
QoE-oriented Soft Caching with Content
Recommendation for Edge Computing Networks

Chenyang Wang∗,††, Yan Chen‡,∗∗, Chuan Sun§, Bosen Jia¶, Xiaofei Wang†,
Tarik Taleb‡, and Victor C. M. Leung∥

∗College of Computer Science & Software Engineering, Shenzhen University, Shenzhen, China
†† Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, Guangdong, 518132, China

†College of Intelligence and Computing, Tianjin University, Tianjin, China
‡Faculty of Electrical Engineering and Information Technology, Ruhr University Bochum, Bochum, Germany

§College of Computing and Data Science, Nanyang Technological University, Singapore
¶China Unicom Digital Technology Co., Ltd, Beijing, China

∥University of British Columbia, Vancouver, Canada
E-mail: {chenyangwang@ieee.org, yanchen edu@outlook.com, chuan.sun@ntu.edu.sg, jiabs10@chinaunicom.cn,

xiaofeiwang@tju.edu.cn, tarik.taleb@rub.de, vleung@ieee.org},∗∗Corresponding author

Abstract—Mobile Edge Caching (MEC) can potentially alle-
viate Internet transmission congestion by delivering content at
the network edge. However, current MEC solutions suffer from
low resource utilization efficiency and often fail to meet user
Quality of Experience (QoE), primarily due to dynamic user
requests and obsessive pursuit of direct caching hits. Given
the prevalence of recommendation systems, users often lack
precise requests when using recommendation-based applications
like TikTok and Taobao, insted passively enjoying recommended
content. In this paper, we introduce a recommendation-enabled
MEC architecture to enhance resource utilization and QoE.
We develop a recommendation-enabled soft caching model and
formulate the optimization problem as maximizing joint sys-
tem revenue. To address this, we propose an attention-assisted
federated learning deep Q-network algorithm. We conduct the
simulations by using the real-world MIND dataset. The results
demonstrate that our proposed algorithm outperforms existing
baselines, demonstrating its effectiveness in improving resource
utilization and QoE.

I. INTRODUCTION

In recent years, the surge in data-intensive applications
owns much to AI advancements, communication networks,
and mobile tech [1]–[3]. Despite the boosted Internet band-
width, managing this data flood remains a challenge. Mobile
Edge Caching (MEC) tackles this by caching content at the
network edge, reducing reliance on distant Cloud Data Centers
(CDC) [4]. The cache hit ratio, crucial for MEC efficiency,
measures the share of locally cached data in user requests on
Edge Servers (ESs) [5]. Deep reinforcement learning (DRL)
often complements federated learning (FL) to boost MEC
model performance and training efficacy. However, decentral-
ized training demands frequent parameter exchanges between
cloud servers and ESs, which strains network resources [4].

Content platforms like TikTok and Netflix have a signifi-
cant market influence [6], [7]. While users typically interact
passively, their continued engagement is crucial for platform
viability [8]. To bolster user retention, these platforms de-
ploy recommendation systems that tailor content to individual
preferences, boosting engagement [9]. In such applications,

Cloud

…

Base Station

Cellular Link

Users

Edge Server

Fig. 1: Recommendation-enabled MEC

recurrent content requests and similar recommendations for
users with comparable preferences are common [10], [11].
These platforms integrate MEC with recommendation systems
to improve Quality of Service (QoS) and alleviate network
congestion, mitigating delays and costs associated with retriev-
ing data from Content Delivery Networks [12]. Nonetheless,
optimizing caching policies to balance user requests and
preferences poses challenges due to network infrastructure
complexity and privacy concerns.

Soft edge caching has been developed for content-providing
platforms, not only delivers the requested content but also
offers alternative content aligned with user preferences when
the original request is not available on ESs or when there
is no specific content request. Based on these, this study
introduces an edge soft caching scheme that integrates with
existing recommendation systems to optimize content delivery
efficiency at the edge. Additionally, we propose a caching
update strategy utilizing a deep Q-network combined with
attention-assisted Federated Learning (Att-FLDQN). Our key
contributions are summarized as follows.

• We introduce a soft caching model accommodating the
recommendation scheme to unveil the impact of user
preference rather than merely improving the caching

efficiency. Subsequently, the soft caching hit ratio and
the content similarity have been further defined by jointly
considering the caching and recommendation revenue.

• The optimization problem is decomposed into request
processing and caching replacement, which is modelled
as a Markov Decision Process (MDP) to maximize joint
system revenue. Afterward, we propose an attention-
assisted FL deep Q-network (Att-FLDQN) to address the
dynamic changes in user-customized preferences.

• We conduct numerous simulations using the Microsoft
MIND dataset. The results demonstrate that the proposed
Att-FLDQN algorithm outperforms existing baselines.

II. SYSTEM MODEL

The proposed recommendation-enabled mobile edge
caching (R-MEC) architecture is shown as Fig. 1, where each
end user (EU) connects to the Internet by accessing a base
station (BS) and requesting content from the local ES directly
associated with the BS. Each ES is equipped with limited
storage and processing capacities to cache contents and run
caching and recommendation algorithms. Additionally, each
ES maintains a local caching list. We assume that the CDC
has sufficient capabilities for computing and caching and can
provide feedback on all the contents requested by EUs.

In the proposed R-MEC architecture, a set of EUs U =
{u|1, 2, · · · , U} are randomly distributed in the network, and
we denote the E = {e|1, 2, · · · , E} with the storage capacity
Ce ∈ R+ as the set of ESs equipped in BSs associated with
the CDC. Besides, let F = {f |1, 2, · · · , F} indicate a set
of all contents with the size cf ∈ R+ provided by CDC.
Assume that the CDC has sufficient storage space to cache
|F | contents, and each ES e can cache a subset of contents
Fe from CDC, i.e., Fe ⊆ F . A binary indicator xt

e,f = 1
represents whether the content f is cached on ES e at time
t or not, where xt

e,f = 1 is cached and 0 is otherwise.
Meanwhile, we consider one training process as a set of time
slots T = {t|1, 2, · · · , T}. Then, we have the capacities of ES
are constrained by C1:

∑
f∈Fe

xt
e,fcf ≤ Ce,∀e ∈ E ,∀t.

The mobility of EUs leads to dynamic connections between
EUs and ESs. To this end, we use ytu,e =1 to represent that
EU u is directly connected to and requests contents from ES
e at time t, ytu,e=0 otherwise. Thus, U t

e={u|ytu,e=1, u∈U}
is the set of EUs associated with ES e, and each EU can only
connected to one BS, i.e., C2:

∑
e∈E y

t
u,e = 1,∀u ∈ U ,∀t.

In addition, we use a binary indicator ptu,f =1 to represent
the EU u requests a content f ∈ F from ES at the beginning
of the time slice t, ptu,f = 0 otherwise. We assume that at
each time slice, an EU can only request one content, i.e.,
C3:

∑
f∈F ptu,f = 1,∀u ∈ U ,∀t.

The Zipf distribution is widely employed to model the
content popularity in time duration, and we use P =
{ptu,f}u∈U,f∈F,t∈T to represent the set of all content requests,
and P∼Zipf(β, |F|), where β is a parameter. Then, the direct
cache hit ratio on an ES e can be defined as,

µ′
e =

∑
t∈T

∑
u∈Ut

e

∑
f∈F ptu,fy

t
u,ex

t
e,f∑

t∈T

∑
u∈Ut

e

∑
f∈F ptu,f

, ∀e ∈ E . (1)

1 Dark Knight

2 Iron Man

3 Spider Man

4 City Lights

Movie Cache List

1

2

1

3 2

4

1

2

Direct Caching Hit Direct Caching Miss Soft Caching Hit

Fig. 2: Direct caching hit v.s. soft caching hit.

Suppose content f requested by an EU u is not cached on
ES e. In that case, the ES can offer alternative content that
aligns with the EU’s preferences according to the analysis of
the recommendation system. If the content occupies a high
position in the EU’s preference, we declare that the content hits
the request softly, although the requested content is not directly
satisfied. In this way, the soft caching hit ratio is defined as:

µe =
∑
t∈T

∑
u∈U

∑
f∈F

ptu,fy
t
u,e(1−

F∏
f ′∈F

(1−ωu
f,f ′xt

e,f ′)), ∀e ∈ E , (2)

where ωu
f,f ′ represents the probability that u requests content

f but also accepts content f ′.

III. CONTENT RECOMMENDATION IN EDGE CACHING

A. Soft Caching Hit and Content Recommendation

We posit that there is an inherent potential for preference
similarity between any two distinct users. Consequently, it is
an attempt to recommend content to users that aligns with the
preferences of other users exhibiting similar interests, which
also serves as the foundational motivation of the study. Fig. 2
illustrates the difference between direct and soft caching hits.
Assume that an ES caches four popular films: Dark Knight,
Iron Man, Spider-Man, and City Lights. If “Spider-Man” is
requested and not cached, the traditional approach requires
fetching the film from a cloud center, potentially causing
delays and network congestion. However, with a soft caching
mechanism, if an EU requests “Spider-Man” but the ES lacks it
yet has similar content like “Iron Man”, the server can suggest
it instead. This recommendation, based on the user’s history
of viewing superhero-themed films, increases the likelihood of
acceptance and enhances the viewing experience.

Soft caching hit mainly depends on the recommendation
aligned to the heterogeneous preferences of EUs. Let ϕu

f ∈
[0, 1] represent the recommendation index of content f to EU
u. Then, we can define the customised content recommenda-
tion list of EU u with recommendation indexes as Φu since the
content provided by the system is finite. The recommendation
system can learn from the users’ preferences to obtain the
recommendation list of each EU for all content (Φu). Then,
Φu is correlated with the EU’s preference. We can assume that
ϕu
f ′ = ωu

f,f ′ for simplification.
When a request arrives, the ES e prioritizes providing

feedback on the requested content f that is stored in the cache.
In the absence of cached content, a soft caching hit scheme

is initiated to provide feedback on alternative content f ′. The
determination of the recommendation index ranking between
the requested content and other content is facilitated through
the utilization of Φu. Subsequently, we designate contents
positioned within the top 20% of Φu as soft caching hit content
denoted by Φ20%

u , and we establish ωu
f,f ′ = 1 if f ′ ∈ Φ20%

u ,
and ωu

f,f ′ =0 otherwise. The categorization of a request as a
soft caching hit is contingent upon whether these designated
contents are cached on ES e after the receipt of the request,
otherwise, cache misses occur, necessitating the acquisition of
content from the CDC.

B. Recommendation based on Collaborative Filtering

In this paper, we employ user-based collaborative filtering
(userCF) [13], wherein recommendations are conducted by
identifying items of interest to a user based on the pref-
erences of others sharing similar interests. The likelihood
of recommending content to a target EU necessitates the
construction of a labelled directed graph derived from the
analysis of interactions, encompassing positive and negative
comments. In this paper, the graph is represented as a co-
occurrence matrix R, wherein each element ri,j signifies a
score value indicative of the comments originating from user i
towards item j. Subsequently, the recommended system seeks
to estimate the value of ru,f . To accomplish this, the userCF
algorithm identifies the top n users with analogous interests
to the target EU u. The estimation of comments from user
u to specific content is derived by collectively examining the
comments from these n identified users.

We employ gradient descent to iteratively optimize and ob-
tain the optimal decomposition matrix, in which the objective
function is defined as

G = min
m∗,v∗

∑
(u,f)∈K

(
ru,f − vT

f mu

)2

, (3)

where mu is the EU vector, vf is the content vector, and
K is the set of users’ comments on content. Then, we use
the Pearson correlation coefficient to calculate the similarity
between an EU u and others d′, i.e.,

Su,u
′ = |

∑
(mu−mu)(mu

′−mu
′)√∑|U|

i=1(mu,i−mu)2
√∑|U|

i=1(mu
′
,i−mu

′)2

∣∣. (4)

Considering user similarities, we can estimate the comments
for a target EU u to content f according to relative comments
from top-n similar EUs of u. This work employs a weighted
average method, i.e.,

ϕu
f = ru,f =

∑
u
′∈U (Su,u

′ · ru′
,f)∑

u
′∈U Su,u

′
, ∀u ∈ U , ∀f ∈ F . (5)

During the system running, the newly arrived users are
causing a lack of data to calculate user correlation, as above.
We define the public comment r[·,f](t) of a content f at
current time t as the average of comments from all existing
users Û . Then, for a newly joined EU u, ru,f is initialized to be

r[·,f](t). The value of ru,f is calculated until u has interacted
with f for more than τs times. Then, we have

C4: ru,f =

{
rd,f if

∑
t p

t
u,f > τs,

r[·,f](t) otherwise,
∀u ∈ U , ∀f ∈ F , (6)

where
r[·,f](t) =

∑
u′∈Û ru′,f

|Û |
. (7)

C. Joint Revenue of Caching and Recommendation
1) Recommend revenue: Recall that Φu represents the list

of EU u’s preference indexes on all contents. Thus, providing
user content with a higher preference can achieve a higher
QoE and higher revenue. As the content recommend index
ϕu
f ′ is correlated with EU’s preference, we can define the

recommended reward of EU u as αt
u(f, f

′)|f ̸=f ′ = ϕu
f ′ in

soft caching condition. Besides, when the requested content
f is hit on ES, the reward is 1. Then, the recommendation
reward obtained with the requested content f and the set of
contents cached on the ES F t

e as

αt
u(f,F t

e) =


1 if f ∈ Fe

max
f ′∈Ft

e

αt
u(f, f

′), if Fe ∩ Φ20%
u ̸= ∅

0, otherwise

(8)

2) Caching revenue: The feedback decision is denoted
as zt

u =
〈
zEu (t), zSu (t), z

C
u (t)

〉
. If this tuple is empty, the

requested content is cached on ES (zEu (t) = 1), provided
feedback through the soft caching scheme (zSu (t) = 1), or
obtained from CDC (zCu (t) = 1). If all three are true, then
zEu (t)+zSu (t)+zCu (t) = 1. This encompasses scenarios where
the requested content is cached on the ES or at least one
content belonging to the top-20% preferred contents. We posit
that cache hit refers to the scenario where an EU’s content
request receives a response from the ES, corresponding to
situations zEu (t) = 1 and zSu (t) = 1. Consequently, we model
cache revenue as βt

e = µt
e ∈ [0, 1], signifying a positive

correlation between cache revenue and cache hit ratio.

D. Problem Formulation
The system dynamics encompassing the requests from EU

u, user mobility, and the overall requests received by EUs un-
dergo continual fluctuations. Thus, ES e updates their cached
content to augment the cache hit ratio. At each time slot, each
ES e observes its current state, confining the cached content
and requests originating from associated EUs. After this obser-
vation, the ES e updates its cached content to optimize revenue
generation by catering to the service demands of these EUs. In
this paper, we define the system revenue of each ES e as the
weighted sum of recommendation and caching revenue, i.e.,

Rt
e(St

e,At
e) = λ

∑
u∈Ut

e

αt
u(f,F t

e)+ (1−λ)µt
e,∀e ∈ E , ∀t ∈ T . (9)

Thus, the objective of updating cached content is

max
π

1

T

T∑
t=0

Rt
e(St

e,At
e) (10)

s.t. C1 ∼ C4. (11)

where π : St
e → At

e represent the policy that can generate
optimal action of updating caching contents At

e based on
corresponding state observation St

e.

IV. PROPOSED APPROACH

A. Problem Analysis

The formulated problem is classified as a classic case of
Integer Linear Programming, which is NP-hard [14], [15].
Conventional methods are difficult to solve. Our objective is
to develop a policy that optimally updates caching actions for
any random state observation. Each ES observes the system
state at the beginning of each time slice and updates its cached
contents following the caching update action that the policy
generates. Notably, the edge caching update process can be
modelled as a Markov decision process (MDP).

We define the state observation of each ES at time slot t
as the amalgamation of its caching state and the number of
requests for content received from all associated users, i.e.,

St
e =

{
{xt

e,f}f∈F , {
∑
u∈U

yt
u,ep

t
u,f}f∈F

}
, ∀e ∈ E , ∀t ∈ T . (12)

Each ES needs to determine how to satisfy requests (i.e.,
zt
e) and which content should be replaced. Due to limited

resources and response time, we set each ES to replace at most
one cached content. Let at

e = {ate,f}f∈{0}∪F denote the con-
tent replace action, where ate,f ∈ {0, 1}, and

∑|F|
f=0 a

t
e,f = 1.

When ae,f = 1, it indicates that content f should be replaced,
0 is otherwise. Thus, the action of each ES is

At
e = {zt

e,a
t
e}, ∀e ∈ E , ∀t ∈ T . (13)

Algorithm 1 Policy training based on DQN
Input: EC system, initial policy, replay buffer

1: for t = 1, 2, 3, · · · , T do
2: Receive a request for content f from EU
3: if xt

e,f then
4: Continue
5: else
6: Observe state: St

e;
7: Get zt

e by checking {xt
e,f}f∈F .

8: Generate at
e by policy with input St

e.
9: Execute At

e={zt
e,a

t
e}.

10: Obtain Rt
e(St

e,At
e) and observer St+1

e .
11: Store < St

e,At
e,Rt

e,St+1
e > to replay buffer.

12: Sample a batch of experience from the replay buffer and
update Q-networks.

13: if t%tγ then
14: Update target networks.

B. Att-FLDQN Caching Update

After receiving requests, the action selection model checks
if the requested content exists on ES. When content exists,
the ES feedbacks the requested content, and zEu (t) = 1.
Otherwise, the soft caching scheme is triggered to check if
there is any of the top-20% preferred content of the EU
cached on ES. Then, if there exists any alternative content,
zSu (t) = 0 and return the content with the highest similarity to

EU. Otherwise, zSu (t) = 0, and the ES acquires the required
content from the CDC and returns it to the EU. Meanwhile, a
content replacement operation is triggered to update the cached
content on the ES. During this procedure, the interaction
record module stores these interaction experiences in records
for further knowledge utilization.

The request processing action (i.e., zt
e) depends on the con-

tents cached on ES. Besides, it is independent of the caching
update action. Thus, the request processing and caching update
can be executed separately in each time slice. The request
processing is executed as described above. Then, DRL in our
work addresses the caching replacement action, and the policy
training based on DQN is shown as Algorithm 1.

To reduce transmission load and privacy risks associated
with accumulating original data, we employ FL to train the
caching update policy. The CDC maintains global parameters
Θ, and each ES starts updating with the same initial parameters
θte from the global model based on local experience. The CDC
then aggregates these updates to refine the global parameters,
and the whole process continues until convergence.

The global update is modelled as a weighted accumulation
by using the attention mechanism, i.e.,

min
θ,w
{F (Θ)} ≜

∑
e∈E

weFe(θ
t
e), (14)

where we is the weight of ES e, indicating importance of
the model deployed on ES e for global model aggregation. In
this paper, we integrate attention mechanisms to calculate the
weights for global aggregation based on composite metrics,
including hardware and data features.

We define the composite metric of each ES e as a tuple
Ke =< CAe, RBe, DSe, ARe >, where CAe is the comput-
ing ability, RBe is the replay buffer size that can reflect the
memory capacity, DSe is the size of training data that reflects
the data abundance, and ARe is the average reward that can
reflect the quality of the current local model. We select Ke as
the Key and the model parameter as the Value in the attention
mechanism. Then, the query is designed as

Q=[max
e
{CAe},max

u
{RBe},max

e
{DSe},max

e
{ARe}]. (15)

In this way, the input of the attention mechanism includes
Q,Ke, θte on CDC. Then, the weight is obtained, i.e.,

we = Attention(Q,Ke) = softmax(
QKT

e√
d

), ∀e ∈ E , (16)

where d is the dimension.
The policy training process based on Att-FLDQN is illus-

trated in Algorithm 2. Initially, each ES uploads the local
parameters, and the information including server computing
power, experience replay pool size, training data size and
average reward information (Lines 1-7). Calculate the weight
of each model in the parameter aggregation operation (Line 8).
Weighted aggregation is performed to obtain global parameters
(Line 9). Distribute global parameters to each ES and update
parameters uniformly (Lines 10–11). The computational com-
plexity primarily arises from the DQN training process, denote

the number of multiplication operations and the mini-batch
in each DQN model as Ψ and ∆, respectively. For T time
slots, and considering the storage capacity E, we have the
computational complexity of Algorithm 2 as O(TE∆Ψ).

Algorithm 2 Policy training based on Att-FLDQN
Input: EC system, initial policies, replay buffer

1: Initialize local model parameters as the global model;
2: for t = 1, 2, 3, · · · , T do
3: Each ES:
4: Receive requests from EUs;
5: Update the local model as Algorithm 1;
6: if t%ta then
7: Each ES uploads θte, CAe, RBe, DSe, ARe;
8: CDC calculate we, ∀e ∈ E according to (16);
9: Update the global model Θt according to (14);

10: Dispatch global model parameters to ES;
11: ES updates local model θte ← Θt,∀e ∈ E ;

V. SIMULATION RESULTS

A. Simulation Setup

We conduct experiments using the MIND dataset [16], a
news recommendation dataset that Microsoft released in 2020.
We select the top 1000 legitimate news articles that users have
clicked on and are still accessible to form the content list. The
interaction between content and EU is obtained from the file
“behaviors.tsv”, which records the user’s clicks and displays,
including ID, user ID, record time, and a list of clicked and
viewed news articles.

TABLE I: Settings on Key Parameters

Parameter Value Parameter Value
Replay buffer size 500 ϵ 0.9

Batch size 256 γ 0.95
Hidden layers 2 tr 100
Hidden size 128 λ 0.5
Optimizer Adam Learning rate 0.001

Table I shows the key parameters of the simulations. We set
up 4 ESs and 80 EUs, and the storage capacity of each ES is
2048 MB. Each ES provides content for 20 EUs in a training
round, which includes 50 time slots. At the beginning of each
training round, computing resources are allocated to each ES,
randomly selected from [8, 16]. The requests of EUs follow
Zipf distribution with β = 1. We set the content size as the
count of words in the news with 1 MB/word. Then, we split
the content size into 50 groups, with every 40 MB being a
group with [1, 2000] MB. Then, the recommended index for
any content to an EU is obtained from Eq. (5). The evaluation
from the user to content (ru,f) is defined as including click (1),
view (0), and ignore behaviours (-1). The interaction threshold
of a new EU is 10, i.e., τs=10. We compare the proposed
approach with FIFO [17], LFU [18], LRU [19], Distributed-
DQN [20], and FedAvg-DQN [21].

B. Simulation Results

To explore the effects of recommendation and caching
revenues, we consider two cases by varying the parameter λ in

0 1000 2000 3000 4000 5000

Episode

0

0.05

0.1

0.15

0.2

A
v
e

ra
g

e
 S

y
s
te

m
 R

e
v
e

n
u

e

Only Caching

Only Recommendation

Fig. 3: Effects of Different Revenues.

the system revenue. We set λ = 1 (only recommendation) and
λ = 0 (only caching) to exclusively benefit users and content
providers, respectively. As shown in Fig. 3, the system revenue
derived from recommendations and caching stabilizes at 0.17
and 0.12, respectively, around the 3000th and 2000th rounds.
This highlights that the proposed Att-FLDQN comprehen-
sively accounts for the reciprocal influence of recommendation
and caching, achieving a trade-off between them. This is
mainly because only caching operations necessitate execution
based on the selected replacement action.

2 3 4

Number of ESs

0

20

40

60

80

C
a

c
h

in
g

 H
it
 R

a
ti
o

 (
%

)

LRU

LFU

FIFO

Distributed-DQN

FedAvg-DQN

Att-FLDQN

(a) Caching Hit Ratio

2 3 4

Number of ESs

0

20

40

60

80

T
ra

ff
ic

 O
ff

lo
a

d
in

g
 R

a
ti
o

 (
%

)

LRU

LFU

FIFO

Distributed-DQN

FedAvg-DQN

Att-FLDQN

(b) Traffic Offloading Ratio

Fig. 4: Effects of different numbers of ESs.

Fig. 4 shows the effects of different numbers of ESs on
the caching hit ratio and traffic offloading ratio. The proposed
algorithm achieves the best performance compared to the
others. As the number of ESs increases, the caching hit ratio
and traffic offloading ratio increase because more content is
cached at the network edge and more requests can be satisfied.
Notably, when the number of ESs is 4, the caching hit ratio
of the proposed algorithm reaches nearly 80%.

Fig. 5 shows the effects of different numbers of EUs. It
can be seen that Att-FLDQN outperforms the other three rule-
based algorithms and slightly outperforms the two DRL-based
algorithms in both metrics. This is because the proposed algo-
rithm has better cache replacement action learning capability,
and also shares the training results by considering the training
effects of different models more reasonably. As the number
of EUs grows, the caching hit ratio and traffic offloading
ratio improve, and the advantage of the proposed algorithm
becomes more pronounced. This is because more EUs bring
more differentiated training samples, enhancing the learning
abilities of the model.

Fig. 6 shows the effects of cache capacity sizes on the
caching hit ratio and traffic offloading ratio, respectively. Both

40 80 120

Number of End Users

0

20

40

60

C
a

c
h

in
g

 H
it
 R

a
ti
o

 (
%

)

LRU

LFU

FIFO

Distributed-DQN

FedAvg-DQN

Att-FLDQN

(a) Caching Hit Ratio

40 80 120

Number of End Users

0

20

40

60

T
ra

ff
ic

 O
ff

lo
a

d
in

g
 R

a
ti
o

 (
%

)

LRU

LFU

FIFO

Distributed-DQN

FedAvg-DQN

Att-FLDQN

(b) Traffic Offloading Ratio

Fig. 5: Effects of different numbers of end users.

1024 2048 3072 4096

Caching Capacity (MB)

0

20

40

60

80

C
a

c
h

in
g

 H
it
 R

a
ti
o

 (
%

)

LRU

LFU

FIFO

Distributed-DQN

FedAvg-DQN

Att-FLDQN

(a) Caching Hit Ratio

1024 2048 3072 4096

Caching Capacity (MB)

0

20

40

60

80

T
ra

ff
ic

 O
ff

lo
a

d
in

g
 R

a
ti
o

 (
%

)

LRU

LFU

FIFO

Distributed-DQN

FedAvg-DQN

Att-FLDQN

(b) Traffic Offloading Ratio

Fig. 6: Effects of different caching capacity sizes.

the caching hit ratio and traffic offloading ratio will increase
as the cache capacity of the ES goes up. Additionally, as
the cache capacity increases, the difference between the Att-
FLDQN algorithm and other benchmark algorithms gradually
grows. When the cache capacity is 4096 MB, Att-FLDQN
achieves a higher caching hit ratio and a higher traffic of-
floading ratio of 8.15%, compared to the best-performing rule-
based algorithm, LRU. The traffic offloading ratio is 8.5%
higher, while the caching hit ratio is 1.8% higher and the traffic
offloading ratio is 2.47% higher than FedAvg-DQN.

VI. CONCLUSION

In this work, we have investigated recommendation-enabled
Mobile Edge Caching (MEC) to enhance resource utilization
and QoE of users. Then, a soft caching model has been intro-
duced, and we have formulated the optimization problem as
maximizing joint system revenue. The model has incorporated
both direct and soft caching hit, effectively accommodating a
wide range of user requests by catering to their preferences.
To address the complex problem, we have decomposed its
request processing and caching replacement and proposed an
Att-FLDQN algorithm. The algorithm continuously updates
the cached content of each ES to meet dynamic user requests.
Simulations based on real dataset have verified the effective-
ness of the proposed algorithm.

ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation of China under Grant No. 62072332; in part by the
Tianjin Xinchuang Haihe Lab under Grant No.Grant 22HHX-
CJC00002. This work was also conducted at ICTFICIAL Oy,

Finland; and supported in part by the European Union’s HE re-
search and innovation program HORIZON-JUSNS-2023 under
the 6G-Path project (Grant No. 101139172) and by the AerOS
project funded by the European Union’s Horizon Europe, the
EU’s key funding program for research and innovation under
Grant No. 101069732. The paper reflects only the authors’
views, and the European Commission bears no responsibility
for any utilization of the information contained herein.

REFERENCES

[1] Y. F. et al., “A survey of driving safety with sensing, vehicular com-
munications, and artificial intelligence-based collision avoidance,” IEEE
Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 6142–6163, 2022.

[2] Y. Zhao and Z. L. et al., “Socialized learning for smart cities: Cognitive
paradigm, methodology, and solution,” IEEE Wirel. Commun., vol. 28,
no. 5, pp. 200–208, 2021.

[3] J. Kang, J. Zhang, H. Yang, D. Ye, and M. S. Hossain, “When metaverses
meet vehicle road cooperation: Multi-agent drl-based stackelberg game
for vehicular twins migration,” IEEE Internet of Things Journal, 2024.

[4] C. Wang and R. L. et al., “Heterogeneous edge caching based on actor-
critic learning with attention mechanism aiding,” IEEE Trans. Netw. Sci.
Eng., vol. 10, no. 6, pp. 3409–3420, 2023.

[5] C. S. et al., “Federated deep reinforcement learning for recommendation-
enabled edge caching in mobile edge-cloud computing networks,” IEEE
J. Sel. Areas Commun., vol. 41, no. 3, pp. 690–705, 2023.

[6] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system:
Algorithms, business value, and innovation,” ACM Trans. Manag. Inf.
Syst., vol. 6, no. 4, pp. 13:1–13:19, 2016.

[7] Y. Ren, W. Qi, and M. Fan, “The development of tik tok’s global
market,” in ICEMCI. Atlantis Press, 2021, pp. 2779–2784.

[8] Y. Wei and X. W. et al., “Graph-refined convolutional network for
multimedia recommendation with implicit feedback,” in The 28th ACM
ICME, Seattle, WA, USA, October 12-16, 2020, pp. 3541–3549.

[9] A. Pfadler, H. Zhao, and et al., “Billion-scale recommendation with
heterogeneous side information at taobao,” in 36th IEEE ICDE, Dallas,
TX, USA, April 20-24, 2020, 2020, pp. 1667–1676.

[10] D. Tsigkari and T. Spyropoulos, “An approximation algorithm for joint
caching and recommendations in cache networks,” IEEE Trans. Netw.
Serv. Manag., vol. 19, no. 2, pp. 1826–1841, 2022.

[11] J. Liao and W. Z. et al., “Sociallgn: Light graph convolution network
for social recommendation,” Inf. Sci., vol. 589, pp. 595–607, 2022.

[12] P. Sermpezis and T. G. et al., “Soft cache hits: Improving performance
through recommendation and delivery of related content,” IEEE J. Sel.
Areas Commun., vol. 36, no. 6, pp. 1300–1313, 2018.

[13] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Adv. Artif. Intell., vol. 421425, pp. 1–19, 2009.

[14] Y. Chen, Y. Sun, H. Yu, and T. Taleb, “Joint task and computing resource
allocation in distributed edge computing systems via multi-agent deep
reinforcement learning,” IEEE Transactions on Network Science and
Engineering, vol. 11, no. 4, pp. 3479–3494, 2024.

[15] K. Poularakis and J. L. et al., “Joint service placement and request rout-
ing in multi-cell mobile edge computing networks,” in IEEE INFOCOM,
Paris, France, April 29 - May 2, 2019. IEEE, 2019, pp. 10–18.

[16] F. Wu and et al., “MIND: A large-scale dataset for news recommenda-
tion,” in Pro. of the 58th AMACL, Jul. 2020, pp. 3597–3606.

[17] D. Morse and G. Richardson, “The lifo/fifo decision,” J. acnt. resch.,
pp. 106–127, 1983.

[18] C. Li and Y. Z. et al., “Collaborative caching strategy based on
optimization of latency and energy consumption in MEC,” Knowl. Based
Syst., vol. 233, p. 107523, 2021.

[19] P. Yuan and S. S. et al., “Caching hit ratio maximization in mobile
edge computing with node cooperation,” Comput. Networks, vol. 200,
p. 108507, 2021.

[20] X. Wang and C. W. et al., “Federated deep reinforcement learning for
internet of things with decentralized cooperative edge caching,” IEEE
Internet Things J., vol. 7, no. 10, pp. 9441–9455, 2020.

[21] X. Li, K. Huang, and et al., “On the convergence of fedavg on non-iid
data,” arXiv preprint arXiv:1907.02189, 2019.

