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Abstract—The unbridled growth of the Internet and the net-
work-based applications has contributed to enormous security
leaks. Even the cryptographic protocols, which are used to provide
secure communication, are often targeted by diverse attacks.
Intrusion detection systems (IDSs) are often employed to monitor
network traffic and host activities that may lead to unauthorized
accesses and attacks against vulnerable services. Most of the con-
ventional misuse-based and anomaly-based IDSs are ineffective
against attacks targeted at encrypted protocols since they heavily
rely on inspecting the payload contents. To combat against attacks
on encrypted protocols, we propose an anomaly-based detection
system by using strategically distributed monitoring stubs (MSs).
We have categorized various attacks against cryptographic proto-
cols. The MSs, by sniffing the encrypted traffic, extract features
for detecting these attacks and construct normal usage behavior
profiles. Upon detecting suspicious activities due to the deviations
from these normal profiles, the MSs notify the victim servers,
which may then take necessary actions. In addition to detecting
attacks, the MSs can also trace back the originating network of the
attack. We call our unique approach DTRAB since it focuses on
both Detection and TRAceBack in the MS level. The effectiveness
of the proposed detection and traceback methods are verified
through extensive simulations and Internet datasets.

Index Terms—Computer security, encrypted protocol (crypto-
graphic protocol), intrusion detection system (IDS).

I. INTRODUCTION

C RYPTOGRAPHIC protocols rely upon encryption to pro-
vide secure communication between involved parties. A

wide range of cryptographic protocols are employed by pop-
ular applications and services to ensure data confidentiality, in-
tegrity, and authentication. For example, Secure Socket Layer
(SSL) and its successor Transport Layer Security (TLS) are
extensively used to provide authentication and encryption in
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order to transmit sensitive data. Secure Shell (SSH) has become
highly popular for providing password-based authentication and
remote logins. Cryptographic protocols have also been devel-
oped for the network level [1], such as IPSec, which is exten-
sively used in virtual private networks (VPNs). The purpose of
all these encrypted protocols is to resist malicious intrusions
and eavesdropping. It is, however, ironic that the network ser-
vices and applications become vulnerable once the underlying
encrypted protocols get compromised.

The number of attacks against encrypted protocols has in-
creased significantly in recent times. With the evolution of high-
speed Internet and processing power, it is only natural to assume
that more sophisticated attacks will emerge and pose serious
threats to encrypted protocols. For instance, adaptive-chosen ci-
pher-text attacks were considered to be only theoretically pos-
sible until 1998, when Daniel Bleichenbacher successfully car-
ried out an attack against systems using RSA encryption in con-
cert with the PKCS #1 v1 encoding function [2]. This raised
a huge concern among the networking community since the
versions of SSL protocol used by thousands of Web servers
were then vulnerable to this type of attack. More innovative at-
tacks like the Bleichenbacher attacks took advantage of flaws
within the PKCS #1 function to gradually reveal the content
of a RSA encrypted message. Although these attacks involved
the transmission of several million trial-and-error-based cipher-
texts to the encrypted Web servers, they practically implied that
a SSL session key could be exposed in a reasonable amount
of time, perhaps a day or less. Later on, the timing attack de-
vised by Boneh and Brumley [3] extracted private keys from
an OpenSSL-based Web server in less than 6 h, leading to a
fascinating breakthrough in the field of network security. Sim-
ilar attacks against SSH also came into use, such as Portable
OpenSSH PAM timing attacks [4], in which an attacker could
determine the existence of a given login by comparing the time
the remote SSHD-daemon took to refuse an invalid password
for a nonexistent login to that for a valid login.

As it is evident that these attacks do exist in practice, it is
imperative that these threats be detected as early as possible in
order to thwart them. Our topic of interest is a distributed de-
tection mechanism that is able to detect the anomalous events
as early as possible, especially before significant damage is in-
flicted on the victim by the attacker. The coordination of distinct
agents monitoring the network flows at different points requires
an appropriated architecture that must be developed. We address
these issues in our paper effectively and attempt to design ad-
equate solutions to these problems. We propose the DTRAB
scheme, which is not limited to constructing a defensive mech-
anism to discover attacks; we devise an aggressive countermea-
sure that not only detects a potential threat, but also investigates
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the root of the threat by attempting to trace back the attacker’s
original network or subnetwork.

The remainder of this paper is organized as follows. Section II
surveys some related work on intrusion detection and traceback
systems while exploring the shortcomings of these contempo-
rary approaches to deal with cryptographic attacks. Section III
at first presents the scope of attacks that may be detectable by
DTRAB. In this section, the network topology that may be con-
sidered is then provided, which is based upon the monitoring
stubs (MSs). The functionality of the MSs in order to detect and
trace back the attacks against cryptographic protocols is then il-
lustrated in four modes, namely learning, detection, alert, and
traceback phases. The performance of DTRAB is evaluated in
Section IV with the aid of simulations. Due to difficulties in
obtaining real encrypted traces that are rather sensitive in na-
ture, this section also demonstrates the application of DTRAB
for detecting nonencrypted attacks in Internet datasets. Finally,
Section V concludes the paper.

II. RELATED WORK

A. Previous Work on Detecting Attacks Against Encrypted
Protocols

Intrusion detection has been an active field of research for
over two decades [8], and most conventional IDSs operate by
inspecting the contents of the networking packets. Once en-
crypted, the packet contents are garbled and the intrusion detec-
tion systems (IDSs) fail to recognize whether the payloads are
normal or potentially malicious. As a result, despite substantial
research and commercial investments, traditional IDSs still re-
main ineffective when they encounter encrypted traffic.

Intrusion detection systems can be broadly categorized in
two ways, namely signature-based and anomaly-based detec-
tion techniques. A signature-based (also known as rule-based
or misuse-based) IDS uses previously stored attack descriptions
to compare if a portion of the monitored network packets is
malicious. The attack descriptions or attack signatures may
be simply stored as patterns or may use complex approaches
based on state machines or neural networks [9] to map multiple
features to abstract the overall attack manifestation. Since a
given signature is associated with a known attack abstraction,
a signature-based detector can usually assign names (such as
Smurf [10] or Ping-of-Death [11]) to attacks with ease. If a
similar attack manifestation is found, signature-based IDSs
can identify previously unseen attacks, which are equivalent to
known patterns. Having said this, the signature-based detection
schemes are inherently incapable of detecting truly novel
attacks and suffer from high rates of false alarms when attack
signatures match both intrusive and nonintrusive patterns. On
the other hand, the primary strength of an anomaly-based
detection scheme is its ability to recognize novel attacks. At
first, statistical models and artificial intelligence (AI) tools
such as neural networks are employed to characterize a normal
profile. At the advent of a malicious event, an anomaly-based
technique senses a significant deviation from the normal profile.
The drawbacks of the anomaly-based IDS include higher false
alarm rates and the difficulty in classifying or naming attacks.

Recent research efforts have been devoted toward detecting
various attacks against encrypted protocols such as SSL/TLS

and SSH. For instance, an attacker launching the infamous re-
mote timing attack [3] against an OpenSSL server could extract
the private key stored in the server within 6 h. All the attacker
had to do was to measure the time the OpenSSL service took to
respond to decryption queries on a trial-and-error basis. Canvel
et al. [12] illustrated password attacks against Internet Message
Access Protocol (IMAP) servers using SSL-tunnel with its peer
users. This compromised the security of mail transactions even
under encrypted sessions. Version 3.0 of SSL was found to be
vulnerable against the Version Rollback attack [13], in which an
attacker tricked the server to downgrade its version of SSL to
2.0. By doing so, the attacker could then take advantage of the
vulnerabilities associated with the lower version of SSL. Ad-
ditionally, buffer-overflow attacks [14], [15] against openSSL
servers led to denial of service (DoS)-like phenomena. Propa-
gation of the Slapper worm [16] is a notable example that posed
a serious DoS threat to Apache Web servers that use the mod-ssl
library. McClur et al. [17] identified encryption to be the biggest
inhibitor to the growth of network-based IDSs. By encrypting
traffic over SSL, the commercial Web servers practically blind
the network IDS sensors from detecting attacks. The only de-
fense against this shortcoming of the network IDS is on-the-fly
SSL decryption technology such as SSL Dump [18]. However,
such approaches require a copy of the SSL server’s private cer-
tificates and present an additional security hazard.

Yamada et al. [19] illustrate an encrypted traffic analysis to re-
inforce the detection of encrypted Web intrusion. Their method
focused on analyzing the contents of the encrypted traffic by
using only data size and timing without having to resort to de-
cryption. Access information in terms of data size and timing for
every Web client was extracted from the encrypted Web traffic
by reconstructing the TCP sessions and the headers of the en-
crypted sessions. Based on the low access frequency of mali-
cious activities, the encrypted traffic analysis statistically de-
tected rare events as anomalies and reported the same as sus-
picious attacks.

An overlay-based architecture called WebSOS [20], com-
prising access points, beacons, and servlets, has been conceived
to enable a Web server to function even under a DoS attack.
The end-to-end communication between a client and the server
is secured by SSL sessions. When an access-point is attacked,
WebSOS chooses another access point so that traffic from
legitimate clients can still enter the overlay. On the other hand,
if a node is under attack, the overlay topology is modified by
computing new paths to other nodes in the overlay.

In order to thwart the Man-in-the-Middle (MITM) [21] at-
tack against SSL and TLS-based client/server communication,
“SSL/TLS session-aware user authentication” has introduced a
new approach. In this method, a client first authenticates and
provides a credential to a legitimate cryptographic server, which
then generates a corresponding user authentication code (UAC)
and an initial SSL/TLS session. In the event that a MITM at-
tacker steals the UAC, he cannot modify the UAC contents,
which are encrypted. To pretend as a valid client, the attacker
then requires to send the UAC using his own SSL/TLS session,
which is not the same as the server-generated session. This ses-
sion awareness prevents the retransmission of any intercepted
UAC.

ProtoMon [5], an anomaly-based IDS for both cryptographic
and application-level protocols, includes the use of lightweight
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protocol monitors to detect a deviation from a previously con-
structed normal behavior profile. ProtoMon functions in three
modes, namely Learn, Detect, and Prevent modes. First in the
Learn mode, a monitoring stub per server constructs normal
usage patterns for the monitored protocols. In the Detect mode,
ProtoMon constantly compares the online observations with the
acceptable threshold of normal profiles. Once the system detects
an anomaly, it switches to the third and final mode, in which
the monitor stub slows down the protocol response so that the
anomaly may not go beyond the threshold level. The delay is re-
moved when no more anomaly is detected. Despite the unique
features introduced in ProtoMon, there are several significant
shortcomings. The use of a simple arbitrary threshold to deter-
mine the anomaly is inadequate due to the dynamic changes in
the network behavior. Integrating protocol monitors with the
protocol library will also affect the system once the protocol
libraries require to be updated. The delay imposed in the Pre-
vent mode serves as a mere damage control mechanism. Fur-
thermore, a monitoring agent for each server serves the pur-
pose, but perhaps not as efficiently as compared to a distributed
set of monitoring stubs exchanging information. The current
work (DTRAB) presents a solution to these problems by using
a dynamic thresholding scheme to detect anomaly and by dis-
tributing unique monitoring agents over the network topology.

B. Previous Work on Tracing Back Attackers Against
Encrypted Protocols

In addition to detecting attacks, the issue of tracing back the
attackers has remained a challenging problem over the years.
Many researchers have focused on integrating traceback with
detection schemes [22]. Some traditional traceback techniques
[23] use a variation of the Time-Efficient Stream Loss-tolerant
Authentication (TESLA) protocol to generate a code, based on
the IP addresses of the routing devices, that sequentially han-
dles packets. By employing a map of the IP addresses of all up-
stream routers, the victim of an attack can efficiently reconstruct
the route of a packet up to 32 devices [24]. These works focus
on identifying the route within the network packets without in-
creasing the packet size, which has challenged traceback re-
searchers over the recent years.

Other traceback approaches require the routers to generate
additional packets for each packet that passes through the
routers. The victim host receives both the original packets
and these extra packets, which provide identification of the
originating routing devices. The obvious disadvantage of this
approach is an increase in the network traffic. In order to deal
with this, [25] proposes an extra “trace-packet” to be gener-
ated on a probabilistic basis, for instance approximately one
trace-packet for every 20 000 packets. This approach works for
attacks involving a large number of attack packets (e.g., TCP
SYN-flood) lasting for a reasonable length of time. However,
an attack causing a lower volume of attack packets can evade
this system since enough trace-packets are not generated for
successful reconstruction of a path back to the attack-host.

Traceback techniques such as probabilistic packet marking
(PPM) [26] and its enhanced variant [27], and other packet
marking schemes [28] including determinsitic packet marking
(DPM), ICMP traceback (iTRace), and logging techniques [28]
such as Source path Isolation Engine (SPIE) require the IP
header information. This requirement poses difficulty in tracing

back an attacker that sends encrypted packets since the trace-
back modules need to decrypt the headers of the attack packets.
However, decrypting packets at intermediate monitoring agents
will not be effective since this will contribute to significant
overheads and violation of privacy.

One of the most common techniques to evade detection is the
use of “stepping stones” [29], where an attacker often masks
his identity by launching attacks from intermediary hosts that
were previously compromised. This enables the attacker to use a
chain of interactive connections using protocols such as SSH to
dispatch malicious commands over the “stepping stone” chain
to gain access to the victim machine. It is, indeed, difficult to
trace back the trail of the attacker owing to the sheer volume
as well as the chaotic nature of the traffic on the Internet. The
final victim can, at best, see the traffic from the last hop of the
chain of the stepping stone. In quest of tracing a stream of attack
packets through a number of “stepping stones,” content-based
stream-matching approaches came into use. One notable ex-
ample of such an approach is “Thumb-printing” [30], which
shows good performance in tracing back stepping-stone attacks
involving nonencrypted protocols only. Alternate approaches
include correlation methods based on interpacket-delay (IPD)
[31], [32] for tracing back attacks against encrypted connec-
tions. IPD remains as a distinctive feature in normal interactive
connections that employ encrypted protocols such as SSH. By
correlating IPD of different connections across the network, this
approach identifies whether the inspected packets belong to the
same connections. Because there are different correlation points
in the experimental setup, connections that are highly correlated
can be tracked in a reverse way.

Blum et al. [33] proposed an algorithm based on the distinc-
tive characteristics such as packet size and timing information of
the interactive traffic rather than the packet contents. Using the
algorithm, it was possible to find stepping stones even when the
traffic was encrypted. The timing-based algorithm performed
more efficiently compared to the traditional context-based tech-
niques. Blum et al. investigated not only the detection of in-
teractive stepping stones, but also made attempts to determine
an algorithmic bound over the detection approach. The step-
ping-stone detection problem sheds some light on the difficult
ordeal of tracing back attacks against encrypted protocols.

Mansfield et al. [34] present a traceback scheme that also
relies on correlation-based techniques. Their work is based on
the observation that flow patterns for normal network usage are
considerably different than those under an attack. According
to this theory, RMON devices acting as probes placed at
different points of the network monitor the TCP-SYN connec-
tions during normal scenario and attack scenarios involving
TCP-SYN packet-based DoS attacks. By correlating traffic
patterns at various points of the network, the probes look for the
presence of similar flows at other probes to establish the attack
path. However, this approach does not investigate whether
it can be extended to tracing back attacks against encrypted
protocols.

III. PROPOSED DETECTION AND TRACEBACK

SCHEMES—DTRAB

The previous sections revealed that more attention needs to
be paid in detecting and tracing back attacks against encrypted
protocols, as contemporary techniques fail to adequately combat
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with these threats. In this section, we propose DTRAB, which
hinges on its ability to detect anomalies in the protocol behavior
that serve as indications of attacks.

A. Envisioned Attacks

In this section, we attempt to clarify the different attack
classes that DTRAB may address. For instance, the OpenSSL
implementation of SSL is particularly vulnerable to specific
remote timing, MITM, buffer overflow, and version rollback
attacks. In the remote timing attack, SSL renegotiation attack,
and password attack (also known as dictionary attack or brute
force attack) against SSH, there is a high interaction between
the attacker and the cryptographic protocol server. Scanning
attacks that examine the existence and configuration of a
generic Web server or a proxy server (or even an encrypted
HTTPS-enabled server) at an IP address also contribute to a
high volume of attack features. Directory-traversal attacks also
exhibit similar characteristics. We broadly call these attacks the
“highly interactive attacks.”

On the contrary, few messages are exchanged between the
client and the server in a buffer overflow attack, which can ex-
ecute arbitrary codes on the victim server by overwriting stack
or heap memory of the process. We term these attacks as “low
interactive attacks.” Cross-scripting languages that lead to at-
tack vulnerabilities may also be categorized as “low interac-
tive attacks.” Since a lot of applications (e.g., patches, antivirus,
malware detection tools) are used to counter these low interac-
tive buffer-overflow and cross-scripting attacks at the hosts, we
mainly provide examples on detecting highly interactive attacks
in the rest of the paper.

B. Expected Network Topology

We intend to implement the IDS and traceback entities aside
network elements, such as edge or border gateway routers. The
obvious reason behind this choice is to avoid the additional
computational load and memory overhead occurring at the
server if the detection and traceback modules are integrated
with the servers. Consequently, this paper contributes by en-
visioning uniquely designed IDSs, which we call monitoring
stubs, or simply MSs. In contrast with the monitoring agents
dedicated to each server as proposed in [5], the proposed MSs
are distributed (e.g., aside gateways, edge routers, and some of
the selected core routers) over the entire network topology.

An example scenario of the envisioned network topology is
shown in Fig. 1, which consists of a number of servers run-
ning services based on both encrypted and application-level pro-
tocols. Users from an untrusted network or from the Internet
may connect to any one of these servers. Seven MSs are placed
aside the network elements. The MSs, by sniffing, monitor the
traffic headers but do not inspect the payloads. When an attack
is launched by a host (in Network-1), say from the untrusted
network to victim server 1, , , and consequently
observe an influx in abnormal protocol operations interpreted as
an attack feature. In the remainder of this section, we shall de-
scribe how the MSs effectively detect attacks against encrypted
protocols and try to trace back the attacker. Furthermore, by
specifying the normal operation modes and request-for-com-
ments (RFCs) specifications of different protocols in the MS’
databases, this approach may also be extended to detect attacks

Fig. 1. A sample architecture with added MSs.

Fig. 2. Connection-flow-based failed session formulation for SSH protocol.

against standard application-level protocols. For ease of under-
standing, we include two examples demonstrating the deviations
from normal operations of two encrypted protocols (SSH and
HTTPS, respectively) under attack that may be considered as
possible attack features.

Since a MS is only a packet-sniffing entity located aside a
router, it does not slow down the network traffic. In case of ap-
plication level protocols, it is a trivial task to sniff both the net-
work packet headers and the payload contents and to inspect
and analyze the information afterward. For encrypted protocols,
a MS needs to adopt a different approach. A MS utilizes the
TCPDUMP [36] tool to monitor the TCP headers that are not
encrypted. For example, in order to detect a failed SSH session
due to a password-based attack against SSH-based services on
port 22, a MS requires to know how the SSH protocol works in
the transport layer level. At first, a client attempts to establish a
connection to the server by sending a SYN packet as shown in
Fig. 2. The server acknowledges this by sending an ACK and
a SYN packet of its own. If the client manages to successfully
log onto the server and wants to quit, the client will initiate the
FIN packet first. This is a normal mode of operation in SSH. On
the contrary, if the server initiates the FIN packet first, it indi-
cates that the server is shutting down the connection because of
either an invalid attempt to access the service or a timeout. A
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Fig. 3. SSL/TLS packet structure.

MS monitors such connection flows, and when it discovers that
the server is the first originator of the FIN packet soon after the
connection attempt, it recognizes a deviation in the protocol’s
normal mode of operation and deems that event as a “failed ses-
sion.”

By analyzing encrypted Web traffic flows using SSL/TLS, a
MS may also see abnormal protocol operations in terms of the
ratio of the request size to the corresponding response size. In
case of “low interactive attacks,” which are mostly launched
against encrypted Web servers offering HTTPS services, a MS
may look to extract such information and consider it as a poten-
tial attack feature. With nonencrypted HTTP traffic, this can be
readily computed by inspecting the packet contents. However,
extracting the request and response sizes from the HTTPS
headers in encrypted traffic is indeed difficult since these
headers are also encrypted. Furthermore, random paddings of
255 bytes are added to the packets in SSL/TLS.

For this purpose, the MSs sniff packets destined for port 443
and look for client requests. If packets are observed continu-
ously, they are considered to belong to a single activity, such
as clicking a URL or requesting a file to download. As the MS
determines such an activity, it starts reconstructing the corre-
sponding TCP sessions from the headers. Once the TCP sessions
are established, the MS can decode the SSL/TLS session to ob-
tain the sizes of the request and corresponding response from the
server. This is possible because every SSL/TLS packet is struc-
tured in such a manner (as shown in Fig. 3) that the “Fragment”
header of the “Record Layer” is encrypted while the remaining
three headers, namely “Length,” “Version,” and “Type,” are not
encrypted. The “Length” header provides an estimate of the size
of either the request or response packets, depending on the di-
rectionality of the connection in the considered flow.

It should be noted that such attack features are not manu-
ally selected; rather, each MS maintains a database of RFCs
specifications pertaining to the usage of various encrypted and
nonencrypted protocols. The functionality of a MS is manifold,
including learning normal profiles, monitoring for deviations
from normal protocols operations, generating alerts, and finally
tracing back the attacker. The operational modes of a MS are
described below.

1) DTRAB Learning Phase: To accurately identify anoma-
lous behaviors, it is essential to study the protocol implemen-
tations and standard documents such as RFCs, from which we
can delineate the normal mode of the protocol operations. Addi-
tionally, the protocol behavior in a network is subject to changes
in different periods of a day. For instance, a corporate Web
site may be accessed heavily during the day and not so much
at night. To inflict these factors, a statistical profile over time

may be developed in the learning phase during the normal net-
work conditions or near normal network conditions with low
acceptable levels of suspicious activities. Each MS in the envi-
sioned topology creates a database with features extracted from
the nonencrypted headers of the monitored traffic over time.

For identifying attacks, the MS monitors various protocol
operations for anomalous modes of operation (e.g., number of
failed sessions) and records them in such a manner so that they
may serve as parameters to the nonparametric Cusum algorithm
used by the MSs in the detection phase. The format of a typ-
ical table from the database is shown in Fig. 4. The two fields,

and , which indicate the number of failed sessions and
number of total sessions, respectively, are sampled over the pro-
filing interval . Using these parameters, the fraction of failed
sessions, , is then computed and stored in the database.

2) DTRAB Detection Phase: The detection approach
adopted in DTRAB involves detecting anomalies. This relies
on detecting the point of change in the encrypted protocol be-
havior as quickly as possible under an attack. For this purpose,
we employ the nonparametric Cusum algorithm, which is a
statistical tool. The impact of the statistical application of the
nonparametric Cusum algorithm in the analysis of attack fea-
tures extracted from the packet headers in a unique manner is
our contribution. Our ingenuity lies in how we treat the problem
of cryptographic attack detection and apply the statistical tool.
We realize that it is expensive to employ the classical version
of the Cusum algorithm and other change-point detection
algorithms due to the manner in which they demand to learn
about statistical probabilities of hypotheses of the normal and
abnormal events a priori. Such hypotheses are referred to as
parameters. Furthermore, Internet traffic cannot be modeled
appropriately based on such hypotheses. This is why we choose
to adopt the nonparametric version of Cusum, which is a
lightweight algorithm applicable to the traffic in the Internet,
including the scope of encrypted traffic. It is to be noted that the
term “nonparametric” implies that the scheme may be adopted
without having any knowledge of the traffic distribution be-
forehand. We employ the nonparametric Cusum algorithm at
the MSs to detect points of changes in the network behavior at
the advent of an anomaly. The ability of this scheme to detect
minute changes in the network profile, and the ease with which
it can be deployed at the MS-level encourages us to select the
nonparametric Cusum algorithm as the core detection tool.

Here, we give an example of the proposed detection method
by analyzing a random sequence of the number of failed SSH
sessions in a considered network flow over time. The fraction
of failed sessions, , is obtained in a time interval . Here,

is the number of monitored profiles, and the profiling periods
are of same temporal lengths, i.e., . Let be the
mean of over the profiling period of normal scenario. For the
normal SSH traffic, the value of is way below 1 and remains
close to zero until the system senses an anomaly [Fig. 5(a)].
Hence, may be considered as a stationary stochastic process,
and variation of the mean of can be reported by Cusum al-
gorithm.

To account for the negative drift in Cusum algorithm, we
assume that the mean value of the random sequence is nega-
tive during the normal conditions and becomes positive when a
change takes place. In order to conform with this assumption, it
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Fig. 4. A part of the database format created at a monitoring stub for profiling.

Fig. 5. Computing nonparametric Cusum. (a) � and� versus �. (b)� and
mean of� versus �. (c) computing the threshold �. (d) � versus time: attack
is detected when � exceeds �.

is necessary to transform into a new sequence . The re-
quired transformation is obtained by as shown
in Fig. 5(b), where is the transformation parameter such that

.
In our scheme, we compute by taking the average of the

highest values obtained during the profiling period. At the
advent of an attack, the mean of noted by , eventually
increases considerably in contrast with that during the profiling
period. This increase of can be lower-bounded by , which
is typically set as twice the value of . The problem of the on-
line detection of attacks is solved by employing a recursive ver-
sion of the nonparametric Cusum algorithm defined by a new
sequence denoted by , which is as follows:

(1)

where if ; otherwise, .
A large value of indicates the presence of an anomaly,

i.e., a potential attack. A constant , for this profiling, is then
required to be adjusted as the threshold to detect the change
point that occurs due to an attack.

Let be the decision at time , which indicates normal
operation by retaining the value zero and an abnormal situation
by retaining a value of 1.

if
if .

(2)

In other words, , where is the indi-
cator function. In order to study the detection time, the following
terms are then defined:

(3)

(4)

where is the normalized detection time. and indicate the
starting time of the attack and the minimum expected detection
time after the occurrence of the change due to the attack, respec-
tively. means the greatest lower bound [7]. If is the actual
increase in the mean of during an attack, then can be ex-
pressed as

(5)

where is the mean of when (i.e., after
an attack starts). serves as an upper bound of the actual de-
tection time. Thus, (5) provides a rough estimation of the actual
detection time.

From (4) and (5), is computed as expressed by the following
equation as shown in Fig. 5(c):

(6)

We now attempt to provide an algorithmic bound for in a
scenario where two attackers simultaneously introduce the same
number of failed sessions over time . Each attacker then ob-
tains the same cumulative score that captures the behavior
of all failed session samples over . In order to derive an expres-
sion for , we define a cutoff point such that if , it is
more inclined to be a malicious sample where denotes the
time between two subsequent failed sessions triggered within
the considered attack flow. Since we set , we have

for all , and hence the CUSUM threshold de-
notes the minimum number of failed session samples required to
decide if a remote host is malicious. As a result, we can replace

of (1) with . Thus, in DTRAB, we incorporate our
extended parameters to the nonparametric Cusum approach.
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In the absence of attacks, the values lie mostly lower-
bounded by . During an attack, the values become pos-
itive and substantially large. It was mentioned earlier that in our
approach is set as roughly twice the value of . This is set as
a tolerable margin of the change of the mean of due to the
anomaly. is usually set to a small value (e.g., 1 s) for
quickly detecting an anomaly.

At the detection phase, the MS computes over time. The
sequence will remain close to zero, i.e., along the horizontal

time axis as long as normal conditions prevail in the network.
It should be noted here that the MSs in the proposed DTRAB
scheme monitor only the initial handshakes in the flows that
establish the cryptographic sessions and extract the necessary
attack features (e.g., failed sessions). Therefore, the MSs do not
maintain all state information pertaining to every connection in
individual flows, which would have raised scalability issues.

3) DTRAB Alert Phase: When the nonparametric Cusum al-
gorithm detects an anomaly, the sequence begins to increase.
Once exceeds , the MS generates an alert [Fig. 5(d)] to the
server and the neighboring MSs. The MS can also request the
server to slow down the protocol response in an attempt to thwart
intrusions such as remote timing attacks.

Finally, the MS switches to the trace back mode to identify
the attacker, which will be described in the next subsection.

4) DTRAB Traceback Phase: The proposed traceback mech-
anism relies on the collaboration of the MSs to correlate moni-
tored abnormal operations of the protocols (e.g., failed session
rates) over time. Every MS, in its database, stores the informa-
tion of failed sessions that it observes for both incoming and
outgoing traffic. This database also contains a list of collabo-
rating MSs, with which the MS can contact in order to recon-
struct the attack path. Once an attack is detected, the MS closest
to the victim encrypted server goes to the “Trace-back mode.”
An example of how the proposed traceback scheme functions is
illustrated in Fig. 6. Here, is the considered confluence point
[41], where traffic from disparate sources converge. When
requests to compare the monitored failed sessions in the
direction as shown, starts to correlate the features of its
outbound traffic with that of each of the incoming
flows into the confluence point , i.e.,
where refers to the features of the th incoming flow at .
A strong correlation coefficient indicates a possible path back
to the origin of the attack. can now collaborate with MSs
along that path to continue traceback even further.

Every MS monitors the failed sessions in time-slots, , and in
a window , which consists of an integral number of s. Thus,
the pattern is defined by the length of the time-slot , the size
of the “window” , and the monitored features in each slot
in the window. We use these metrics to define the vector

(7)

where is the failed session rate monitored during the th time
slot.

Let the one-way propagation delay between the aforemen-
tioned pair of MSs ( and ) be . At , the moni-
toring commences at time and continues till ,
as depicted in Fig. 6. Thus, the vector, can be constructed at

by

(8)

Fig. 6. �� compares the outbound traffic feature �� � to the features of
each inbound flow at the confluence point �.

As shown in Fig. 6, at , the monitoring of begins at
time and goes on till . Thus, is
constructed at as follows:

(9)

The correlation coefficient, denoted by (referred
to as in short), between the target vectors, and ,
is obtained by [34]

(10)

where and stand for the mean and standard deviation of
the monitored features of , respectively.

(11)

(12)

The value of lies between { 1, 1}. If
equals 1, it suggests that the two patterns, represented by the
vectors and , are perfectly matched. If the correlation co-
efficient value is close to 1 (e.g., 0.8 or above), the vectors
and are said to be strongly correlated. If yields a
value of zero or close to zero, the compared vectors are not cor-
related. A negative value of , on the other hand, implies
that and are completely opposite of each other.

By applying this to the scenario in Fig. 6, an example set
with number of strong correlations between the failed sessions
of the inbound flows and the outgoing flow observed by

may be found as follows:

(13)
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Now, instead of a single attack, if there are distributed DoS
(DDoS)-like multiple attack sources, the traceback operation
may not be sufficient due to convergence of disparate traffic at
the confluence . To address this issue, we formulate the fol-
lowing model. Let us assume that the scenario in Fig. 6 consists
of attack traffic from hosts belonging to networks 1 up to . On
the other hand, networks up to do not partic-
ipate in the attack. Then, the malicious and legitimate parts of
the overall input traffic, denoted by and may be repre-
sented as follows:

(14)

Also, let the outbound traffic for the victim network be rep-
resented by and the rest of the outbound traffic be denoted
by , where

. Since the total input traffic into the backbone net-
work and the total oubtound traffic from it should be equal (i.e.,

), we may write

(15)

From (15), we can derive as follows:

(16)

Then, the problem of the traceback problem at a confluence
point, where some traffic flows may contribute to attack features
while some may not, can be represented as an objective function
as follows:

(17)

The objective function in (17) is a quadratic programming
problem. It can be solved for a near-optimal or general solution
by applying active set techniques. By minimizing the contribu-
tion of the nonattack traffic, the correlated attack flows can be
more accurately identified through such a solution.

IV. PERFORMANCE EVALUATION

First, we evaluate the performance of DTRAB with
small-scale computer network-based experiments and sim-
ulations. The simulations were conducted five times, and the
average values are used as results. To verify the performance
of DTRAB in the large-scale networks, we also apply the
DTRAB detection scheme on different unencrypted Internet
traces obtained from CAIDA datasets [40].

A. Performance of the Detection Scheme

1) Highly Interactive Attack Detection:
a) Experimental setup: Since each MS deployed in the

considered architecture sniffs and monitors encrypted traffic

Fig. 7. Experimental setup featuring a MS.

only, this mechanism is inherently same for all the MSs, and
therefore, we do not need to redundantly provide detection
performance for every single MS. We considered MSs one hop
away from the victim cryptographic server for evaluating the
proposed detection mtehod. To evaluate the attack detection
by an individual MS, a SSH server was targeted, which ran on
OpenSUSE Linux 10.1 with 3.2 GHz processor speed and 1 GB
memory. A customized SSH traffic generator was designed at
the client end, which ran on Windows XP, and the protocol ver-
sion used was SSH-2. In normal scenario, the SSH connection
arrivals follow a Gamma distribution, shape and rate parameters
of which are set to 0.2784 and 0.2260, respectively [38]. The
sniffer running on a virtual machine configured on the server
acted as the monitoring stub, in this experiment.

As depicted in Fig. 7, indicates the number of valid users
in the SSH server, while represents the number of users in the
database including both valid and illegitimate users in the client
end. Here, denotes the “attack aggressive-
ness.” Since some users may make typing mistakes in entering
authentication information, attack-like features will be injected
in the network traffic. However, this is likely to remain consid-
erably low during normal profiling, and we assume to
be in the acceptable range to account for the accidentally failed
login attempts.

b) Results and analysis:
i) Selection of parameters: At first, a normal usage profile

was created by using with various sampling intervals
ranging from 1 to 20 s. The sequence behaves as

a static stochastic process as its mean during the normal situa-
tion remains pretty much the same (close to zero), regardless of
the sampling interval sizes. For instance, with s, was
found to be 0.036 during the profiling period. The transforma-
tion parameter was computed to be 0.31 by taking the average
of the upper values of . On the other hand, the threshold was
0.34, calculated using (6). To justify our selection of , we have
listed , the time to encounter the first false positive during
an observation period of one hour for arbitrarily chosen values
of in Table I. It took a short time to encounter the first false
positive for the lower and corresponding values. For higher

values from 0.30 to 0.32, no false positive appeared during
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Fig. 8. Detection delays for different attack aggressiveness over various values
of �.

TABLE I
TIME TO ENCOUNTER FIRST FALSE POSITIVE �� � FOR DIFFERENT VALUES

OF � (OBSERVATION TIME: 1 H)

the observation period. This conforms with our selection of
by taking the average of the upper values of .

ii) Detection Accuracy: In order to evaluate the detection sen-
sitivity of DTRAB, a number of SSH password attacks with
varying attack aggressiveness (i.e., with different values of )
were then launched against the server. For each value, the la-
tency to detect the attack was computed. By varying from 0.2
for 0.95 for different values of , the corresponding detection
latencies are plotted in Fig. 8. values of 1, 5, 10, 15, and 20 s
have been considered in our experiments. Five simulation runs
per for each case were performed, and the average values of
the detection delays are plotted.

The detection latencies drop substantially for increasing
values for all values in these experiments. For value of
1 s, the highest detection latency is 12 s for the attack with the
smallest attack aggressiveness (0.2). It took 4 s, on the other
hand, to detect the most aggressive attack . The in-
termediate attacks with values between 0.8 and 0.5 have taken
5 to 8 s.

In the case of s, the attacks with lower took more
time to be detected. For instance, the detection latencies for

, 0.25, and 0.3 were indeed high—180, 135, and 116 s,
respectively. The reason behind this is the fact that the attack
profiles with lower do not deviate by much from the normal
profile. For -values between 0.3 and 0.4, the latencies began
to decrease substantially. The average detection delay was ap-
proximately 20 s between and 0.5. From ,
the detection latency started to drop even more and was about
15 s up to . The average latency for between 0.7
and 0.85 was about 10 s. It took the least time, 8 and 6 s, re-
spectively, to detect the most aggressive attacks with
and 0.95. These results indicate that attacks with aggressiveness

Fig. 9. Failed session error rates ��� for different values of �.

below 0.4 are harder to detect, while those with over 0.5 are
more easily and quickly detectable.

On the other hand, in cases of values of 10, 15, and 20 s,
the detection latencies are much more higher. Furthermore, the
attacks with low are not detected when was set to higher
values. This suggests that the sampling time should be as small
as possible in order to detect all the attacks with moderately low
detection delays. However, s is more of an ideal choice
for these experiments due to the manner the failed sessions are
observed by monitoring the TCP headers (Fig. 2). s
is a reasonable amount of time inside which the unsuccessful
handshake of SSH or SSL may completely take place.

Now, we introduce a metric called the “Failed session detec-
tion error rate,” , which is expressed by

Number of undetected failed sessions
Total number of failed sessions

(18)

Fig. 9 shows values for varying values of over s.
The results indicate significantly high values of for the at-
tacks with lower attack aggressiveness. The reason behind this
is the overwhelmingly high number of undetected failed ses-
sions accumulated during the high detection latency in contrast
with the moderate number of detected failed sessions during the
last sampling interval. For example, the values of were 0.91,
0.90, and 0.87, respectively, for , 0.25, and 0.3. The
values of decreased gradually along with the aggressiveness
of the attack. For attacks with and above, the values
of dropped substantially. The lowest (0.33) was encoun-
tered during the attack with . In summary, these re-
sults show that the proposed scheme exhibits reasonably small
detection delays. In cases of attacks with significantly high at-
tack aggressiveness, the detection delays were only about two
sampling intervals. The “Failed session detection error rate” in-
creases when the system is detecting an attack with low attack
aggressiveness. Apart from this limitation, the proposed scheme
achieves effective detection.

iii) Dynamic Update of using multiple Cusum instances:
Let us consider two attack scenarios as illustrated in Fig. 10. At
first, an attack with is initiated, and just before the
attack ends, another attack (in the same flow) with lower attack
aggressiveness is launched. With just one instance
of the Cusum algorithm, the attacker can evade the detection
system.

As soon as the first attack is detected by , we can reset
the back to zero. However, in case that this attack persists,
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Fig. 10. Detecting two attacks with a single Cusum instance.

Fig. 11. Detecting two attacks with multiple Cusum instances.

the value will keep increasing, and in the next interval it will
exceed the threshold . This will produce more alerts for the
same attack that had been detected.

To solve this issue, we use a cluster of Cusum instances
(Fig. 11). As soon as an anomaly is detected, the MS creates a
new profile excluding the suspicious clients. The MS continues
to monitor the Cusum distribution based on the initial profiling
to see if the attack subsides. Meanwhile, the second monitoring
process continues to run using the most recently created profile.
Upon detection of an anomaly in the second instance of the
Cusum distribution, the MS will build yet another profile. Fur-
thermore, we can have an estimate of the traceback parameter

in terms of how long to correlate the failed session rates
observed by collaborating monitoring stubs.

The nonparametric Cusum algorithm consumed low memory
in this experiment. For concurrent attacks, each instance of the
detection module took about 5588 to 5592 kB of memory to ex-
ecute the code. This was roughly 0.3% of the memory available
at the MS. The CPU utilization was around 50% with four in-
stances of the detection algorithm running simultaneously.

2) Attack Detection in Internet Data Traces: Due to diffi-
culty in obtaining real network traces for encrypted Web access,
we apply our approach to unencrypted access in the CAIDA
datasets [40]. The datasets consist of raw traffic traces from the
years 2001 to 2009.

In the first analysis, the CAIDA Backscatter-2008 dataset is
used, which comprises quarterly week-long collections of re-
sponses to spoofed traffic. In this dataset, a DoS-attack victim
receives attack traffic with spoofed source IP addresses. Since it

cannot differentiate between this spoofed traffic and legitimate
requests, it sends responses (i.e., SYN-ACK message of the
second step of TCP handshake) to the spoofed sources, which
do not reply and complete the TCP handshake by sending an
ACK message. DTRAB’s detection algorithm learns the frac-
tion of such incomplete sessions from the dataset that comprises
predominantly normal traffic and a mixture of some attacks. The
monitoring interval is set to 5 s without any specific purpose
in mind. , , and are found to be 0.007, 0.009, and 0.016, re-
spectively. Then, by applying DTRAB’s detection algorithm in
various network domains in the backscatter dataset, anomalous
increases in the fraction of the incomplete sessions are detected.
We provide two results here by assuming that there are two MSs
in two domains where the respective victims are attacked by
DDoS with relatively low and high attack rates, respectively.
Fig. 12(a) demonstrates the detection of the low-rate DDoS at-
tack during the fourth time interval (i.e., in approximately 20 s)
since the beginning of the attack as the cusum value exceeds

. In contrast, it takes half the time to detect the second attack,
as demonstrated in Fig. 12(b). These observations are indeed
similar to the ones found in our simulated experiments with dif-
ferent attack aggressiveness.

We also apply DTRAB’s detection algorithm on the code
red II worm (2004) and the witty worm (2001) datasets obtained
from CAIDA. In this analysis, the MSs in the target networks
run Cusum algorithm to look for anomalous protocols behavior.
The monitoring interval is set to 5 s. One particular anomaly
is seen in terms of the degree of outbound connections a given
host wants to initiate in a given period of time. Fig. 13(a) demon-
strates the DTRAB detection of the code red spread event. The
Cusum sequence starts to exceed the threshold
after 10 845 monitoring intervals. The reason behind this high
detection latency is due to the fact that the worm remains dor-
mant up to this point. CAIDA filtered out most of the sensitive
information from the tracefiles, and therefore, other anomalies
in the protocol behavior that would indicate the buffer overflow
threat posed by the worm could not be analyzed by DTRAB.
Nevertheless, since DTRAB detects the anomalous increase in
the degree of outbound connections in the network when the
worm becomes active on the host, further infections to other
hosts could have been prevented by alerting the corresponding
server/network admin. In a similar way, Fig. 13(b) shows that
the proposed approach can detect the witty worm spread in the
548th interval, which means the dormant period for the witty
worm was much less than that of the code red worm.

B. Performance of the Traceback Scheme

Two simulation scenarios are envisioned to evaluate the
performance of the proposed traceback scheme. In the first sce-
nario, concurrent attacks are launched against both the victim
servers 1 and 2 from and , respectively
(Fig. 1). For this scenario, simulations were conducted five
times, and the average values are used as results. In the second
scenario, the influence of the confluence points on DTRAB’s
traceback method is investigated and compared to the conven-
tional method [34].

1) Scenario 1: Tracing Back Multiple Attackers:
a) Simulation setup: In this simulation, we investigate the

performance of the proposed approach when there are simulta-
neous attacks from different sources to more than one victim.
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Fig. 12. DTRAB detection of DoS attacks against the victims in two domains. (a) DTRAB detection of a DoS attack with low attack rate. (b) DTRAB detection
of a DoS attack with high attack rate.

Fig. 13. DTRAB detection of different worm spread events in CAIDA datasets. (a) DTRAB detection of the spread of code red worm. (b) DTRAB detection of
the spread of witty worm.

TABLE II
SIMULATION PARAMETERS FOR TRACEBACK SCENARIO 1

By using Network Simulator (NS-2) [39], the topology con-
sisting of seven MSs as shown in Fig. 1 is constructed. The scal-
ability of DTRAB can be demonstrated through the manner in
which MSs cooperate with one another to perform traceback. It
is worth noting that even in case of fewer number of MSs, since
the MSs work by collaborating with other MSs in their neigh-
borhood lists, they would eventually correlate the traffic with far
out MSs and still determine the path. The simulation parameters
are provided in Table II. SSH password attacks (with varying at-
tack aggressiveness from 0.2 to 0.95) originating from two ma-
licious users in and are simulated against
Victim cryptographic servers 1 and 2, respectively.

b) Results and analysis: Let and denote the
features of traffic directed from router to router and from

to router , respectively. Following the detection
of an attack against victim server 1 (with attack aggressiveness
of 0.45), starts correlating with each of the in-
coming flows: and . The corresponding corre-
lation coefficients are 0.924 and ( 0.015), respectively. As a
result, eliminates as a subsequent MS to carry on
traceback. In the next step, is contacted by . At ,

is compared to both and , resulting in
the correlation coefficients of 0.934 and 0.0193, respectively.
Consequently, contacts , which compares
to each of . The corresponding corre-
lation coefficients are found to be 0.956, 0.0210, and 0.0303,
respectively. This result leads to , which is indeed the
origin of the attack to the victim server 1.

On the other hand, when detects the attack against
victim server 2, it compares with the only incoming
flow, . The resultant correlation coefficient, 0.0145 is too
low to consider as the next MS for continuing the trace-
back. Meanwhile, also correlates with ,
which yields a strong correlation coefficient of (0.924). This
puts in charge of the traceback. correlates
with , leading to a strong correlation coefficient (0.935).
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Fig. 14. Comparison of correlation coefficients for different attack aggressive-
ness.

Therefore, contacts with , prompting to com-
pare with each of [ , , and ].
The resultant correlation coefficients are 0.0161, 0.971, and
0.024, respectively. Thus, , from which the attack
was initiated against victim server 2, is discovered.

It may also be interesting to investigate the correlation coef-
ficients for different pairs of flows. In this simulation, we can
identify three such pairings: malicious versus malicious, ma-
licious versus normal, and normal versus normal flows. For a
single attack against victim server 1 alone (no concurrent attack
was launched against victim server 2), let (between and

) and (between and ) represent the correlation
coefficients of the vectors both having malicious features. (in
case of and ), (between and ), and (be-
tween and ) are the correlation coefficients of the vec-
tors, corresponding flows of which have normal features in one
and attack features in the other. Lastly, (for and ),

(between and ), and (between and ) are
the correlation coefficients of the vectors, corresponding flows
of which are both normal. Fig. 14 plots the up to for var-
ious attack aggressiveness ranging from 0.2 to 0.95. Both and

indicate high correlation values, in the vicinity of one, for
various attack aggressiveness. On the other hand, , , and
have correlation values close to zero for different attack aggres-
siveness. For the higher values of attack aggressiveness, , ,
and become negative, indicating further differences between
the monitored patterns at the corresponding MS-pairs. These re-
sults conform with our traceback decision along the actual at-
tack path. Interestingly though, , , and have high cor-
relation values and remain more or less the same with varying
attack aggressiveness. This is due to the fact that attack traffic
did not traverse through the corresponding MSs. However, this
does not affect our traceback scheme because the monitoring
stubs decide to hand over the charge of traceback operation to
the subsequent MSs in such a manner that these comparisons
are not encountered.

2) Scenario 2: Investigating the Influence of Confluence
Points: In this scenario, we aim at verifying the applicability of
DTRAB under the influence of confluence points [41], where
large volumes of attack traffic from disparate sources along
with normal traffic converge. At a confluence point, when a
DDoS attack occurs from multiple sources, the conventional
method [34] based on only comparing correlated traffic patterns
at different points on the network is not adequate. The DTRAB
traceback mechanism addresses this issue by adopting the

Fig. 15. Success rates of tracing back attacks for different confluence points in
DTRAB compared to conventional method.

Fig. 16. A comparison of the computation time taken by DTRAB and the con-
ventional approach.

quadratic model whereby the combination of the DDoS input
traffic is also taken into account. For this purpose, real Internet
traffic traces collected at the Tohoku University Aobayama
campus, Japan, are used and the quadratic problem based model
is adopted as shown in (17). To highlight our interest about
the confluence point, where both normal and malicious traffic
merge, we again refer to Fig. 6. Considering that is
the victim network, out of the inbound flows, flows
contribute to the distributed attack against a host in .
For different values of from 2 to 10, the success rates of iden-
tifying the attack traces using DTRAB are plotted in Fig. 15 and
compared to the conventional method based on correlation co-
efficients alone in [34]. As evident from this figure, in contrast
with the conventional approach, DTRAB is able to differentiate
the individual attack flows with 100% success rates while the
value of remains below 7. When the number of attack flows
at the confluence point increases even more, it affects DTRAB
also. However, DTRAB still identifies 40% attack paths back
to the actual attack hosts, compared to a meager 9% by the
conventional approach. The better performance of DTRAB can
be attributed to the fact that, unlike the conventional traceback
approach, it also monitors and compares the nonattack flows,
which contribute to minimal attack features. However, DTRAB
achieves this better performance at the cost of higher com-
putation time, as depicted in the graph in Fig. 16. This graph
delineates that the computation time for DTRAB’s traceback
decision increases almost linearly with the increasing number
of attack flows at the confluence. For instance, for two attack
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flows in the confluence point, DTRAB takes about 15 ms to
identify the actual attack paths back, whereas it takes almost
60 ms to discover 10 attack flows. In particular, it should also
be noted that when the number of attack flows at the confluence
exceeds six, the computation time of the conventional approach
also increases significantly. Therefore, this tradeoff between
DTRAB’s success rate and computation time is still acceptable.

V. CONCLUSION

In this paper, we addressed the online detection of attacks
against application-level protocols, which are encapsulated
inside encrypted sessions. Experiments carried out in the real
data network have provided evidence that implementation of
the proposed DTRAB in the monitoring stub (MS) is feasible.
DTRAB is autonomous at the MS that carries out the detection,
i.e., the detection method does not need information from other
MSs. Furthermore, the MS builds the database portraying the
normal protocol behavior profile, which is not dependent on the
traffic volume. As a result of this design, the proposed detection
scheme manages to avoid false alarms during flash crowd. The
conducted simulations demonstrate the effectiveness of the
detection technique. Our investigations have considered the
attack detection delay and the “failed session detection error
rate.” We have also addressed the problem of tracing back
attackers against encrypted protocols based on the correlated
attack features at neighboring monitoring stubs.

As an approach of responding to the detected attacks, this
work may be extended to selectively slow down the protocol
response as long as the Cusum sequence exhibits anomalous
behavior. Admittedly, when IPSEC protocol is employed by
end-hosts through a secure tunnel, the transport layer headers
may be encrypted and not visible to the MSs. Our future ex-
tensions to this work will consider how DTRAB may overcome
such issues. The further extensions of our work may also fa-
cilitate combating against attacks on encrypted protocols in the
wireless network environment.
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