently a PhD student and researcher in the Department of Information and
Communication Engineering University of Murcia (Spain), involved in the H2020 EU project Anastacia. He
received his M.Sc, and Master degree in Computer Science from the University of Murcia in 2012 and 2017,
respectively. His research interests include Internet of Things, Cybersecurity, as well as network virtualization
and softwarization.

Jorge Bernal Bernabe received the MSc, Master and PhD in Computer Science from the University of
Murcia. Currently, he is a Postdoctoral cybersecurity researcher in the University ofMurcia. Author of several
book chapters and more than 35 papers in international conferences and journals. He has been involved in
the scientific committee of numerous conferences and served in the editorial board and reviewer for several
journals. During the last years, he has been working in several European research projects FP7, H2020 , such
as DESEREC, Semiramis, Inter-Trust, SocIoTal, ARIES or ANASTACIA. His scientific activity is mainly
devoted to the security, trust and privacy management in distributed systems and IoT networks

Ivan Farris is currently a researcher at Aalto University, Finland, in the Department of Communications
and Networking, School of Electrical Engineering. He received his M.Sc. degree in Computer and Telecom-
munications Systems Engineering and his Ph.D. in Information Engineering from the University of Reggio
Calabria, Italy, in 2013 and 2017, respectively. His research interests include Internet of Things, Edge
computing, and network softwarization.

Yacine Khettab
Yacine Khettab is currently a research assistant at Aalto University, Department of Networking and Elec-

trical Engineering. He received his Master’s degree at the University of Science and Technology Houari
Boumedinne; Algeria; in Networking and Distributed Systems. His current field of research focuses on
providing Security-as-a-Service using SDN and NFV.

Tarik Taleb is currently a professor at Aalto University, Finland, leading the MOSA!C Lab. He worked
as a senior researcher at NEC Europe Ltd until April 2015. Prior to that, he worked as an assistant profes-
sor at Tohoku University, Japan. He received his B.E. degree in information engineering with distinction,
and his M.Sc. and Ph.D. degrees in information sciences from Tohoku University in 2001, 2003, and 2005,
respectively. His research interests lie in the field of mobile core, mobile cloud networking, network function
virtualization, software-defined networking, mobile multimedia streaming, and social media networking.

Antonio Skarmeta received the M.S. degree in Computer Science from the University of Granada and
B.S. (Hons.) and the Ph.D. degrees in Computer Science from the University of Murcia Spain. Since 2009
he is Full Professor at the same department and University. Antonio F. Skarmeta has worked on different
research projects in the national and international area in the networking, security and IoT area, like Euro6IX,
ENABLE, DAIDALOS, SWIFT, SEMIRAMIS, SMARTIE, SOCIOTAL and IoT6. His main interested is in
the integration of security services, identity, IoT and Smart Cities. He has been head of the research group
ANTS since its creation on 1995. He has published over 200 international papers and beingmember of several

program committees.

	Enhancing IoT Security through Network Softwarization and Virtual Security Appliances
	Abstract
	Introduction
	Background on SDN/NFV-based security enablers for IoT network
	Software-defined network security mechanisms
	Virtualized security network functions

	An SDN/NFV-based Security Framework for IoT
	Architecture overview
	User Plane
	Security Orchestration plane
	Security Enforcement Plane

	Policy refinement and enforcement workflows

	Use cases
	Exploiting MEC ecosystem against IoT-based attacks
	Building Management system use case

	Performance evaluation
	PoC Implementation and testbed description
	Performance results

	Conclusions
	Acknowledgments
	References
	Author Biography

