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AoI and Energy-Driven Dynamic Cache Updates
for Wireless Edge Networks

Yuan Yuan, Bin Yang, Wei Su, Haoru Li, Chang Wang, Qi Liu, Tarik Taleb

Abstract—Wireless edge networks can provide edge services
to support various time-critical Internet of Things (IoT) appli-
cations, like autonomous vehicles, where cache content updates
are significant to maintaining information freshness quantified
as information of age (AoI). However, frequent content updates
result in high energy consumption at the edge nodes. This
paper investigates the cache content updates in wireless edge
networks, aiming to ensure information freshness and low energy
consumption. To this end, we propose a rainbow deep reinforce-
ment learning-based cache content update scheme (RB-DRN).
In the RB-DRN scheme, we first establish a Markov Decision
Process (MDP) to characterize the process of cache update. By
fully taking advantage of R-Learning empowered Rainbow DQN,
we then make optimal strategy to obtain the minimum long-
term average overhead associated with energy consumption and
information freshness. Extensive simulation results are presented
to validate our proposed RB-DRN scheme and also to illustrate
that our RB-DRN scheme outperforms the benchmark scheme
in terms of information freshness and energy consumption.

Index Terms—Wireless Edge Networks, Internet of Things, Age
of Information, Cache Update, Rainbow DQN.

I. INTRODUCTION

W IRELESS edge networks (WENTs) are a promising
class of edge network architecture where multi-access

edge computing (MEC) techniques are utilized through placing
sensing nodes with the ability to compute and store on the
edge side of the network close to end users, thereby reducing
access to central cloud server resources [1]–[7]. Such networks
have been identified as a new paradigm for supporting various
compute-intensive and delay-sensitive Internet of Things (IoT)
applications, such as the Internet of Vehicles (IoV), augmented
reality (AR), virtual reality (VR), and extended reality (XR)
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[8]–[12]. In particular, the sensing nodes need to perform
frequent cache updates to maintain information freshness in
IoV applications [13]–[17]. However, this will incur high
energy consumption for the energy limited-sensors equipped at
the sensing nodes. Thus, it is critical to explore dynamic cache
update scheme while ensuring information freshness and low
energy consumption in WENTs [18]–[20].

Existing works on dynamic cache updates mainly considers
resource scheduling [21]–[27] and status updates [28]–[34] in
WENTs (See Section III for details). The above works on
dynamic cache updates mainly study the issues of age of infor-
mation (AoI), latency and energy via resource scheduling and
status updating using mathematical optimization algorithms
and learning algorithms, such as these works summarized in
Table I. Note that the cache tasks are assumed to have the
same priority in these works. However, the cache tasks usually
employ different priorities in real scenarios [35]–[38]. For
example, fire alarms have high priority because such alarm
tasks require a timely response, but temperature and humidity
sensors have lower priority because they are not so sensitive to
delay. This means that system will assign more resources (e.g.,
transmit power) to the edge nodes with high priority tasks.
Moreover, these works mainly adopt heuristic algorithms and
traditional learning algorithms. The former cannot perceive the
environmental information, while the latter suffers from either
dimensional catastrophe (e.g., the Q-learning algorithms) or
sample non-smoothness and hyper-parameter sensitivity (e.g.,
the deep Q-learning algorithms) [39]–[41]. In particular, it is
of vital importance to maintain information freshness and low
energy consumption for supporting various time-critical and
energy-sensitive applications, like autonomous vehicles.

Motivated by the above observations, we explore the cache
dynamic update problem in a WENT with one base station
(BS), one edge server, multiple sensing nodes and users, which
aims to provide users with cached content with high informa-
tion freshness while guaranteeing low energy consumption. In
our considered network, the AoI is of fundamental importance
to qualify the information freshness for supporting time-
critical assisted driving services (e.g., dynamic high-definition
maps files). To keep information freshness, the service content
needs to be frequently updated, which results in high energy
consumption at sensing nodes with limited energy. To achieve
our goal, traditional optimization methods need to acquire
global network information (e.g., channel state information)
in advance. Therefore, such methods lead to large signaling
overhead, and could also not achieve an effective solution
in highly dynamic environments (e.g., vehicles’ mobility).
Remarkably, we propose a Rainbow Deep Reinforcement
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TABLE I
COMPREHENSIVE COMPARATIVE ANALYSIS OF DYNAMIC CACHE UPDATES.

Comparison
metrics

[21] [24] [27] [28] [31] [33] [34] The proposed
scheme

Optimization Method (M) (M) (L) (M) (L) (L) (L) (L)

Status Updating − − − ✓ ✓ ✓ ✓ ✓
Resource Scheduling ✓ ✓ ✓ − − − ✓ ✓
Objective of Latency ✓ − − − − − ✓ ✓

Objective of AoI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Objective of Energy − ✓ ✓ ✓ ✓ ✓ ✓ ✓
Objective of Priority
and Antennas Power

− − − − − − − ✓

1 (M): Optimization scheme based on mathematical optimization algorithm. (L): Optimization scheme based on learning algorithm.
2 Symbol ✓ indicates a high relevance. Symbol − indicates a low relevance.

Learning-based cache content updating scheme (RB-DRN) to
achieve the minimum long-term average overhead associated
with energy consumption and information freshness, in which
RB-DRN can utilize historical information to make predictions
without instantaneous network information and efficiently re-
duce signaling overhead.

It is worth noting that we consider the edge networks are
made of multiple BSs, multiple edge servers and multiple
mobile users, where each server equipped at a BS serve a
group of mobile users independently. Without loss of gener-
ality, we only focus on the scenario with one BS, one edge
server and multiple users in this paper, which is widely used
in previous works [21], [23], [51], [52]. This is because the
high-definition maps (HDM) files requested by mobile users
does not require too much storage space. The edge server,
which provide powerful computation and storage capabilities,
can meet mobile users’ needs. Our concerned network serves
as a human-vehicle collaborative assisted driving system. The
sensing node can actively update the cache content once if
the AoI of the cache content exceeds a given threshold or the
cache content cannot meet the need of user request. When
a significant change of its sensing environment (e.g., traffic
accident) occurs, a human driver can also collaboratively
control the vehicle. We summarize the main contribution of
this paper as follows.

• We define an average system overhead function consist-
ing of AoI demand overhead, system energy consump-
tion overhead, antenna power allocation overhead, and
task priority matching overhead. We formulate AoI and
energy-driven dynamic cache update as an optimization
problem aiming to minimize the average system overhead
with the constraint of the maximum tolerance value of
AoI.

• To solve this optimization problem, we then model the
joint resource scheduling and status updating of dynamic
cache update as a Markov Decision Process (MDP),
which characterizes the state space including AoI value,
power of antenna and task priority. The information
transmission failure probability and the constraints of
link rate and the number of updates are also carefully
considered in this MDP.

• We further propose a rainbow deep reinforcement learn-
ing based cache content update scheme (RB-DRN) to
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Fig. 1. Motivating scenario.

solve this optimization problem. Notably, by fully taking
advantage of R-Learning empowered Rainbow DQN, we
can obtain the optimal decision of MDP to maximize the
average system utility.

• Finally, we conduct extensive simulation studies to vali-
date our proposed RB-DRN scheme and to demonstrate
the impact of parameters on average system overhead. We
also conduct the comparison study between our proposed
scheme and some benchmark methods.

The rest of the paper is organized as follows. Section II
indicates the motivating scenario. Section III describes related
works. Section IV introduces the system model in the WENT
scenario. Section V formulates an optimization problem with
the aim to minimize the system overhead. In Section VI, we
propose the dynamic cache update scheme to solve this opti-
mization problem. Simulation results are provided in Section
VII. Finally, Section VIII concludes this paper.

II. MOTIVATING SCENARIO

As shown in Fig. 1, we provide a motivation example
including input data and expected outputs in which there is
a WENT consisting of a base station (BS), an edge server,
10 sensing nodes, and 100 mobile users (e.g., vehicles) within
the coverage area of BS. The vehicles in the network need
to request the HDM files generated by the sensing nodes for
assisted driving. It is noted that these HDM files need to satisfy
the need for information freshness, but frequent refreshing
of sensing nodes will incur a high energy overhead. For this
reason, the information freshness for the vehicle’s HDM file
should be satisfied while keeping the sensing node refresh
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frequency low. This means that the WENT needs to ensure
information freshness and low energy consumption, which
are measured by a utility function. A large utility function
value indicates high information freshness and low energy
consumption. Thus, this paper aims to maximize the utility
function. We will provide the input and output data for the
example.

For the input data, we give the following settings. Within
the coverage area of BS, there are 10 sensing nodes for
sensing road traffic information and generating dynamic HDM
files. In this case, the size of each HDM file is 1 MB. All
HDM files will be updated to the edge server through uplink
(orange line in Fig. 1) caching to supply vehicle request
services. Since there will be competition among multiple
sensing nodes transmitting data at the same time, we limit
the number of transmitted contents to no more than 5. The
energy consumption required for each update of the sensing
nodes is 10 mW. Vehicles request HDM files through the
downlink (blue line in Fig. 1). The channel bandwidth is 5
MHz, and the transmit power of the BS antenna is 0.5 W. The
channel capacity is 3 Mbps. There is a timeliness in HDM, and
the content with fresher information will be more helpful to
the vehicle. However, frequent updates will cause very high
energy consumption overhead. Therefore, it is necessary to
manage the updating process of HDM. At the same time,
differentiated resource allocation can be made according to
different priorities of vehicles. In Fig. 1, high-priority vehicle
A requests HDM files from sensing node B and sensing node C
at 3:00 a.m. If the edge server has cached the requested content
originated from the sensing nodes, the content (e.g., the HDM
file generated by sensing node B) is directly transmitted to the
vehicle A via downlink. Otherwise, the edge server requests
to update the cached content (green line in Fig. 1) and then
transmit it to the vehicle after the sensing node (e.g., the
sensing node C) has uploaded the content. As for the expected
outputs, the system outputs the maximum utility function value
(i.e., -25 in this example) by jointly optimizing cache updates
and resource allocation.

III. RELATED WORK
In WENTs, MEC is an efficient resource management

method to provide cache update services. Available dynamic
cache update studies mainly consider resource scheduling
[21]-[27] and status updating [28]-[34].

For the resource scheduling, the authors in [21] propose
a freshness-aware refreshing and transmission resource allo-
cation scheme to balance the service delay and information
freshness measured by age of information. The authors in [22]
prove that the AoI and delay can be minimized simultaneously
in a short-packet transmission scenario, where these two
performance metrics are affected by update rate and block
length in a complex manner. Two schemes are proposed in
[23] for cache update and content delivery at the roadside
units, which can significantly reduce service latency while
ensuring content freshness in heavily loaded information-
centric vehicular networks. In [24], the authors propose age-
minimal transmission policies for a two-hop energy harvesting

communication network, and indicate that the data buffer of
the relay should not store any update packets waiting for
service under the optimal update policy. The work of [25]
examines the age-energy tradeoff in an IoT monitoring system
through adopting a practical truncated automatic repeat request
scheme. Under such a scheme, when the transmission times
does not reach its maximum or a new status update is not gen-
erated, the IoT device can always transmit the current status
update. In [26], the authors explore the energy-AoI tradeoff for
a status update system where a sensor generates and transmits
status packets to a monitor over an error-prone channel. The
authors in [27] propose an optimal transmission scheme to
achieve the minimization of the weighted communication on
AoI and total energy consumption.

As for the status updating, the authors in [28] aim to
minimize the average AoI at a destination with the con-
straint of energy causality at an energy harvesting sensor.
Here, the sensor continuously monitors a wireless commu-
nication system and transmit time-stamped status updates to
the destination. In [29], the authors first model an IoT-based
multi-source status update system as a multi-source M/G/1/1
bufferless preemptive queue, and then optimize the arrival
rate allocation to control the maximal violation probabilities
improving the overall timeliness of the multi-source system. In
[30], the authors propose a context-based metric (i.e., Urgency
of Information) to measure the nonlinear time-varying impor-
tance and the non-uniform context-dependence of the status
information. In a real-time IoT monitoring system, the work
of [31] jointly optimizes the status sampling and updating
process to minimize the average AoI at the destination with
the constraint of an average energy cost at each device. The
work of [32] considers a scenario of cognitive radio energy
harvesting communications and explores the average AoI
minimization under such a scenario. In [33], the authors focus
on striking a balance between the information freshness and
energy consumed by sensors in a caching enabled IoT network
which is formulated as a non-uniform time frame based
dynamic status update optimization problem to minimize the
long-term average overhead. In [34], a deep reinforcement
learning-based algorithm is proposed to solve the content
update and transmission resource allocation problem with the
goal of minimizing the long-term average overhead.

We summarize the characteristics of some representative
works mentioned above in Table I.

IV. SYSTEM MODEL

A. Network Model

As shown in Fig. 2, we consider a WENT consisting of
a BS, an edge server, M sensing nodes, and multiple mobile
users (e.g., vehicles) within the coverage area of BS. The edge
server equipped at BS is considered as a core network entity to
cache HDM files with different file sizes for mobile users, and
also dynamically updates HDM files obtaining from sensing
nodes to ensure information freshness. Specifically, the HDM
files for assisted driving can provide road condition informa-
tion, pedestrian flow information and rules for lane-changing
driving. Sensing nodes embedded with roadside sensors are
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responsible for sensing dynamic environmental information
and generate HDM files. Due to the limited communication
range of sensing nodes, we consider mobile users obtain HDM
files from the edge server rather than the sensing nodes. For
supporting assisted driving, the mobile users request HDM
files with different priorities (i.e., task priority identifier Vn(t)
for user n at time frame t, which is used to quantify the
priority of user n in obtaining transmit power resources.).
Here, the mobile users with higher priority can obtain more
transmit power resources in Zn(t), which is the number of
base station’s transmit power resource blocks assigned to user
n at time frame t. It is used to quantify the transmit power
allocated to user n by the BS in the downlink. In the WENT,
there exist two types of communication links, i.e., downlink
from BS to each mobile user, and uplink from each sensing
node to BS. We consider that the BS is equipped with multiple
orthogonal antennas adopting multiple-input multiple-output
(MIMO) technique, where each antenna communicates with
one mobile user using equal-sized spectrum resource with the
constraint of maximum transmit power pmax.

It is notable that our WENT is critical to support assisting
driving for connected vehicles. mobile users, i.e., vehicles,
input requests for assisted driving (i.e., input data including
file sizes, transmission capacity, energy consumption, etc), and
then the edge server in the WENT outputs HDM files to the
mobile users for helping assisted driving system in making
decisions (i.e., expected outputs for assisted driving decisions).
The execution process is as follows.

Mobile user n first requests an HDM file cached at the
edge server with request identifier Dm

n (t) (i.e., User n request
identifier Dm

n (t) for sensing node m at time frame t, which
is used to quantify the state of user n when generating HDM
file requests).

The edge server then judges whether the freshness of the
HDM file (i.e., the AoI value of the HDM file from sensing
node m by user n at time frame t) meets the mobile user’s
needs with update identifier Im(t) (i.e., update identifier Im(t)
for sensing node m at time frame t, which is used to quantify
the actions of the sensing node m when updating the HDM
file). If yes, the edge server sends the HDM file (with different
file sizes Fm for mobile users) directly to the mobile user
via the downlink transmission with the downlink transmission
rate Rn(t) between the edge server and user n. Otherwise, the
edge server requires a sensing node to update the content of the
HDM file. Note that the downlink transmission latency τ tran (t)
represents the time consumption for the edge server to deliver
the cached HDM file with user n at time frame t, and the
energy consumption Eupd represents the energy consumption
for each sensing node m update operation. The sensing node
updates the content and then sends the HDM file to the edge
server via uplink transmission.

Finally, the edge server sends it to the mobile user. This
execution process can maintain high information freshness of
HDM files and low system energy consumption by a joint
optimization of the HDM file update scheme of sensing nodes
and power resource allocation with overhead function. Note
that we construct an overhead function consisting of AoI
demand overhead CA, system energy consumption overhead

Wireless Edge Networks (WENTs)

High PriorityHigh Priority

Low PriorityLow Priority

UplinkUplink

DownlinkDownlink

Base StationBase Station

Edge ServerEdge ServerSensorsSensors UsersUsers

CacheCache

Cache Queue Time StepCache Queue Time Step

Wireless Edge Networks (WENTs)
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Fig. 2. Edge service network scenario.

CE , antenna power allocation overhead CP , and task priority
matching overhead CV .

B. Cache-Updated Model

We use N={1, 2, ..., N} and M={1, 2, ...,M} to represent
the sets of the mobile users and sensor-equipped sensing
nodes, respectively. The set of task requests from the user
n within the time frame t can be represented as Dn(t) =
{D1

n(t), D
2
n(t), ..., D

m
n (t), ..., DM

n (t)}, where m ∈ M. Here,
Dm
n (t) = 1 indicates that the user n sends a content

caching request to the sensing node m in the time frame t,
and Dm

n (t) = 0 indicates that there is no content caching
request. The edge server needs to conduct an appropriate
scheme for real-time AoI of the content caching after receiving
the request, which can be represented by the set I(t) =
{I1(t), I2(t), ..., Im(t)..., IM (t)}. Here, Im(t) = 0 means that
the edge server delivers the cached content directly to user
n, and Im(t) = 1 means that the edge server will update the
cached content immediately.

To avoid uplink channel congestion, we use Y to denote the
upper bound of the number of updated content, and then

M∑
m=1

Im(t) ≤ Y. (1)

C. Performance Model

1) AoI Model: The real-time information freshness of
cached content depends on the decision of cache updating.
We will construct AoI model to characterize the information
freshness of different users with different sensing nodes in
the same time frame. The information freshness of cached
content is affected by the cache updating time consumption
and the transmission latency (i.e., uplink transmission latency
and downlink transmission latency). Meanwhile, we define the
maximum allowable value of AoI as Amax for the cached
content. When the value of AoI exceeds Amax, the cached
content will be updated
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TABLE II
DEFINITION OF MATHEMATICAL SYMBOLS

Symbol Definition
Dm

n (t) User n request identifier for sensing node m at time
frame t. It is used to quantify the state of user n when
generating HDM file requests.

Im(t) Update identifier for sensing node m at time frame t. It
is used to quantify the actions of the sensing node m
when updating the HDM file.

Vn(t) Task priority identifier for user n at time frame t. It
is used to quantify the priority of user n in obtaining
transmit power resources.

Am
0 (t) The AoI value of the HDM file from sensing node m in

the edge server at time frame t.
Am

n (t) The AoI value of the HDM file from sensing node m by
user n at time frame t.

Fm The size of the HDM file from the sensing node m.
hn The channel gain between user n and edge server.

Rn(t) The downlink transmission rate between the edge server
and user n at time frame t.

τ
upd
m (t) The uplink transmission latency from the sensing node

m to the edge server at time frame t.
τ tra
n (t) The downlink transmission latency for the edge server to

deliver the cached HDM file with user n at time frame
t.

Amax The maximum tolerance AoI value for all HDM files.
αn The intelligent level of users.

∆m
n (t) The AoI demand value of the HDM file from the sensing

node m by user n at time frame t.
∆n(t) The average AoI demand overhead of user n for all HDM

files at time frame t.
Eupd The energy consumption for each sensing node m update

operation.
Zn(t) The number of base station’s transmit power resource

blocks assigned to user n at time frame t. It is used to
quantify the transmit power allocated to user n by the
base station in the downlink.

p0 The transmit power resources contained in a unit transmit
power resource block. In the case of multiple resource
blocks, the base station will provide transmit power in
multiples of the number of resource blocks.

pmax The maximum power of an antenna.
p

sup
n (t) The power supplied to the user n by the antenna at time

frame t.
B The bandwidth size of each antenna assigned to a single

user.
CA The AoI demand overhead.
CE The energy consumption overhead.
CP The antenna power allocation overhead.
CV The task priority matching overhead.
η The unit price of CA. It is used to quantify the impact of

HDM file’s information freshness on system overhead.
µ The unit price of CE . It is used to quantify the impact

of energy consumption of sensing nodes on the system
overhead.

κ The unit price of CP . It is used to quantify the impact
of the power resources provided by the base station on
the system overhead.

ζ The unit price of CV . It is used to quantify the impact
of the additional overhead of task priority matching on
the system overhead.

We further need to distinguish between AoI values for edge
server or mobile users. Fig. 3 shows how the AoI of an HDM
file at the edge server varies with the time t. In Fig. 3, the
vertical axis represents the AoI value of an HDM file stored
at the edge server, and the horizontal axis represents the time
lapse t. Amax represents the maximum allowable value of
AoI. τ upd

m (t) represents the uplink transmission latency of an
HDM file from a sensing node to the edge server. The initial

t

A
oI

(t )

time slot 

Fig. 3. The variation of AoI at the edge server.

value of AoI is the time duration from time when the sensing
node generates the HDM file to the time when the file is
received by the edge server, which is equal to the transmission
latency τ upd

m (t). We can observe from Fig. 3 that in the initial
phase, the value of AoI increases linearly as t increases. At
the moments t′1, t′2 and t′3, the AoI immediately returns to
the initial value and then increases again. In particular, the
value of AoI at moment t′3 is significantly different from other
two moments. The reasons behind these phenomena can be
explained as follows. Starting from an initial value, AoI is
actually a function of time t with a slope of 1, and thus
it increases linearly with t. When t increases up to t′1 and
t′2 moments, the user requests to update the HDM file, and
then the edge server experiencing τ upd

m (t) transmission latency
receives the updated HDM file from the sensing node. On the
other hand, when the AoI achieves its maximum allowable
value at t3 moment, and then the edge server needs to request
an update of the HDM file from the sensing node. Thus, the
AoI continues to increase τ upd

m (t) with t, and then returns to
the initial value τ upd

m (t) when t reaches t′1, t′2 and t′3 moments.
To better design the cached content update scheme, we

formulate the rule that the AoI of all cached content cannot
exceed the maximum value Amax. Otherwise, an update will
be forced as bandwidth allows. Regarding the content from the
sensing node m, there exist two cases for the AoI value Am0 (t)
of the content stored in the edge server. One case is determined
by the duration of the previous time frame. In this case, the
cache update is performed at the previous time frame. Another
case is determined by the sum of the previous information
freshness and the duration for the last time frame. However,
the value of AoI cannot exceed Amax in the second case or
it will be replaced. Among them, Am0 (t) can be expressed as

Am0 (t) =

{
Tspan(t− 1), if Im(t− 1) = 1
min {Am0 (t− 1) + Tspan(t− 1), Amax} , otherwise

(2)
where Tspan(t) represents the duration of the time frame t.

For mobile users, they need to obtain the cached information
from the edge server. Therefore, the AoI value at this time
depends on the freshness of the content and the transmission
latency between devices. For a user n requesting the content
cached by the sensing node m, the corresponding AoI value
Amn (t) contains two cases. One case is determined by the
information freshness of the content on the server and the
downlink transmission latency. In this case, no cache update
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is performed at the beginning. Another case is determined by
the time consumption consisting of the downlink transmitting
and content updating. In this case, cache update is performed
at the beginning. Among them, Amn (t) can be expressed as

Amn (t) =

{
Am0 (t) + τ tra

n (t), if Im(t) = 0

τ tra
n (t) + τ upd

m (t), otherwise
(3)

where τ upd
m (t) represents the uplink transmission latency for

sensing node m to update a single task with the edge server,
and τ tra

n (t) represents the downlink transmission latency for
the edge server to deliver cached content with user n. In the
following, we describe the calculation procedure of these two
transmission latencies.

In our network model, the transmit power of any antenna
can be flexibly controlled through adjusting task priority
and the number of resource blocks. The number of power
resource blocks Zn(t) allocated to each user is not fixed.
Specifically, we model continuous power resources as discrete
power resource blocks, each of which is p0. The allocation
of power resource blocks is based on the optimal decision
introduced in Section V. The transmit power psup

n (t) of the
antenna is given by

psup
n (t) = Vn(t)Zn(t)p0 (4)

where Vn(t) is the task priority of user n, Zn(t) is the number
of resource blocks assigned to user n, and p0 is the power
resources contained in a unit resource block.

The number of resource blocks allocated to all N users does
not exceed G, and then

N∑
n=1

Zn(t) ≤ G. (5)

Therefore, the downlink transmission rate Rn(t) is deter-
mined by the transmit power, channel gain, channel bandwidth,
and noise power, which can be expressed as

Rn(t) = B log2

(
1 +

psup
n (t)|hn|2

σ2

)
(6)

where B is the channel bandwidth of the base station, psup
n (t)

is the power provided by the antenna to the user n, hn is
the channel gain between user n and base station, and σ2

is noise power. Since we consider an orthogonal frequency-
division multiple access (OFDMA) system, there is no channel
interference. A signal received at each user can be successfully
decoded if and only if the transmission rate from BS to the
user is greater than some threshold value RT , i.e.,

Rn(t) ≥ RT . (7)

Then, the downlink transmission latency can be expressed as

τ tra
n (t) =

Fm
Rn(t)

(8)

where Fm is the file size of the cached content, and Rn(t) is
the downlink transmission rate.

For the uplink, we use τmupd to denote the update latency of
any task at sensing node m. Then, the update latencies of all
tasks are denoted as a set Tupd = {τ1upd, τ

2
upd, ..., τ

M
upd}. We use

τmax to denote the maximum tolerable latency of the task.
This means that when the update latency of the task is greater
than τmax, the task update is failed.

2) Energy Consumption Model: In the WENT, the energy
is mainly consumed at the edge server and sensing nodes.
Since edge server usually has a stable power supply, we
only consider the energy consumption at sensing nodes. In
particular, the energy consumption of sensing nodes consists
of the energy of state sensing Esen and the energy of content
uploading Eup. We use Eupd to denote the energy consumption
required for each content update, i.e., Eupd = Esen + Eup.
Then, the total energy consumption Etot(t) of the WENT can
be expressed as

Etot(t) =

M∑
m=1

Im(t)Eupd. (9)

V. PROBLEM FORMULATION

A. Overhead Function

We construct an overhead function consisting of AoI de-
mand overhead CA, system energy consumption overhead
CE , antenna power allocation overhead CP , and task priority
matching overhead CV . The overhead function Ktot(t) of the
system in time frame t can be expressed as

Ktot(t) = ηCA + µCE + κCP + ζCV (10)

where η is the unit price of the AoI demand overhead, µ
is the unit price of the energy consumption overhead, κ is
the unit price of the antenna power overhead, and ζ is the
unit price of the priority matching overhead. Note that the
prices here are all dimensionless units, and different prices
imply tradeoffs between different overheads. Unit price plays
the role of weight in the overhead function, which affects
the importance metrics of different components and thus the
performance of the average system utility. By adjusting the
prices, a balance can be found between different components
to achieve a comprehensive optimization of the system. For
example, choosing the option with a higher price for energy
consumption will extend the battery life of the device and
reduce the energy consumption, but may lead to higher AoI.
Choosing the option with higher AoI price will improve
response time and quality of service, but may lead to higher
energy consumption. In this scheme, we pay more attention
to the impact of AoI and system energy consumption, so we
give a larger weight. The antenna power allocation overhead
and priority matching overhead are considered as additional
overheads, so they are given less weight.

Now we need to determine CA, CE , CP , and CV , respec-
tively. The AoI demand overhead CA is determined by the
intelligence level of network-connected user n and the average
demand value of AoI. First, we use ∆m

n (t) to denote the AoI
demand value, which can be expressed as

∆m
n (t) = |Amn (t)−Asta| (11)

where Amn (t) is the AoI in real time, and Asta is the optimal
AoI value for each user. We consider the long-term average
benefit of the system. Thus, the average AoI demand value
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of user n for all caching content in the time frame t can be
expressed as

∆n(t) =
1∑M

m=1D
m
n (t)

M∑
m=1

∆m
n (t)Dm

n (t). (12)

We further give the AoI demand overhead CA of all users as

CA =

N∑
n=1

αn∆n(t) (13)

where
∑N
n=1 αn = 1, αn ∈ [0, 1], and the value of αn depends

on the intelligence level of the network-connected user.
The system energy consumption overhead CE represents the

total energy consumption that equal to the sum of the energy
consumption required for each task given in (9).

The antenna power allocation overhead CP is defined as
the sum of the power allocated to each antenna. There are N
antennas equipped at the edge server. Each user can get several
power resource blocks for data transmission. The transmit
power of each antenna belongs to [0, pmax], and can be
adjusted via changing the number of resource blocks based on
task priority. High priority tasks are allocated more resource
blocks. Then, we can determine CP as

CP =

N∑
n=1

M∑
m=1

Dm
n (t)psup

n (t) (14)

where psup
n is the power of each antenna.

The task priority matching overhead CV represents the
additional overhead introduced by considering the priority,
which is determined as

CV =

N∑
n=1

ρVn(t) (15)

where ρ is the costing factor for priority. In the overhead
function, priority matching overhead is an additional overhead
incurred by users’ priority allocation. Specifically, the high
priority users can be allocated more transmit power resources.
To obtain priority, these users need to pay fee to the resources’
provider, resulting in the priority matching overhead.

B. Optimization Problem
We focus on the long-term average benefit of the system,

and thus the average system overhead is given by

Kave = lim
T→∞

1

T
E(

T∑
t=0

Ktot(t)). (16)

Our objective is to minimize the average system overhead,
which can be formulated as the following constrained opti-
mization problem,

P1 : min Kave (17)
s.t. Am0 (t) ≤ Amax, m ∈M (17a)

M∑
m=1

Im(t) ≤ Y (17b)

N∑
n=1

Zn(t) ≤ G (17c)

where constraint (17a) represents that the AoI value Am0 (t) of
all cached content cannot exceed the maximum value Amax
or an update will be forced, constraint (17b) represents the
upper bound of the number of updated content, and constraint
(17c) represents that the number of resource blocks allocated
to all N users does not exceed G.

It is usually challenging to solve the nonlinear and noncovex
optimization problem. In the next sections, we propose an RB-
DRN scheme to solve this problem.

VI. DYNAMIC CACHE UPDATE SCHEME

This section first establishes an MDP to characterize the
cache update process, including joint resource scheduling and
status updating. Then we propose an RB-DRN algorithm to
solve the optimization problem and analyze its time complex-
ity.

A. MDP Model

We construct the cache updating and resource scheduling
process as an MDP process defined by the quaternion tuple
⟨S,A, P, U⟩, where S, A, P and U denotes the state space,
action space, state transition probability and utility function,
respectively. The specific process is described as follows.

• State Space S: s(t) = (A0(t), A1(t), ..., AN (t),
V1(t), ..., VN (t)) is defined as the system state at time
frame t, which is composed of the real-time AoI value
on the edge server A0(t) = (A1

0(t), A
2
0(t), ..., A

M
0 (t)),

the real-time AoI value of the user An(t) =
(A1

n(t), A
2
n(t), ..., A

M
n (t)), n ∈ N and the task priority

Vn(t) for each user. The state space S is finite due to the
following two constraints: the maximum tolerance AoI
value and the task priority-based resource allocation.

• Action space A: a(t) = (I1(t), I2(t), ..., IM (t),
Z1(t), Z2(t), ..., ZN (t)) is defined as the system action
set A in time frame t, which represents the content update
decision of the sensing node.

• State Transition Probability P: P = S×A×S → [0, 1]
represents the distribution of the transition probability
P (s′ | s, a) from the system state s to a new system state
s′ (s, s′ ∈ S) when an action a ∈ A is chosen, which is
mainly affected by environmental changes, such as the
user’s request arrival rate, the priority of cache items, the
threshold for antenna power, and the transmission failure
probability, etc. It is worth noting that the probability
of exploring the unknown environment can be modeled
through a noisy network layer.

• Utility Function U: S×A→ U represents a mapping re-
lationship between an input state-action parameter and an
output utility value U(s(t), a(t)). We aim at minimizing
the long-term average overhead Kave given in Eq. (17).
Then, the value of the utility function can be defined as
U(s(t), a(t)) = −Kave.

Here, we describe the strategy π by the agent (i.e., edge
server) action a(t) ∈ A and the system state s(t) ∈ S. Then,
the optimal strategy π∗ with state s(t′) is given by
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π∗ = argmax
π

lim
T→∞

1

T
E

[
T∑
t=0

U(s(t), a(t)) | s(t′)

]
. (18)

B. RB-DRN Algorithm

The constructed MDP model can characterize the impact
of the content update decisions on the system utility function.
Thus, we need to design an efficient cache update scheme for
achieving the highest utility.

Since partial reinforcement learning approaches explore the
long-term average return of the system, we propose a dynamic
cache content update scheme (RB-DRN) by combining R-
learning [42] with Rainbow DQN method. We improve on
the state-value function Vπ(s) of the DQN-based algorithm as

Vπ(s) = E

[ ∞∑
T=0

(U(s(t+ T ), π(t+ T ))− U) | s(t)

]
(19)

and the action-value function Qπ(s, a) can be expressed as

Qπ(s, a) = E

[ ∞∑
T=0

(U(s(t+ T ), a(t+ T ))− U) | (s, a)

]
(20)

where U represents the long-term average utility of taking
strategy π, which can be expressed as

U = lim
T→∞

1

T

∞∑
T=1

U(s(t+ T ), π(t+ T )). (21)

The advantage function Gπ(s, a) under each action a satisfies
the following equation

Qπ(s, a) = Vπ(s) +Gπ(s, a)−
1

|A|
∑
a′∈A

(s, a′). (22)

The optimal strategy π∗ of MDP can be acquired by using the
Bellman function as follows

Vπ∗(s) = max
a∈A

Qπ∗(s, a). (23)

The framework of our dynamic cache update scheme is
depicted in Fig. 4.

In our proposed algorithm, we update the state-action value
function at each time frame as

Qπ(s, a; θ1, θ2) = Vπ(s; θ1)+Gπ(s, a; θ2)−
1

|A|
∑
a′∈A

(s, a′; θ2).

(24)
Initially, we employ a prioritized experience replay scheme

[43] to collect a batch of cached experience tuples R =
{ξ1, ξ2, ..., ξj , ...ξJ}, where ξj = (sj , aj , U(sj , aj), s

′
j), j ∈

{1, 2, ..., J}. Here, the size of each batch is WR. This method
of experience replay preferentially sample experiences with
high priority. Note that the priority for sampling each experi-
ence tuple ξj is calculated as pj = |δj | + e, j ∈ {1, 2, ..., J}.
Here, δj represents the temporal-difference (TD) error, and the
value of e is a very small positive number such as 1 × 10−5

or 1 × 10−6. This operation ensures that a sample will be
selected with some probability even if its TD error is small,

thus increasing the diversity and robustness of the training.
The TD error δj can be expressed as

δj = U(sj , aj)−U +max
a′j

Q(s′j , a
′
j ; θ

∗
1 , θ

∗
2)−Q(sj , aj ; θ1, θ2)

(25)
where U represents the average utility of the cached experi-
ences in the cached experience replay buffer. Among them,
sampling can be executed by using the SumTree method,
which allows experience tuples with higher sampling priority
to be selected with greater likelihood. Based on this method,
the probability that each experience is sampled in prioritized
experience replay can be expressed as

Prj =
pϕj∑J
j=1 p

ϕ
j

(26)

where ϕ represents the parameter for adjusting the influence
degree of experience priority. In our proposed algorithm,
sampling is based entirely on priority, i.e. ϕ = 1. In order
to correct the bias introduced in the prioritized experience
replay, importance sampling weight (ISW) is used to modify
the learning update and thus reduce the effect of non-uniform
sampling. The ISW is given by

Wj = (
1

JPrj
)ψ (27)

where Prj is the probability of sampled experience, and ψ
represents the parameter for controlling the influence degree
of weights.

The average utility U combines the batch size of cached
experience tuples and the TD errors, and then it can be updated
as

U = U + λ

WR∑
j=1

δj . (28)

According to the update of average utility, the estimated
value of the target network Q̂t is given by

Q̂t(sj , aj) = U(sj , aj)− U + max
a′j∈A

Q(s′j , a
′
j ; θ

∗
1 , θ

∗
2). (29)

Then, the evaluation network and the target network can be
updated by minimizing the loss function L(θ). Here, the loss
function is given by

L(θ) =
1

WR

J∑
j=1

Wj

(
(Q̂t(sj , aj)−Q(sj , aj ; θ1, θ2)

)2

.

(30)
In our proposed algorithm, we conduct training of tpre

loops to update the parameters of the network via mini-batch
stochastic gradient descent with Adam [44] [45]. The update
parameter is given by

θ′f = θf − ζ∇L(θf ), f ∈ {1, 2} (31)

where ζ is the learning rate. The parameter θf for the main
network is updated at each time frame, whereas the parameter
θ∗f for the target network is updated every C time frames, such
that θ∗f (t) = θf (t − C). The proposed RB-DRN algorithm is
presented in Algorithm 1, which can be summarized as the
following steps.
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Fig. 4. The framework of RB-DRN.

Step 1: Initialization. At the beginning of the RB-DRN
algorithm, the system initializes the parameters of the main
and target networks, the average utility and the time parameter.

Step 2: Observing and Acting. The edge server acting as an
agent observes its surrounding environment, and then obtains
the current system state s(t) by observation. For a given state
s(t), the agent chooses action a(t) using the epsilon-greedy
method. Since the agent does not know the environment well
at the beginning of the iteration under the epsilon-greedy
method, it tends to randomly select an action from the action
set. After performing several iterations, as the decay and the
agent’s knowledge of the environment increases, it will select
the action with the largest Q value with higher probability.
Based on the chosen action a(t), the immediate system utility
U(s(t), a(t)) is obtained, as well as the state s(t+ 1) for the
next time period.

Step 3: Replaying. The system refreshes the experience
buffer. The agent can obtain the corresponding experience
tuple ⟨s(t), a(t), U(s(t), a(t)), s(t + 1)⟩ and cache the tuple
in the experience replay buffer for subsequent learning. Sub-
sequently, a small batch is taken from the experience replay
buffer and trained using the prioritized experience replay
method.

Step 4: Updating. The algorithm updates the average utility
function value via Eq. (28). At the same time, the loss function

is minimized by the gradient descent method and the network
parameters are updated until the utility function converges.
The exploration rate is initially set to 1 and is decayed during
each training session by multiplying it by an exploration decay
factor.

C. Algorithm Complexity Analysis

The time complexity for an Artificial Neural Network
(ANN)-based algorithm is influenced by the number of neu-
rons within the network [46]. Consider a fully-connected
network with xI input neurons, xO output neurons, and H
hidden layers, each containing xh neurons (h ∈ {1, 2, ...,H}).
The time complexity can be expressed as O(xIx1 + xOxH +∑H−1
h=1 xhxh+1) [47]. Additionally, the time complexity for

the SumTree method is O(log2|R|) [43]. Since this value is
small, it can be ignored. Therefore, the overall time complexity
of the proposed algorithm is given by

O(|S|(x1,S + x1,A) +

H−1∑
h=1

(xh,Sxh+1,S + xh,Axh+1,A)

+xH,S + |A|xH,A)
(32)

where xh,S and xh,A represent two ANNs of state-value
function and advantage function, |S| and |A| represent the
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Algorithm 1: RB-DRN: A rainbow deep reinforce-
ment learning-based cache content update scheme.

Input: environmental exploration rate ϵ, exploration
decay factor ϵ′, cached experience replay buffer
size |R|, system state S, learning rate λ and ξ.

Output: value of Q and Q̂t.
1 ▷ Initialization
2 Initialize model parameters θf and θ∗f , and let

θ∗f ← θf , f ∈ {1, 2};
3 Initialize average utility U = 0 and t = 0;
4 ▷ Implementation
5 for t ≤ Tmax do
6 ▷ Observing & Acting
7 Observe current state s(t) of system;
8 Obtain the value of Q(s(t), a; θ1, θ2) for state s(t);
9 Select a(t) from A with probability ϵ or select

a(t) = argmaxAQ(s(t), a; θ1, θ2) otherwise;
10 Execute a(t);
11 Observe and record the system state under the

action a(t);
12 Calculate the system utility value U(s(t), a(t))

based on the current state and obtain the state
s(t+ 1) for next time frame;

13 ▷ Replaying
14 Refreshing the cached experience replay buffer;
15 Add the new tuple ⟨S,A,U, S(t+ 1)⟩ to the

cached experience replay buffer R;
16 Sample the cached experience tuples with batch

size WR from the cached experience replay buffer
by prioritized experience replay method;

17 ▷ Updating
18 Update the average utility U with Eq.(28);
19 Obtaining TD errors and calculating the loss

function L(θf ), f ∈ {1, 2};
20 Update parameters (θ1,θ2) with Eq.(31);
21 if mod(t, C) = 0 then
22 Set the target network parameters θ∗1 ← θ1 and

θ∗2 ← θ2;
23 end
24 t← t+ 1;
25 ϵ← ϵϵ′;
26 end

sizes of the state space and action space, respectively. Accord-
ing to the MDP and the proposed algorithm, we can express
the size of |S| and |A| as{

|S| = (1 +M)N +M,
|A| =M +N.

(33)

Assuming that the neurons in the two ANNs have identical
parameters, this expression can be simplified as

O(MNx+ x2) (34)

where M represents the number of sensing nodes, N repre-
sents the number of users, and x represents the number of
NNs.

TABLE III
SIMULATION PARAMETERS

Parameters Values
Mobile users 15, 20, 25, 30

Sensing nodes 10
Maximum power of an antenna 0.5 W

Channel bandwidth of the base station 5 MHz
Time slot 1 s

Uplink transmission latency for sensing nodes {0.8, 0.9, 1.0, 1.1, 1.2} s
Energy consumption for updating [5,10] mW

Noise power -114 dBm
Maximum allowable value of AoI 20 s

Size of the cached content [1,2] MB
Maximum number of updated content 5

Total number of resource blocks 200
Optimizer Adam [45]

Activation function ReLU/GELU [49], [50]
Learning rate of utility 0.005, 0.0005, 0.00005

Learning rate of neural network 0.00005
Batch size 32, 64, 128, 256

Cached experience replay buffer size 1× 105

Iteration step 2000
Training epoch 150
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Fig. 5. The average system utility of the RB-DRN algorithm for different
learning rates.

VII. SIMULATION AND ANALYSIS

We conduct simulation study to analyze convergence perfor-
mance of RB-DRN algorithm, and also to illustrate the impact
of critical parameters on system performance. We further
provide efficiency analysis compared with other methods.
The whole simulation is implemented via the TensorFlow
frame and runs on a PC with Intel Core i9-10980XE CPU
@3.00GHz, Memory 16G, and GPU for NVIDIA GeForce
RTX 3090.

A. Parameter Settings

We construct a WENT simulation scenario in which there
is a base station equipped with an edge server, N (N ∈
{15, 20, 25, 30}) connected vehicles, and 10 sensing nodes.
At each time slot, the arriving task requests for each cached
HDM file follow a Zipf distribution, where the value of the
distribution parameter is set to 1.0 [47]. This distribution
is representative of real vehicular networks and is widely
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Fig. 6. The average system utility of the RB-DRN algorithm for different
batch sizes.
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Discount factor  = 0.92
Discount factor  = 0.95
Discount factor  = 0.98

Fig. 7. The average system utility of the PDSU algorithm for different
discount factors.

used in many related references [53]-[55]. The BS uses the
MIMO model. At the same time, the allocated power of
each resource block is 2.5 mW, and the number of resource
blocks is set to 200. For each sensing node, the HDM file
update latency is randomly selected from the set of values of
{0.8τ, 0.9τ, 1.0τ, 1.1τ, 1.2τ}, The value of time slot τ is set
to 1 s. Once the file update latencies for each roadside sensor
are determined, their values will remain constant throughout
the simulation. The AoI maximum tolerance is set to 20 time
slots. Meanwhile, the power of each sensor is set to 10 mW.
For sensing nodes, each update of the HDM file consumes
the same amount of energy. Note that all parameter settings
are widely used and verified to be effective in simulating real
vehicular networks in previous studies [47],[53]-[57].

Small scale data is not suitable for training deep reinforce-
ment learning and it may face the problem of insufficient
exploration. Deep reinforcement learning schemes (e.g., DQN
approach) relies on exploration and exploitation mechanisms
to learn the dynamics of the environment. With small scale
data, exploration may be insufficient, resulting in a model

TABLE IV
THE TIME CONSUMPTION OF TRAINING FOR DIFFERENT ALGORITHMS

(UNIT IN HOUR)

Parameter RB-DRN PDSU Greedy Random
N = 15 4.97 4.61 3.60 3.58
N = 20 5.37 5.13 4.16 4.01
N = 25 5.65 5.52 4.79 4.78
N = 30 5.91 5.85 5.31 5.10

that does not fully understand the environment. The detailed
parameter setting is listed in Table III.

B. Performance Analysis

1) Convergence Performance: We validate the conver-
gence performance of the algorithm to guarantee its reliability.

Fig. 5 shows the average system utility under the RB-
DRN algorithm with different learning rates. We can see that
different learning rate settings have a significant impact on the
reward profile of the RB-DRN algorithm, and the appropriate
learning rate helps the RB-DRN algorithm to converges more
quickly to a certain constant. This is due to the following
reason. First, a larger learning rate allows the agent to explore
the unknown environment quickly and improve the efficiency
of convergence. However, a larger learning rate may make the
update step of the agent larger, which may cause the model to
oscillate around the optimal solution and fail to converge. In
the subsequent experiments, we set the learning rate to 0.0005.

Fig. 6 shows the average system utility under the RB-DRN
algorithm for different batch sizes. It is obvious that varying
batch sizes substantially influence the utilities obtained by the
RB-DRN algorithm, and the appropriate batch size helps the
model converge quickly. The reasons for this are described
below. First, larger batch sizes make the empirical samples
required for model training richer, which speeds up the con-
vergence of the model. However, too large batch size makes
the model fall into local optimal solutions, which reduces
the generalization ability of the model. In the subsequent
experiments, we set the batch size to 64.

2) Efficiency Analysis: We conduct a comparison study
between the RB-DRN algorithm and the following baseline
methods.

Random algorithm (Random): For the current state, the
edge server randomly chooses an update action at each time
frame. This algorithm does not consider antenna power con-
trol, meaning that each user is allocated an equal number of
resource blocks.

Greedy algorithm (Greedy): The edge server aims to maxi-
mize the immediate utility by implementing the update action
at each time frame, i.e., minimum sum of AoI for cached
content. This algorithm doesn’t take the antenna power control
into consideration, which is similar to the Random algorithm.

Prioritized Double DQN-based status update algorithm
(PDSU): The network architecture of PDSU algorithm is
based on Prioritized Double DQN (DDQN). During each time
frame, the Optimization Objective of network is to maximize
the cumulative discount return by executing the update action.

Fig. 7 shows the average system utility under the
PDSU algorithm for different discount factors, i.e. γ ∈
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(a) Number of users (N=15).
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(b) Number of users (N=20).
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(c) Number of users (N=25).

0 0.6 1.2 1.8 2.4 3

Number of training steps (×105)

80

70

60

50

40

30

Av
er

ag
e 

sy
st

em
 u

til
ity

 

RB-DRN PDSU Greedy Random

(d) Number of users (N=30).

Fig. 8. The average system utility of the RB-DRN algorithm for different users.

{0.92, 0.95, 0.98}. We can see that the discount factor could
affect the performance of utility and convergence. The smaller
γ = 0.92 acquires higher convergence speed and lower
utility. The larger γ = 0.98 acquires higher utility, but its
convergence performance is unstable. These can be explained
as follows. When γ is smaller, the agent is more concerned
with immediate benefits and is less difficult to train. When γ
is larger, the agent is more concerned with long-term benefits,
which may make it difficult for the algorithm to converge.
In the subsequent experiments, we set the discount factor
γ = 0.95.

Fig. 8 shows the convergence of the RB-DRN algorithm
compared to the other three algorithms. We set the number of
users N ∈ {15, 20, 25, 30}. we can observe that the greedy
algorithm and the Random algorithm obtain lower utility after
the model converges. Our proposed RB-DRN algorithm en-
sures faster convergence with higher utility values. The reasons
for this are described below. The RB-DRN algorithm combines
the advantages of Rainbow DQN, i.e., it allows the network
to learn higher-valued state-action pairs and mitigates the
problem of Q-value overestimation. Meanwhile, a prioritized
experience replay mechanism is introduced to learn important
experiences more frequently. By giving higher learning priority
to important samples, the efficiency of estimating the value
of key state-action pairs can be improved. Second, we add
a Gaussian noise component to the fully connected layer of

the network, which improves the generalization ability of the
model and makes the algorithm better adapted to unknown en-
vironments. In addition, the RB-DRN algorithm incorporates
R-Learning, i.e., obtaining higher long-term average utility
values without adjusting the discount factor, which also saves
computational resources to some extent. The training time con-
sumption of each algorithm is listed in Table IV. It can be seen
that our proposed algorithm can incur a large training time
consumption. However, the training of our proposed algorithm
can be completed offline using historical data. Thus, the offline
training time consumption of our proposed algorithm does not
degrade system performance for online prediction. We can
train offline when computational resources are idle (e.g., at
night) to better cope with the need for online prediction in
IoV scenarios.

Fig. 9 shows the impact of different number of users on the
average system utility. We can see that the average system
utility values under different algorithms have a decreasing
trend with the increase of the number of users. Particularly, the
RB-DRN algorithm has a smaller decreasing trend. This can
be explained as follows. As the number of users increases, the
number of states observed by the system increases exponen-
tially. As a result, the system needs more frequent cache up-
dates to cope with the demand of the varied tasks. Compared to
greedy and random algorithms, learning-based algorithms save
unnecessary cache status updates. This is because learning-
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Fig. 9. The impact of different number of users on the average system utility.

Fig. 10. The impact of different number of users on the average AoI related
overhead of the system.

Fig. 11. The impact of different number of users on the average energy related
overhead of the system.

TABLE V
THE PERFORMANCE BETWEEN RB-DRN, GUROBI AND THE
EXHAUSTIVE METHOD FOR SMALL INSTANCE SCENARIOS

Mobile users RB-DRN Gurobi Optimal solution
N=3 -25.31 -25.06 -25.03
N=4 -25.60 -25.19 -25.10
N=5 -25.95 -25.32 -25.29

based algorithms pay more attention to the long-term utility
of the system, while the RB-DRN algorithm also combines
the power control and priority matching strategies.

We solve the optimization problem on small instances
with the setting of different mobile users using the Gurobi
solver, exhaustive method, and our proposed RB-DRN method,
respectively. As illustrated in Table V, the optimal solutions
are provided to check the optimality gap between our proposed
method and traditional mathematical methods (i.e., Gurobi
solver, exhaustive method). We can see from Table V that
the optimal solutions under our proposed method are almost
the same as those under the other two methods. However,
the traditional mathematical methods are difficult to solve the
optimization problem on large-scale instances due to high time
complexity. It is notable that our proposed method is more
suitable to solve the large-scale optimization problem.

Fig. 10 shows the impact of different number of users
on the average AoI related overhead. We can see that the
RB-DRN algorithm maintains a lower average AoI related
overhead compared to the other three algorithms. Meanwhile,
the effect of different number of users on the average AoI
related overhead under the RB-DRN algorithm is small. The
reasons are explained as follows. On one hand, the RB-DRN
algorithm pays more attention to maximizing the long-term
utility of the system, so it can execute the optimal cache
update strategy based on the real-time status information and
historical status information of the environment. On the other
hand, the RB-DRN algorithm combines power control to
constrain the variation range of transmission latency, which
makes the average AoI related overhead more stable.

Fig. 11 shows the impact of different number of users on
the average energy consumption of the system. We can see
that the average system energy consumption under the RB-
DRN algorithm is lowest compared to all the other three
algorithms. The reasons are explained as follows. First, the
RB-DRN algorithm accomplishes the tradeoff between AoI
related overhead and energy related overhead by maximizing
the long-term average utility, i.e., the RB-DRN algorithm
does not greatly increase the number of cache updates by
reducing the short-term AoI related overhead. Second, the RB-
DRN algorithm also combines the power control and priority
matching strategies to optimize the content update process,
thus avoiding unnecessary updates.

Fig. 12 shows the impact of different number of users on
the average number of cached content updates. We can see
that the average number of updates of the RB-DRN algorithm
stays low compared to all the other three algorithms. The
reason is explained as follows. Reinforcement learning-based
algorithms can obtain the global optimal solution through the
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Fig. 12. The average number of cached content updates.

Fig. 13. The average system utility of the RB-DRN algorithm for 100 users.

interaction between the agent and the environment, so the
average number of updates of the algorithms is smaller. The
greedy algorithm pays more attention to the current system
utility and easily obtains the local optimal solution, so the
average number of updates of the algorithm is larger. At
the same time, the RB-DRN algorithm also combines the
power control and priority matching strategies to complete
the allocation of power resources to different users, thus
optimizing the performance of the system.

We scaled up the experimental size of the edge network,
where one edge server equipped at one BS can serve 100
mobile users. Fig. 13 shows the convergence of the RB-DRN
algorithm compared to the other three algorithms. We then
scaled up the experimental size of the edge network with 10
BSs, 10 servers and 1000 mobile users, where one edge server
equipped at one BS can serve 100 mobile users. Fig. 14 shows
the convergence of the RB-DRN algorithm compared to the
other three algorithms. Similar to the limited input size, our
proposed RB-DRN algorithm ensures more stable convergence
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Fig. 14. The average system utility of the RB-DRN algorithm for 1000 users.

and higher utility values.

VIII. CONCLUSION

This paper explored the AoI and energy-driven dynamic
cache update scheme in wireless edge networks. Specifically,
we formulated it as a nonlinear and nonconvex optimization
problem, which aims at minimizing long-term average over-
head while ensuring information freshness and low energy
consumption. For this purpose, we proposed an RB-DRN al-
gorithm fully leveraging the advantages of both Rainbow DQN
and R-learning. Simulation results show that our proposed
RB-DRN algorithm can achieve higher system utility, higher
information freshness, and lower system energy consumption
in comparison with the benchmark algorithms. An interesting
study is to explore the cache update schemes in the case of
high-level autonomous driving in our future work, where the
sensing node can actively update the cache context, when it
finds a significant change of its sensing environment.
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