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Abstract—The distributed and disaggregated nature of 5G
and beyond (B5G) networks has spurred interest in federated
learning (FL) for empowering privacy-preserving collaborative
network anomaly detection at the edge. However, FL is prone to
catastrophic forgetting (CF), where prior knowledge is forgotten
while sequentially learning new attack patterns from a stream
of data. Few studies addressed CF issue in network anomaly
detection using Continual Learning (CL), but focusing on cen-
tralized models rather than FL and overlooking integration in
B5G. To fill this gap, we propose TenaxDoS, a novel framework
that combines FL with a replay memory-based CL strategy to
foster sustainable and cooperative network anomaly detection in
an Open Radio Access Network (O-RAN) environment in B5G
networks. The experimental results on a dataset from a real
5G test network show TenaxDoS’s superior overall performance,
stability and effective mitigation of CF, yielding a remembering
of past knowledge of above 98.8%.

Index Terms—B5G, DDoS, Federated Continual Learning,
Network Anomaly Detection, O-RAN.

I. INTRODUCTION

The emerging Open Radio Access Network (O-RAN) archi-
tecture [1] is a notable effort to achieve 5G and beyond (B5G)
networks promises for ultra low latency, high data speeds, and
massive connectivity, owing to its its openness, disaggregation
and embedded intelligence features. Those features are set
to drive the wide-spread adoption of private 5G networks,
tailored to the specific performance and security needs of
delivered services [2]. However, the promises of B5G are
offset by an increased attack surface, mostly due to the
network’s dispersed and disaggregated architecture.

Network anomaly detection systems are crucial for protect-
ing B5G networks against emerging cyberthreats, ensuring
they deliver their promises. Identifying Distributed Denial
of Service (DDoS) attacks is especially vital. DDoS attacks
have the capacity to quickly overload the network or exhaust
the server’s computational and memory resources, leading to
substantial service disruptions and possible data loss [3]. The
ever-evolving sophistication of DDoS techniques challenge
the effectiveness of traditional rule-based detection systems.
This has spurred the adoption of machine learning (ML) and
deep learning (DL) approaches to improve generalization and
detection accuracy, thanks to their capacity in spotting subtle
network changes caused by a malicious behavior.

The highly distributed and disaggregated nature of B5G
networks has stimulated the recent increasing interest in
adopting distributed learning, particularly federated learning

(FL), for empowering collaborative network anomaly detection
at the edge [4]. Using FL, the distributed network nodes
can develop a shared anomaly prediction model cooperatively
while keeping all their training data locally. This will result in
greatly improving the effectiveness and timeliness of anomaly
detection, thanks to local knowledge sharing among network
nodes. Moreover, limiting the information exchange to the
model parameters helps in fostering data privacy preservation,
a key requisite to support compliance with data sharing
restrictions of private 5G networks.

Despite of their advantages, ML, DL, and FL-based
anomaly detection systems are still facing challenges. Catas-
trophic Forgetting (CF) [5], a situation where the learning
model tends to forget previously acquired patterns when
exposed to fresh data or attack patterns, is a critical problem.
Overlooking this issue will significantly undermine the attack
detection effectiveness, consequently reducing the reliability
of ML/DL/FL-powered security defense solutions and calling
into question the trust placed in their decisions. Therefore,
addressing CF issue is paramount for maintaining resilience in
identifying the continually evolving and constantly emerging
DDoS attacks in B5G networks.

Continual Learning (CL) [6] is poised as a viable remedy
to lessen the CF issue. CL enables ML/DL models to accom-
modate new knowledge while preserving previously learned
experiences, which fosters the capability of incrementally
learning from a stream of data. A number of approaches
have been developed in CL to combat CF, with replay buffers
being among the most promising. Replay buffers [7] preserve a
balance between old and new information by storing a portion
of past data for subsequent ”replay” during training. Although
CL has demonstrated success in a number of fields, including
computer vision, its use in network security is still unexplored.
To the best of our knowledge, very few contributions (e.g., [8],
[9]) have explored for network anomaly detection. However,
most of them have addressed CF in centralized ML/DL-based
models rather than FL. Moreover, none of existing works have
explored integrating CL strategies in B5G networks.

To fill this gap, we propose a novel framework, coined
TenaxDoS, that exploits and combines the potential of CL and
FL to empower sustainable and cooperative privacy-preserving
network anomaly detection in B5G networks. Leveraging
the disaggregated and distributed nature of O-RAN archi-
tecture coupled with the in-built intelligence via intelligent



controllers, we demonstrate the integration of TenaxDoS in
an O-RAN environment. Such integration not only promotes
timely and continuous detection of network anomalies at the
edge, but also fosters multi-operator collaboration in a privacy-
preserving way. This makes TenaxDoS a promising solution
to stimulate collaboration among private 5G networks. To the
best of our knowledge, TenaxDoS is the first solution using
CL and FL for network anomaly detection in O-RAN.

The remainder of this paper is structured as follows. Sec-
tion II presents an overview of related work in the litera-
ture. Section III provides background information on Fed-
erated Continual Learning (FCL) and O-RAN architecture.
Section IV introduces the proposed TenaxDoS framework,
detailing its architecture and the design of the FCL-based
DDoS anomaly detection model. Section V describes the
experimental setup and presents the performance evaluation
results. Finally, Section VI concludes the paper and suggests
future research directions.

II. RELATED WORK AND LIMITATIONS

Extensive research has focused on tackling DDoS attacks in
next-generation networks, leveraging the potential of ML/DL
through either supervised approaches [3], [10] or unsupervised
anomaly detection approaches [11], [12]. To support data pri-
vacy preservation, there is a recent shift towards empowering
collaborative network anomaly detection leveraging FL [13].
For instance, Hireche et al. [4] leveraged the capabilities of
programmable data plane and FL to empower fully distributed
self-detection and mitigation of DDoS attacks, fostering the
realization of secure self-driving networks. In [14], a peer-
to-peer MLP-based FL approach is developed for detecting
network anomalies in O-RAN.

Until very recently, the problem of CF has been overlooked
in most existing ML/DL/FL-based network anomaly detection
solutions, assuming that all training data are available at the
same time. To the best of our knowledge, very few contribu-
tions have aimed at addressing CF in the context of network
anomaly detection by adopting CL paradigm. However, most
of them (e.g., [8]) have tackled CF concern in centralized
ML/DL-based network anomaly detection system instead of
FL. As far as we know, [9] is the only work considering
the integration of CL in FL-based network anomaly detection.
Nevertheless, the authors did not provide details on the created
tasks and did not assess the effectiveness of the proposed so-
lution in mitigating CF. Moreover, none of the aforementioned
studies have investigated the integration of the proposed CL
strategies in B5G networks. To fill this gap, we propose a novel
FCL-based network anomaly detection approach that can be
integrated in O-RAN environment.

III. BACKGROUND

A. Federated Continual Learning

Combining CL and FL, FCL enables collaborative learning
by continuously training on a stream of distributed private
data, fostering privacy-preserving knowledge sharing while
mitigating CF [15]. In CL, three scenarios are distinguished

depending on whether task identity is known at test time
and, if not, whether it must be determined [16]: (i) Task-
incremental learning; (ii) Domain-incremental learning; and
(iii) Class-incremental learning. In our study, we face a
domain-incremental learning scenario, as the output classes
(i.e., legitimate or malicious) remain constant despite task
changes. The CL methods used for alleviating CF fall into
three categories [7], namely: (i) Regularization-based methods,
which preserve learned knowledge by restricting model param-
eter updates; (ii) Parameter isolation based methods, which
prevent CF by allocating separate parameters per task; and
(iii) Rehearsal-based methods, which tackle CF by storing past
samples into a fixed-size or generative memory for subsequent
replay when learning new tasks. In this study, we adopt a
rehearsal-based strategy, owing to its proven superiority in
terms of simplicity, performance and resource efficiency [7].

B. O-RAN Architecture

In O-RAN architecture [1], the RAN components are vir-
tualized and disaggregated, using open interfaces and intelli-
gent controllers for interconnection and optimization. These
features provides greater flexibility, openness, and enhanced
visibility and security. As illustrated in Fig. 1, O-RAN ar-
chitecture includes the Radio Unit (O-RU), Distributed Unit
(O-DU), Central Unit control plane (O-CU-CP) and Central
Unit user plane (O-CU-UP) on the radio side, and the Service
Management and Orchestration (SMO) framework on the
management side. The network intelligence is enabled by
the RAN Intelligent Controller (RIC), incorporating AI/ML
into its decision-making. The RIC comprises a near-real time
controller (Near-RT RIC) handling delay-sensitive control
functions and a non-real time controller (Non-RT RIC) for
control operations with more relaxed latency needs. The con-
trol functions at Near-RT RIC and Non-RT RIC are handled by
specialized applications called xApps and rApps, respectively.
The Near-RT RIC connects with O-DU, O-CU-UP and O-CU-
CP (known as E2 nodes) via E2 interface.

IV. TENAXDOS – A FCL-BASED DDOS DETECTION
FRAMEWORK

In this section, we present TenaxDoS, a novel framework
that leverages and combines the potential of CL and FL to
empower sustainable and cooperative network attack detection
in an O-RAN environment in B5G networks.

A. Framework Overview

Fig. 1 illustrates the overall architecture of TenaxDoS
framework integrated in the O-RAN architecture. The frame-
work capitalizes on RAN function disaggregation and the
native support of intelligence in O-RAN to enable swift and
fully autonomous detection and mitigation of DDoS attacks
at the edge. Attack detection is powered by a DL model
trained following an FCL approach. This facilitates knowledge
sharing for increased attack detection accuracy while avoiding
the sharing of local data and effectively addressing the catas-
trophic forgetting concern. The TenaxDoS framework encom-
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Fig. 1: The overall architecture of TenaxDoS framework.

passes six core components that provide traffic monitoring,
data processing, attack detection, and FCL training services.

The Traffic Collector continuously captures the user plane
traffic over the F1-u interface. This is feasible in the context
of private networks with full access to the GPRS Tunneling
Protocol (GTP) tunnel [17]. The collected traffic is peri-
odically communicated to the Metrics Extractor to extract
the network flow’s features pertinent to identify malicious
patterns caused by DDoS attacks. The extracted features are
streamed to the near-RT RIC in the form of metrics reports
via the E2 interface. The metrics reports are conveyed to the
Data Pre-Processor xApp for transforming the raw data into
appropriate format to fit for the DL model during training
and inference phases. This includes data cleansing, encoding,
and standardization, as elaborated in Section IV-C. During the
inference phase, the pre-processed network flow’s features are
passed to the Detector xApp to decide on the legitimacy or
maliciousness of the received traffic. The Detector incorporates
a DL-powered DDoS detection model trained following an
FCL approach. If a malicious traffic pattern is detected, the
Detector issues a security policy for enforcement on E2 Nodes
to mitigate the the DDoS attack. The security policy can, for
example, consist in blocking the F1-u GTP tunnel of the user
equipment’s Protocol Data Unit (PDU) session from which the
malicious traffic is coming.

The model training is carried out by the FL Server rApp and
Model Trainer xApps deployed at the Non-RT RIC and the
connected Near-RT RICs, respectively. Each Model Trainer
xApp trains the local DL-powered DDoS detection model
using the local metrics reports collected from the attached
base stations. To prevent catastrophic forgetting, the Model
Trainer adopts a CL approach for training the local model.
The local model updates (i.e., parameters) are sent to the
Non-RT RIC for aggregation. The FL Server rApp acts as
the central server in charge of training the global model by

aggregating the local models updates. The parameters of the
global and local models are exchanged between FL Server
and Model Trainers over O1 interface. Details on the model
structure and the training process will be elaborated further in
the subsequent sections IV-D and IV-E.

B. DDoS Attack Types
We assume that the attacker is able to carry out three

common forms of DoS/DDoS attacks, namely: volume-based,
protocol-based, and application layer attacks [10]. In volume-
based (D)DoS attacks, the attacker aims at overloading the
network’s available bandwidth by generating a large volume
of traffic. Examples of volume-based (D)DoS attacks include
ICMP flood and UDP flood. Protocol-based (D)DoS attacks
exploit the network protocol weaknesses to drain the network
resources. SYN flood, SYN scan, and TCP connect scan
attacks, which manipulate the three-way handshake connection
establishment procedure of TCP protocol, are common exam-
ples of protocol-based (D)DoS attacks. Finally, application-
layer (D)DoS attacks abuse application-layer protocols and
services (e.g., HTTP and DNS) to exhaust the server’s re-
sources. It is worth mentioning that application-layer (D)DoS
attacks are often more challenging to spot, owing to their
capability to imitate legitimate behavior with low network
bandwidth usage [3]. HTTP flood and slow-rate DoS are well-
known examples of application-layer DDoS attacks.

C. Data Preparation

1) Task-based Representation: The local training dataset D
consists of a series of T DDoS attack detection tasks that arrive
sequentially over time. Each task t corresponds to a dataset Dt

containing both legitimate and malicious network flows The
attack classes are distinct across various tasks; i.e., each DDoS
attack class is exclusively present in exactly one task.

2) Data Preprocessing: The data pre-processing module
transforms the network flow data of a given task into a



format that fits for the DL model. Firstly, the data are cleaned
by removing all missing and infinity values. The categorical
features are then converted to numerical ones using one-
hot encoding method, yielding a binary feature for each
unique categorical value. After applying one-hot encoding,
each network flow will be characterized by 96 features in
addition to a label identifying the flow’s class (i.e., legitimate
or malicious). To remove scaling differences, the values of
features are standardized by scaling each feature to have zero
mean and unit variance.

D. Local Model Structure

Motivated by its capacity in uncovering complex non-
linear patterns, a DL model is adopted for detecting network
anomalies caused by DDoS attacks. The detection model
is built using Multi-Layer Perceptron (MLP) algorithm. It
consists of an input layer of 96 neurons associated to the pre-
processed network flow’s features, 3 hidden layers with 64
neurons each, and 1 output layer containing only one neuron
for binary classification. The model’s output is the network
flow’s class; i.e., legitimate or malicious). The Rectified Linear
Unit (ReLU) and Sigmoid are used as activation functions in
the hidden layers and the output layer, respectively.

E. Federated Continual Learning Training Process

The training task of the DDoS anomaly detection model
is carried out cooperatively by a set of K Near-RT RICs
{C1, C2, . . . , CK} via the Trainer xApps. Each Near-RT RIC
Ck trains the local DL model on a stream of data Dk,
which consists of T DDoS attack detection tasks that arrive
sequentially over time. At each time step t ∈ {1, 2, . . . , T}, the
stream Dk reveals nk network flow samples {(xi, yi)}nk

i=1 ∼
Dt

k, where xi and yi are, respectively, the network flow’s
features vector and the associated label. Let D denotes the
global input space which satisfies D = ∪K

k=1 ∪T
t=1 Dt

k and
|D| = ∑K

k=1

∑T
t=1 n

t
k = ND. The goal of FCL is to minimize

the following objective function:

argmin
ω

{
L(ω) ≜ 1

ND

K∑
k=1

T∑
t=1

∑
(xi,yi)∈Dt

k

l(f(xi, ω); yi)
}

(1)
where L(.) denotes the global loss function and l(.; .) is
the local loss function on one data sample. f(xi, ω) is the
predicted label for network flow sample xi using the global
model weight vector ω.

The overall FCL training process is provided in Algorithm1.
The process is divided into three phases: the initialization, the
local training, and the aggregation.

1) Initialization: The FCL training process starts with the
FL Server hosted at Non-RT RIC initiating and sending the
global model parameters and the associated hyper-parameters
(e.g., local training epochs, learning rate, loss function) to
every Trainer at Near-RT RICs involved in the training process.

2) Local Training: For each data stream Dt
k, at each

communication round r, each Trainer Ck first updates its
local model parameters ωk using the global model parameters

Algorithm 1 Federated Continual Learning Training.
Input:
C: Set of FL Trainers; Dt

k: Dataset stream of Trainer Ck;
T : Number of tasks; R: Number of communication rounds;
E: Number of local epochs; Bk: Replay buffer of Trainer Ck;
ωg : Global model parameters; Mk: Local model of Trainer Ck;
ωk: Local model parameters of Trainer Ck;
Mk: Local model of Trainer Ck

1: for Trainer Ck ∈ C do
2: Bk ← {};
3: end for
4: FL Server initializes the global model M and its parameters ωg ;
5: FL Server distributes M and ωg to all Trainers Ck ∈ C;
6: for t = 1 to T do
7: for r = 1 to R do
8: for Trainer Ck ∈ C in parallel do
9: Receive the model parameters sent by the FL Server;

10: ωk ← ωg ;
▷ Train local model to minimize Eq.(2) for solving the local

CL problem
11: ωk ←Mk.T rain(ωk,Dt

k ∪ Bk, E);
12: Send ωk to FL Server;
13: if r == R then
14: Bk ← Bk.Update(Dt

k);
15: end if
16: end for

▷ FL Server aggregates the local weights using Eq.(3)
17: ωg ← Aggregate({ωk}Kk=1);
18: FL Server distributes ωg to all Trainers Ck ∈ C;
19: end for
20: end for

received from the FL Server. The local model parameters are
then optimized over the local training dataset to minimize
the loss function. Considering a binary classification problem,
the binary-cross entropy is used as a loss function, which is
formulated on one network flow sample (xi, yi) as:

l(ŷi, yi) = − [yi ∗ log(ŷi) + (1− yi) ∗ log(1− ŷi)] (2)

where ŷi = f(xi, ωk) is the predicted label of the ground truth
target label yi.

To tackle CF, the local training follows a CL approach.
Motivated by its proven superiority in CL, we adopt a
rehearsal-based strategy with reservoir sampling. Specifically,
each Trainer maintains a fixed-size buffer memory Bk, where
it stores representative network flow samples from past tasks
for subsequent replay when learning new tasks. The reservoir
sampling technique decides whether to keep or reject a new
sample based on a given probability when new samples come
in and the buffer fills up [7]. This probability is expressed as

|Bk|∑t
i=1 ni

k

, where |Bk| is the size of the buffer memory Bk and∑t
i=1 n

i
k is the total number of traffic samples observed by

Trainer Ck up to task t. Thus, the local model is trained on the
union of the current task samples Dt

k and the buffered samples
Bk.

Once the training is finished, the Trainer transmits the
optimized local parameters for the current round to the FL
Server for aggregation.

3) Federated Aggregation: The FL Server aggregates the
received local model parameters {ωt

k}Kk=1 into the global
parameters ωg , allowing to capture the global knowledge on



DDoS anomaly detection. In this study, Federated Averaging
(FedAvg) [18] is used for model aggregation, as follows:

ωg =

∑K
k=1 n

t
k · ωk∑K

k=1 n
t
k

(3)

The aggregated parameters are then disseminated by the FL
Server to all Trainers for the next training round.

V. PERFORMANCE EVALUATION

A. Experimental Settings

TABLE I: Nine tasks extracted from 5G-NIDD for CL setting.
Task DDoS DDoS Task DDoS DDoS Task DDoS DDoS

Class Type Class Type Class Type
1 Goldeneye A 4 SYNSCAN P 7 Torshammer A
2 ICMPFlood V 5 Slowloris A 8 UDPFlood V
3 SYNFlood P 6 TCPConnect P 9 UDPScan P

Note: A – Application-layer DDoS, V – Volume-based DDoS, P – Protocol-based DDoS

1) Dataset Description: The experiments are based on 5G-
NIDD dataset [10]. The dataset contains a combination of
malicious and legitimate traffic generated by actual mobile
devices attached to the 5G test network 5GTN (https://5gtn.fi/)
through two base stations. The malicious traffic is produced
by several DDoS attacks as summarized in Table I.

For CL setting, the dataset is split into 9 tasks corresponding
to the 9 attack sessions conducted to generate 5G-NIDD. We
took advantage of already available data separated in CSV
files per BS and attack session to create the 9 tasks. The
pre-processing phase results into a total of 308991 (250019)
network flow samples distributed across the 9 tasks of BS1
(BS2), where each flow is characterized by 96 features in
addition to the flow’s label.

2) Environmental Setup: Fig.2 illustrates the testbed setup.
We used three (03) virtual machines (VMs) on an OpenStack
cloud, each of them running Ubuntu 22.04.5 LTS operating
system. Two VMs, with a configuration of 16 vCPU and 58GB
RAM, act as the Trainers associated to the two base stations.
The third VM, with a configuration of 4 vCPU and 7.8GB
RAM serves as the FL Server.
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Fig. 2: Experimental Setup.

The Trainers and FL Server are implemented using
Python 3.8. The interaction between the Trainers and
the FL server is performed through REST-full interfaces
implemented using the lightweight web server frame-
work Flask (https://flask.palletsprojects.com/en/2.3.x/). The

designed MLP model is built using Pytorch 2.0.1. The
reservoir sampling-based CL strategy is implemented using
Avalanche [19], an end-to-end CL library based on Pytorch.
For each of the 9 tasks in 5G-NIDD dataset, the local MLP
model is trained for 3 rounds, with 10 epochs in each round.
The local training is carried out with a batch size of 128,
Adam as an optimizer, a learning out of 0.01, and a replay
buffer size of 5000 network flow samples.

3) Performance Metrics: Let pm ∈ RT×T be the train-test
performance metric (i.e., accuracy, recall, precision and F1-
score) matrix, where pmi,j is the performance metric of the
model on the test set of task tj after training the model on task
ti. The effectiveness of TenaxDoS in cooperatively detecting
DDoS anomalies while tackling catastrophic forgetting is
assessed by measuring the following metrics [20]:
• Average Performance Metric is measured after the model

has been trained continually till task {t}Tt=1 as follows:

PMt =

∑t
i=1

∑i
j=1 pmi,j

t(t+1)
2

(4)

where PM refers to average accuracy (ACC), precision (P),
F1-score (F1) or recall (R).

• Backward Transfer measures the degree of forgetting older
tasks after training on a new task. It is defined as:

BWT =

∑T
i=2

∑i−1
j=1(acci,j − accj,j)

T (T−1)
2

(5)

• Forward Transfer quantifies the model’s ability to perform
zero-shot learning; i.e., the ability to generalize to future
tasks. It is defined as:

FWT =

∑T
i=1

∑T
j=i+1 acci,j

T (T−1)
2

(6)

The performance metrics are measured for each Trainer
by testing on the unseen data of the other Trainer’s tasks.
The reported results are the average over five runs. To better
demonstrate the advantage of combining FL and CL, the FCL
performance results are compared to those without using FCL
and those when only FL is used. In addition to FedAvg, the
performances are also evaluated using FedProx [21].

B. Performance Results

1) Overall Performances: Fig. 3(a) shows the global per-
Trainer average performances after training on all tasks (i.e.,
t = T in Eq.(4)). We observe that conventional FL training
(i.e., FedAvg and FedProx) improves the performance com-
pared to training without FCL (i.e., woFCL), thanks to the
inter-Trainers knowledge transfer. However, it fails to handle
the shifts in the data distribution across tasks over time.
On the other hand, FCL-based training (i.e., FedAvgCL and
FedProxCL) significantly boosts performances, surpassing FL
training by at least 14.4% in accuracy, 10.8% in precision,
13.1% in F1, and 19.2% in recall. This improvement is
ascribed to the replay memory’s capacity to retain knowledge
from previous tasks.

2) Catastrophic Forgetting: Fig. 3(b) summarizes the evo-
lution of the average accuracy (ACCt) as new tasks are
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Fig. 3: Performance results of TenaxDoS.

learned. It is observed that FCL-based training prevents in-
terference from new tasks with the knowledge learned from
previous task, resulting in high stability and fostering sus-
tainable AI-powered DDoS anomaly detection. This statement
is further corroborated by the achieved BWT. As shown in
Fig. 3(c), FCL-based training effectively mitigates CF, exhibit-
ing a negligible BWT that allows to achieve a remembering
of past knowledge of above 98.8%. This is owed to the
presence of a replay memory, which prevents the sudden loss
of previous task knowledge. The results in Fig. 3(c) show also
that less forgetting leads to enhanced forward transfer.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTION

In this paper, we proposed TenaxDoS, a novel framework
that leverages the potential of FCL to enable sustainable and
cooperative network anomaly detection in an O-RAN envi-
ronment. Leveraging FCL and integration in O-RAN, Tenax-
DoS not only promotes timely and continuous detection of
network anomalies at the edge but also fosters multi-operator
collaboration in a privacy-preserving way. The experimental
results demonstrated the superiority of TenaxDoS in accurately
detecting DDoS attacks against 5G services while effectively
alleviating CF problem. In the future, we intend to extend
TenaxDoS to support fully decentralized asynchronous FCL,
eliminating central aggregation and enabling handling more
realistic scenarios where DDoS attacks arrive to base stations
with different orderings and in asynchronous time frames.
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