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Abstract—Artificial Intelligence (AI) is envisioned to play a
pivotal role in empowering intelligent, adaptive and autonomous
security management in 5G and beyond networks, thanks to its
potential to uncover hidden patterns from a large set of time-
varying multi-dimensional data, and deliver faster and accurate
decisions. Unfortunately, AI’s capabilities and vulnerabilities
make it a double-edged sword that may jeopardize the security
of future networks. This paper sheds light on how AI may
impact the security of 5G and its successive from its posture
of defender, offender or victim, and recommends potential
defenses to safeguard from malevolent AI while pointing out
their limitations and adoption challenges.
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I. INTRODUCTION

5G and beyond networks hold out the promise of de-
livering ultra-low latency, ultra-high throughput, ultra-high
reliability, ultra-low energy usage, and massive connectivity.
Achieving these promises will pave the way to a new breed
of applications, including autonomous driving, industry 4.0,
augmented and virtual reality, collaborative gaming, near real-
time remote surgery, and teleportation. However, the diversity
of services/applications and the growing number of connected
things envisaged in the networks of tomorrow will open up
new and increasingly broad cyber threats, posing security and
privacy risks [1]. Thus, it is imperative to build up effective
and sustainable security measures that can deal with the ever-
evolving threat landscape and security requirements in 5G and
its successive in order to fully reap their benefits.

Considering the increasing number of vulnerabilities, the
growing sophistication of cyber threats, the high traffic vol-
ume, and the diverse technologies (e.g., SDN, NFV) and
services that will shape the next-generation wireless networks,
the reliance on traditional security management approaches
may no longer suffice and need to be rethought to cope with
this challenging environment. A promising direction is the
adoption of Artificial Intelligence (AI) to empower intelli-
gent, adaptive and autonomous security management, allowing
timely and cost-effective detection and mitigation of security
threats. Indeed, AI has the potential of uncovering hidden
patterns from a large set of time-varying multi-dimensional
data, and delivering faster and accurate decisions. In response
to the trend of integrating AI, particularly Machine Learning
(ML), into telecommunication networks, the ITU-T Focus
Group1 on Machine Learning for Future Networks including

1https://www.itu.int/en/ITU-T/focusgroups/ml5g/Pages/default.aspx

5G (FG-ML5G) has recently released a unified architectural
framework for ML in future networks.

Though the key role of AI in enforcing security in 5G
and beyond networks is incontestable, its capabilities make
it a double-edged sword. Indeed, AI’s capabilities, shored
up by the envisioned ultra-high bandwidth and the massive
proliferation of connected devices, will usher in a new era
of sophisticated cyber-attacks that are autonomous, scalable,
stealthy and faster. Moreover, the major role that AI systems
will play in empowering self-managing functionalities (e.g.,
self-optimization, self-healing, and self-protecting) in future
networks makes AI an attractive target for cyber-criminals.
An adversary may leverage the vulnerabilities of AI systems
to subvert their performance and security. Recognizing the
seriousness of AI’s dangers, ETSI has launched a new Industry
Specification Group on Securing Artificial Intelligence (ISG
SAI)2. The purpose of ISG SAI is to develop technical speci-
fications to mitigate threats stemming from the deployment of
AI in ICT field.

This paper aims to shed light on how AI may impact
the security of 5G and beyond networks from its posture of
defender, offender or victim (See Fig. 1). The rest of this paper
is organized as follows. Section II discusses some prospective
applications of AI to bolster the security of future networks.
Section III explores the potential risks arising from AI systems
exploited either as an instrument or as a target to impede
the security of 5G and beyond networks. Section IV surveys
possible defense measures that could be adopted to safeguard
from malevolent AI, and recommends where those measures
could be enforced into the FG-ML5G unified architecture.
Finally, the paper concludes in Section V.

II. AI’S POTENTIAL FOR CYBER-SECURITY IN B5G
NETWORKS

5G and beyond networks will be characterized by massive
number of connected devices, high traffic volume, and diverse
technologies (e.g., SDN, NFV) and services, leading to a
complex and dynamic cyber-threat landscape. A promising
direction to deal with this challenging threat landscape is
the adoption of AI, thanks to its potential in empowering
intelligent, adaptive and autonomous security management. In
what follows, some prospective applications of AI for security
in future networks are discussed.

2https://www.etsi.org/committee/1640-sai
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Fig. 1: AI’s Impact on Security in 5G and Beyond Networks from its Posture of Defender, Offender or Victim.

A. Identity and Access Management

Authentication and authorization services play a key role
in 5G and beyond security, preventing impersonation attacks
and controlling access privileges of involved entities (physical
or virtual). However, the envisaged massive machine type
communications (mMTC) and ultra reliable and low-latency
communications (URLLC) use cases require the support of ex-
treme device density, energy efficiency and low-latency capa-
bilities. Meanwhile, the adoption of small cell densification in
5G networks will induce frequent handovers and consequently
frequent authentications, resulting in increased latency. Thus,
efficient, scalable and fast authentication mechanisms are es-
sential to cope with the aforementioned stringent requirements.
AI is deemed to play a pivotal role in achieving this goal. In
fact, emerging authentication and authorization schemes are
increasingly relying on multiple non-cryptographic attributes,
associated with users, resources and environment (e.g., time
and location), to determine the identity and authorizations
of a given entity. The merit of AI stems from its ability
to automatically combine these diverse and time-varying at-
tributes to provide continuous authentication and dynamically
enforce fine-grained access policies. Fang et al. [2] introduced
ML-based intelligent authentication approaches by oppor-
tunistically leveraging physical layer attributes (e.g., carrier
frequency offset, channel impulse response, and receiving
signal strength indication) to achieve continuous and situation-
aware authentication in 5G and beyond networks. The work
in [3] proposes a holistic authentication and authorization
approach relying on online ML and trust management for
achieving adaptive access control in a large-scale and dynamic
IoT environment. The proposed access control scheme intelli-
gently exploits the time-varying features of the transmitter, i.e,
communication-related, hardware-related attributes and user
behaviors, to refine and update access policies on run-time.

B. RESTful API Security

Application Programming Interfaces (REST APIs) play a
vital role in the 5G ecosystem as they empower service
exposure across different networks. This is why 3GPP de-
cided that the implementation of both northbound interfaces
(NBIs) and service based interfaces (SBIs) should be based
on RESTful APIs. Due to their importance for 5G and beyond
networks, APIs will most probably become a primary target
for attackers. Indeed, the recent ENISA’s “threat landscape for
5G networks” report3 has identified API exploitation/abuse
as a nefarious threat against 5G assets, resulting in infor-
mation leakage/alteration/destruction, identity theft as well as
service unavailability. Thus, API security is a cornerstone to
protect 5G and beyond networks. However, the wide variety
of APIs and the sheer volume of API traffic envisioned in
the next-generation mobile networks make the identification
and mitigation of API threats a complex task. AI-driven API
security is the new trend to cope with the aforementioned
challenges. In fact, AI has the capability of uncovering patterns
in vast amounts of multidimensional data, allowing continuous
and proactive monitoring and detection of API attacks and
fostering their automatic mitigation.

C. Network Anomaly/Intrusion Detection and Prediction

To fulfill the stringent reliability and availability require-
ments of 5G and beyond networks, a timely detection and
prediction of anomalous behaviors due to malicious or acci-
dental actions is paramount. Indeed, the early identification
of potential problems in the network enables fast reaction to
them, preventing extreme malicious damage, service degrada-
tion and financial loss [4]. An anomaly refers to “a pattern
that does not conform to expected normal behavior” [5].

3https://www.enisa.europa.eu/publications/enisa-threat-landscape-for-5g-
networks
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ETSI ENI (Experiential Network Intelligence) ISG (Industry
Specification Group) [6] has identified AI usage as a require-
ment to recognize abnormal traffic patterns that can lead to
service unavailability or security threats in next-generation
networks. The AI has proven its ability in uncovering hidden
patterns from a large set of time-varying multi-dimensional
data. The work in [7] proposes an anomaly detection solution
for the self-healing of Radio Access Networks (RAN) in 5G
networks, where the anomaly patterns are identified leveraging
the clustering algorithm DBSCAN. The authors demonstrated
the effectiveness of their solution in detecting anomalies
caused by radio attenuation and SDN misconfiguration. The
authors in [8] proposed a Deep Learning (DL)-based solution
for detecting anomalies due to cell outages and congestion.
The use of shallow and deep learning approaches for detecting
and forecasting network intrusions has attracted considerable
attention [9]. Krayani et al. [10] devised a Dynamic Bayesian
Network (DBN) model to detect jamming attack in Orthogonal
Frequency Division Multiplexing (OFDM)-based cognitive
radio networks.

D. Root Cause Analysis

Once an anomaly alarm is triggered, its underlying cause
needs to be determined. In fact, an accurate identification
of the cause of faults and security incidents is a key to
empower self-organizing system, establish effective mitigation
strategies, perform network forensics and even assign liability.
However, given the complexity and heterogeneity of emerging
mobile networks, coupled with the increasing number of Key
Performance Indicators (KPIs) and data related to end-users,
services and networks, the root cause diagnosis becomes
highly intractable. Thus, a manual assessment of root causes
based on expert knowledge is complex and time- and effort-
consuming task. AI has been recognized as an appealing
option for fostering self root cause analysis, thanks to its
ability to process a large amount of data, uncover complex
non-linear relationships within the data, and deliver faster and
accurate decisions. For instance, Zhang et al. [11] proposed
a DL-based root cause analysis of faults in a cellular RAN,
leveraging both supervised classification (Auto-Encoder +
Decision Tree) and unsupervised clustering (Auto-Encoder +
agglomerative clustering). In the smart manufacturing vertical
domain, AI-driven root cause analysis can not only help in
tracing the root of failure events, but also in predicting future
anomalies, leading to improved operational efficiency and
reduced unplanned downtime.

E. Moving Target Defense

The static nature of network and service configurations once
deployed facilitates the adversary mission in exploring and
exploiting the unchanging vulnerability surface. In fact, the
vulnerability persistence gives the attacker the advantage of
time to understand the attack surface and choose the best-
fitting attack technique. The Moving Target Defense (MTD)
has emerged as an effective proactive security solution to
address this problem. Indeed, NIST [12] has recognized MTD
as an enhanced security requirement for system and com-
munications protection. MTD approaches aim at increasing

the attacker’s effort and cost by dynamically and constantly
changing the attack surface over runtime. The MTD can
be established through various implementations including, IP
address shuffling, VM migration, network path diversification,
and replication of software or network resources. The flexi-
bility and dynamicity opportunities provided by virtualization
(i.e., Network Function Virtualization) and programmability
(i.e., Software Defined Networking) will foster the imple-
mentation of MTD mechanisms in 5G and beyond networks,
leading to more resilient networks. The MTD paradigm is
an appealing security strategy for various vertical application
domains, such as IoT and automotive domains. For example,
reconnaissance, impersonation and DoS attacks against in-
vehicle networks can be prevented by adopting a dynamic
address/ID shuffling strategy. Meanwhile, path diversification
and topology shuffling can be used for improving resilience of
Inter-vehicles wireless communications to eavesdropping and
jamming attacks. However, it is worth stating that the security
benefits of MTD come at the expense of reconfiguration
cost and/or service unavailability. Thus, achieving the desired
balance between the security effectiveness of MTD and the
induced cost is of utmost importance. AI techniques, including
game theory, genetic algorithms and ML, have been considered
highly relevant to devise smart MTD mechanisms that can
intelligently decide changes to make on the network and
service configuration in order to meet the security/performance
trade-off [13]. For instance, Albanese et al. [14] used a Rein-
forcement Learning (RL) model to develop a MTD strategy to
resist stealthy botnets by periodically altering the placement
of detectors.

III. AI’S THREATS AGAINST B5G SECURITY

In view of the major role AI systems will play in 5G and
beyond networks, their security risks represent a key aspect to
consider. In fact, the potential threats emanating from the use
of AI systems can be broadly classified into two categories,
namely: (i) AI as an instrument to build sophisticated cyber
attacks leveraging the capabilities of AI; and (ii) AI as a
target where the vulnerabilities of AI systems are exploited
to undermine their performance and security.

A. AI as an Instrument

The AI capability to learn and adapt will pave the way for
a new era of AI-powered cyber-attacks that are autonomous,
scalable, stealthy and faster. Combining AI’s capabilities with
the envisioned ultra-high bandwidth and the massive prolif-
eration of connected devices, 5G and beyond networks will
doubtlessly see a wide use of AI-driven cyber-attacks. Attack-
ers can utilize AI to conduct a rapid and efficient reconnais-
sance of the target network in order to identify, for instance,
devices deployed, operating systems and services used, ports
open, and accounts, especially those with admin privileges.
The insights gathered from the reconnaissance phase can be
leveraged by AI to learn and prioritize vulnerabilities that
may be exploited to launch a large-scale network attack. For
instance, an AI-based botnet can automatically identify zero-
day vulnerabilities in IoT devices and exploit them to perform
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a large-scale distributed denial of service attack by creating
a signaling storm against the 5G RAN resources. AI is also
expected to drive the development of next-generation malware
that are able to operate autonomously. Autonomous malware
will hold the ability to observe the environment, smartly select
its target and the most effective lateral movement technique
to reach it without raising suspicion. DeepLocker is a proof-
of-concept of autonomous malware developed by IBM, which
uses a deep neural network model to trigger the malicious
payload if the intended victim is reached. The victim is iden-
tified through a set of attributes, including geo-location, user
activity, and environment features. Another potential offensive
use of AI is to conduct an identity spoofing attack by learning
and mimicking the behavior of legitimate entities.

B. AI as a Target

5G and beyond networks will be heavily reliant on AI
to enable fully autonomous management capabilities (e.g.,
self-configuration, self-optimization, self-healing, and self-
protecting) [15], making AI an attractive target for attackers. In
fact, AI systems, particularly ML systems, can be influenced to
learn wrong models, make erroneous decisions/predictions, or
leak confidential information. The attacks against ML systems
are considered causative if they target the training phase or
exploratory if they aim at the inference phase. They can
be conducted in a white-box, gray-box or black-box setting,
depending on whether the attacker has, respectively, full,
partial or no knowledge about the training data, the learning
algorithm and its hyper-parameters. The adversary may per-
form indiscriminate attacks to cause the misclassification of
any sample or targeted attacks to lead to misclassification of
a specific sample. By attacking a ML system, the adversary
may decide to break its integrity by evading detection without
affecting normal behavior of the system; its availability by
deteriorating the system usability; or its privacy by gaining
sensitive information about the training data, the ML system
or its users. In what follows, we summarize the main attacks
against ML systems.

1) Poisoning Attacks: In poisoning attacks, also referred
to as causative attacks, an attacker aims at influencing the
learning outcome to his advantage by tampering with data or
the learning algorithm at training phase. The appeal of this
attack stems from the constant retraining requirement of a
learning model to account for the new data distribution, giving
the attackers the opportunity to poison the trained model. The
poisoning attack can be mounted using different strategies,
namely:

• Data Injection: This strategy is used when the attacker
has no access to the training data. It aims at altering the
data distribution by feeding carefully crafted malicious
samples into the training dataset while keeping original
samples unchanged.

• Data Manipulation: The attacker is assumed to have a
full access to the training data, allowing him to directly
contaminate the original data used for training the learn-
ing model. The contamination can be performed by either
flipping labels (e.g., benign to malicious and vice-versa)
or introducing small perturbations on input features.

• Logic Corruption: The attacker focuses on interfering
with the learning algorithm or its learning logic. This
strategy can be used against models that leverage dis-
tributed learning (e.g., federated learning), which relies
on several agents for training. Thus, a malicious agent
may manipulate the local model parameters to compro-
mise the global model.

An illustrative example of how a poisoning attack works
is given in Fig. 2. Let consider a cognitive radio transceiver
which performs a real-time spectrum sensing and determines
idle channels for transmission using ML techniques. An adver-
sary can pollute the spectrum sensing data, used for retraining
the ML model, by transmitting for a short period when the
channel is idle. Thus, the poisoned model is fooled into making
the wrong decision of not transmitting when the channel is
unoccupied.

Transmitter

Adversary

Receiver

Retraining

(a) Sensing phase.

Transmitter Receiver

Channel Busy

Poisoned 
model

Idle Channel

(b) Transmission phase.

Fig. 2: Spectrum Data Poisoning in Cognitive Radio Networks.

2) Evasion Attacks: An evasion attack targets the inference
stage. Unlike poisoning attacks, these attacks require no influ-
ence over the training process. The attacker seeks to escape the
learned model at test time by introducing small perturbations
to the input instances. Such perturbations are called adversarial
examples.

Fig. 3 illustrates an exemplary evasion attack against a ML
model trained to authenticate IoT devices requesting access
to Multi-access Edge Computing (MEC) services. The model
leverages the unique features of the physical layer (e.g., carrier
frequency offset and receiving signal strength indication) to
distinguish between legitimate devices and illegal devices. A
smart illegitimate device can fool the trained model to wrongly
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identify it as a legal device by generating spoofed wireless
signals mimicking the signals of the legal device.

MEC Server

Legitimate device

Illegitimate device

Smart illegitimate 
device 

ML-based 
Authentication Model

Fig. 3: Adversarial Identity Spoofing.

3) Model’s API-based Attacks: The emergence of ML-as-
a-Service (MLaaS) paradigm makes ML models susceptible to
new attacks, namely: model inversion attack, model extraction
attack, and membership inference attack. The model inversion
attack aims to recover the training data by leveraging the
outputs of the targeted ML model. Meanwhile, the model
extraction attack focuses on revealing the model’s architecture
and parameters to reproduce a (near)-equivalent ML model,
by observing the model’s predictions and/or execution time.
The purpose of a membership inference attack is to determine
whether a sample has been used to train the target ML model,
by exploiting the model’s output.

Fig. 4 shows a potential scenario where model extraction
attack is conducted to facilitate a subsequent evasion attack
against a network anomaly detection module. The module
leverages an online ML service to detect suspicious activities
in the RAN, such as the symptoms of a signaling DDoS attack.
An adversary, with only access to the inference API of the
target ML model, can uncover its architecture and parameters
to build a surrogate model approximating the target model.
The substitute model is then integrated into a botnet malware
aiming to generate malicious traffic (e.g., a signaling storm)
that can fly under the radar of the anomaly detection module;
that is, it will be identified as benign traffic.

C. Mapping of Adversarial Attacks to ITU-T’s Unified Archi-
tecture for ML in 5G and Beyond Networks

The ITU-T’s ML5G focus group has recently proposed
a unified architecture for ML in 5G and future networks.
As depicted in Fig. 5, the unified architecture comprises the
following components:

• ML pipeline: It is a logical representation of a ML-based
network application. The ML pipeline consists of: (1) a
source node (src) which generates the raw data to feed
into the ML model; (2) a collector (C) which collects the
data from the src; (3) a preprocessor node (PP) which
prepares data to fit for ML model by performing different
data processing operations, encompassing data cleansing,
transformation and aggregation; (4) a model node (M)
which represents a ML model; (5) a policy node (P)
which leverages the output of M to apply the suitable

RAN

Inference API

Anomaly 
Detection 
Module

Traffic’s 
Features Benign

Surrogate
Model

Bot Master

Cloud

Attacker

Bot

Fig. 4: Model Extraction for Subsequent Evasion Attack
Against an AI-based Network Anomaly Detection Module.

policy depending on the considered use case; (6) a sink
node on which the selected policy takes action; and (7)
a distributor node (D) which is in charge of identifying
the sinks and distributing policies to the corresponding
sinks.

• ML Sandbox: It is an isolated domain which serves to
train, test and evaluate ML models before deploying
them into production. To this end, the sandbox can use
synthetic data generated by a simulator and/or real data
collected from the network.

• ML Function Orchestrator (MLFO): It manages and
orchestrates the ML pipeline life-cycle based on ML
intent and/or dynamic network conditions. MLFO’s re-
sponsibilities include the placement of ML pipelines, the
flexible chaining of the ML pipeline components to adapt
to the underlay network dynamics, the monitoring of the
ML model performance, and the selection/reselection of
a ML model based on its performance.

Fig. 5 illustrates the mapping of the adversarial ML attacks
(i.e., poisoning attacks, evasion attacks and API-based attacks)
to the components of the ML5G unified architecture.

IV. POTENTIAL DEFENSE MECHANISMS

This section introduces the potential defense mechanisms
that could be adopted to increase resilience to threats targeting
AI systems.

A. Adversarial Machine Learning

Adversarial Machine Learning (AML) [16] aims at improv-
ing the robustness of ML techniques to adversarial attacks by
assessing their vulnerabilities and devising appropriate defense
measures.

1) Defenses Against Poisoning Attacks: Several counter-
measures have been proposed against poisoning attacks, which
can be broadly categorized into input validation and robust
learning. Input validation seeks to sanitize the (re)training
data from malicious and abnormal samples before feeding it
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Fig. 5: Mapping of the Adversarial ML Attacks to the ML5G High-Level Architecture.

into the ML model. Outlier detection is a common defensive
technique used to identify and remove suspicious samples from
the training dataset. However, this technique can be bypassed
by crafting poisoned samples that can mislead the learning
process while remaining within the genuine data distribution.
Reject On Negative Impact (RONI) approach sanitizes data
by removing samples that have a detrimental impact on the
learning performance. Micromodels strategy performs data
cleaning by first generating multiple micro-models trained
on disjoint subset of input samples. The micro-models are
then combined in a majority voting scheme to eliminate the
anomalous training data subsets. Clustering-based techniques
have been used to mitigate the label flipping attack. These
techniques consist in dividing the training data into clusters,
where the samples within the same cluster are relabeled using
the most common label in this cluster. Unlike input validation,
robust learning aims at developing learning algorithms that
are robust to training data contamination by leveraging robust
statistics techniques [17].

2) Defenses Against Evasion Attacks: A variety of defen-
sive strategies have emerged for defeating evasion attacks,
including adversarial training, defensive distillation, ensemble

methods, defense Generative Adversarial Networks (GANs),
and adversarial concept drift handling techniques. In adver-
sarial training, the resilience to evasion attacks is achieved
by training the model on a dataset augmented with adversarial
examples. Defensive distillation is a training strategy that uses
the knowledge inferred from a ML model to strengthen its own
robustness to adversarial examples. Both adversarial training
and defensive distillation implicitly perform gradient masking,
which consists in making the model’s gradient useless by, for
instance, setting it to zero or changing its direction. Indeed,
the absence of the real gradient complicates the generation of
adversarial examples, allowing the model to exhibit improved
robustness. However, this does not prevent that the model
may remain vulnerable to adversarial samples crafted using
transferability-based black-box attacks. Moreover, it is worth
mentioning that the improved robustness brought by adversar-
ial training and defensive distillation comes at the price of a
decreased accuracy on clean data. Ensemble methods combine
multiple models to build a robust model. Ensemble methods
have the virtue of improving the model’s robustness while
increasing its accuracy on clean samples. Nevertheless, the
merit of ensemble methods comes at the expense of increased
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Fig. 6: Mapping of Potential Defenses against ML Attacks to the ML5G High-Level Architecture.

model complexity and computational cost. Defense GANs aim
to denoise input samples from adversarial perturbations by
projecting them on to the range of the GAN’s generator before
feeding them into the ML model. In other words, they aim to
find the closest sample to the adversarial example that the
GAN’s generator is capable of producing and feed that as an
input to the ML model. As the GAN’s generator is trained to
learn the distribution of the real data, the generated sample
will be cleaned from added perturbations. Defense GANs
have proven their effectiveness to counter both white-box and
black-box attacks. The adversarial perturbations introduced
to data result in concept drift; that is, the change in data
distribution leading to drop in the ML model performance.
Thus, adversarial concept drift handling techniques, such as
ensemble learning, can be used to face down adversarial
attacks by retraining the ML model once a drop in its
performance is detected. For instance, an ensemble learning
approach tracks the adversarial concept drift by measuring
the prediction disagreement between the ensemble models. In
fact, an abrupt increase in the prediction disagreement is an
indicator of concept drift, that will trigger the retraining of the
ensemble models on the new data.

3) Defenses Against Model’s API-based Attacks: To mit-
igate ML API-based attacks, various solutions have been
proposed, including:

• The learning with differential privacy (DP) to prevent
the disclosure of training data by making the model
prediction independent of an individual input. A differ-

entially private ML model guarantees that its behavior
hardly changes when an individual sample is added to or
removed from the training dataset. Thus, by looking at
the model’s output, an adversary cannot ascertain whether
an individual input was included in the training dataset
or not. To achieve DP, a small, controlled noise is added
to the model during its training.

• The use of homomorphic encryption which enables model
training over encrypted data, thus guaranteeing data pri-
vacy. It is worth noting that the major challenge in
using this countermeasure is the induced computational
complexity.

• The limitation of sensitive information provided by ML
APIs by releasing only class labels, filtering out the
prediction probabilities of low-probability classes, and
rounding the class probabilities. In fact, the danger of
revealing the prediction probabilities by the inference
API stems from the fact that those probabilities are
calculated as a function of the input and the ML model’s
parameters. Thus, collecting a sufficient number of pre-
diction probabilities and their corresponding inputs, an
adversary can easily extract the model’s parameters by
solving a system of equations where variables are the
unknown model’s parameters. By hiding the prediction
probabilities, revealing only part of them and/or rounding
them to a fixed number of decimal places, the adversary is
defeated from achieving the goal of building a surrogate
model approximating the real one.
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• The addition of noise to the execution time of the ML
model.

B. Moving Target Defense

Given its potential in increasing the attacker’s uncertainty,
MTD has recently emerged as an effective paradigm in ad-
dressing the security concerns of AI, specifically ML tech-
niques. In current practice, a ML model remains static over a
long period of time once deployed, which gives the attacker
the advantage of time to devise effective adversarial attacks.
Thus, introducing dynamicity in a ML system by constantly
changing, for instance, the ML algorithm, the features used
for training, the model’s parameters, helps to improve its
robustness. In this vein, Song et al. [18] proposed a MTD
strategy that dynamically generates new models by retraining
independently perturbed versions of the base model after its
deployment. To leverage the promising MTD capabilities for
thwarting adversarial attacks, a major challenge is to come up
with MTD strategies that make the ML model robust without
sacrificing its performance and with reduced moving cost.
Hence, further research efforts are required in this direction.

C. Mapping of Potential Defenses to ITU-T’s Unified Archi-
tecture for ML in 5G and Beyond Networks

Fig. 6 shows on which components of the ML5G unified
architecture the aforementioned defenses could be enforced.
The measures to counteract the poisoning attack should be
implemented into the ML sandbox subsystem, where the
input validation operations and the robust learning may be
carried out at the preprocessor node (PP) and model node
(M), respectively. To make ML models robust against eva-
sion attacks, proactive countermeasures such as adversarial
training, defensive distillation or ensemble methods should
be implemented at the model training phase. The retraining
operation to handle the malicious concept drift problem could
be initiated by the MLFO when the model performance drops
considerably. The defense GANs strategy may be applied at
the preprocessing stage during the testing and serving phases
in order to clean out the input samples from adversarial pertur-
bations. The strategies to tackle model API-based attacks could
be incorporated either at the training phase or the deployment
phase. It is worth noting that in case of using homomorphic
encryption, the data provider should perform preprocessing
operations on the data before its encryption, such as removing
samples that are redundant or have missing/infinity values, and
normalizing the features’ values. The MTD strategy to defeat
exploratory attacks (i.e., evasion and model API-based attacks)
can be established by the MLFO, defining when and how the
model move should be made.

V. CONCLUSION

This paper emphasized the key role that AI may play in
fostering the security in 5G and beyond networks. Meanwhile,
it pointed up the security risks that may come along with
the envisioned AI’s benefits if their potential or vulnerabilities
are leveraged by malicious actors. In view of increasing the
resilience to AI threats, we advocated several defense measures

while advising on which components of the ML5G unified
architecture they could be enforced. Despite the merit of the
recommended defenses, each of them has its own limitations
and none of them can constitute an all-in-one solution for
addressing all AI threats. Thus, a potential research direction
is to investigate how those countermeasures could be used
in an integrated way to meet both security and performance
requirements.
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