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Abstract—In a modern telco cloud, network functions are
performed by groups of single or interconnected virtual ma-
chines (VMs), which form virtualized network functions (VNFs).
Securing these VNFs is both important and challenging, since the
VNFs might be performing some mission critical operations and
exchanging sensitive information among each other. The problem
lies in the implementation of current cloud infrastructure where
security of traffic is not considered at large. The exchanged traffic
among VNFs is mostly unencrypted and subject to eavesdropping.
In this paper, we present possible approaches along with the
implementation setup to solve the problem of securing commu-
nication among VNFs. We also discuss performance overhead
measurements of our testbed setup along with relevant challenges
and directions for future work.

I. INTRODUCTION

Telecommunication industry is moving towards cloud and
this transformation is realized in the form of network func-
tion virtualization (NFV). NFV is defined as a technology
to virtualize all the physical network functions into virtual
network functions (VNFs) to form a telecommunication ser-
vice needed to perform a defined network operation [1] [2]
[3]. Traditionally, telecommunication network function would
undergo a process of purchasing new equipment, provisioning
and installing it at a given location. In addition, software
upgrades on these equipments also become tedious due to the
physical location of the equipment [4] [5]. NFV provides many
great benefits of elasticity, resiliency and agility of the VNF
workload but in return it brings security challenges such as
virtualization and hypervisor related security issues and attacks
on VNF communication etc. [6]. In NFV infrastructure, VNFs
can be deployed over a single VM or multiple VMs [7] [8]. In
the latter case, each VM will host one component of the VNF.
It is likely that these VNFs will contain highly sensitive data
and mission critical network operations and traffic exchanged
between these VNF instances would require confidentiality [9].

Traditionally, securing the traffic exchanged between differ-
ent VNF components is solely left on the applications which
generate the traffic. It is quite a tedious job, considering the
fact that security is not part of the design of most applications
and it is taken care at later stages. Let’s consider a case
whereby two VNFs are set up on different cloud hosts and
are connected through external IP addresses. One VNF is
running some application process which is collecting the data
and the other VNF is hosting a database for data storage.
Obviously, they both need to communicate with each other.
By default in cloud environments, the traffic between VNFs is

in plain text. The security of traffic exchanged among VNFs
is taken care by applications running inside the VNFs by
using protocols such as SSL/TLS. This is also applicable
but it only encrypts the traffic generated by the application.
There might be other traffic generated by the VNFs which
can derive meaningful result and could be subject to hostile
eavesdropping and interference. Thus encrypting all the traffic
coming in and out from VNFs is highly needed.

Cloud nowadays is geographically sparse which means that
there can be some cloud nodes located at different geograph-
ical locations around the globe. Given the fact that traffic ex-
changed among VNFs instantiated over multiple cloud nodes
is generally in plain text (e.g., in case of OpenStack-based
cloud), it is the responsibility of cloud providers to encrypt
the exchanged traffic within the cloud.

In this vein, the approaches proposed in this paper provide
end to end encryption between cloud hosts and also among
VNFs. One of the proposed approaches modifies networking
component of OpenStack cloud i.e. software bridges. It is a
fact that many VNFs use single-root input output virtualization
(SR-IOV) interface of the cloud host for high performance
network throughput and cause packets to completely bypass
the software bridges. The solution presented in this paper is
not applicable in that scenario.

The rest of this paper is structured as follows. Section II
presents the related work. Section III discusses the testbed
experiment which includes OpenStack networking modifica-
tion and our proposed solutions. In Section IV, we present the
implementation along with its performance evaluation. Section
V concludes the paper recapping the main findings of the
envisioned experimental setup and also suggesting future work
to improve the performance of the setup.

II. RELATED WORK

Multi-tenancy is one important feature of cloud computing
which enables different cloud customers to use computing
resources of a public or private cloud. The main emphasis
of this architecture is that each tenant and its associated data
is isolated and invisible to the other tenants hosted in the
same cloud. NFV will also support multi-tenancy where VNFs
from different operators can be run in the same NFV domain.
This, however, poses threat of various attacks such as isolation
failure among VNFs and also with cloud nodes. Let’s consider
an attack scenario, whereby a group of mission critical VNFs
are communicating with each other and a malicious VNF
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breaks the isolation layer with its cloud host and performs
hostile traffic sniffing or eavesdropping. It is possible to
sniff or steal data from the cloud host when guest machines
have bypassed the isolation with their hypervisor. The guest
machines can access the most confidential information such as
monitoring the traffic exchanged among other guest machines.
This is caused by the vulnerabilities present in the hypervisors.
This requires that the isolation mechanism should be hardened
and links among cloud nodes should be secured in order to
secure the VNFs communication.

In multi-tenant cloud environment, one way of separating
the traffic of guest VNFs from different operators hosted
on single NFV domain, is to use virtual local area network
(VLAN) tagging. Each virtual network gets unique VLAN ID
and only VNFs connected to this virtual network can access
each other, thus preventing access from other VNFs running in
different networks. VLAN security depends upon the security
of cloud provider’s network e.g. routers and switches (both
physical and virtual). In general, a cloud provider has complete
control over hosted VNFs and if desired, the cloud provider
can see all data residing in the VNFs, including sensitive ones
(e.g., cryptographic keys). Therefore, cloud model is based on
trust and cloud provider must be a trusted party without having
any malicious intents. Whilst this could be true, there are still
chances that cloud providers could be careless or incompetent
to implement robust security mechanisms. For example, they
could make some configuration errors resulting from human
mistakes such as putting one operator’s VNF on some other
operator’s VLAN thus enabling attacks as mentioned above
[10].

As per cloud security alliance (CSA), attacks against com-
munication of virtualized network functions are complicated
due to reasons that their traffic do not flow over the network
anymore but through the hardware backplane. This limits
conventional network monitoring and security tools in place.
CSA suggests to implement virtualized security appliances to
tackle these issues. Incorporating security tools inside VNFs
is another option [6].

III. TESTBED EXPERIMENT

In this section, we provide two approaches for securing VNF
communication in an OpenStack-managed cloud environment.
In this proof of concept demonstration, we made some modi-
fications to OpenStack networking layer and incorporated our
solutions as explained below.

A. Modifying OpenStack Networking Layer

Each compute node in OpenStack contains networking
components such as virtual switches and virtual bridges etc.
Virtual switches are Open vSwitch and are managed by Open
vSwitch agent. The bridges used are Linux bridge, integration
bridge, tunnel bridge and VLAN bridge. Linux bridges handle
mainly the security groups since Open vswitch and iptables
do not have such functionality. Figure 1 shows OpenStack’s
underlying network connectivity [11].

Fig. 1. OpenStack networking diagram [11]

B. Proposed Solutions

We consider two different scenarios for securing communi-
cation among VNFs. In the first scenario, the VNF operator
creates and manages its own virtual private network (VPN)
server to establish secure traffic tunnels among its VNFs.
All the cryptographic keys would then be under control of
the VNF operator. This is needed when the VNF traffic is
highly confidential and the underlying cloud infrastructure is
not reliable. In another scenario, cloud provider is trusted and
does all the modifications needed to secure the communication
among the VNFs so that there is no need to modify the VNF
images. Both proposed solutions are explained as below:

• Approach 1: Dedicated vVPN server per operator
VPN service can also be virtualized like other network
functions. A VNF operator could setup its own VPN
servers to secure communication of their VNFs as shown
in Figure 2. This approach has basically two require-
ments. The first requirement is that the VPN server should
have information about all VNFs such as host name,
IP address and network interfaces. Thus VPN servers
maintain routing tables to know where all VNFs are
located in order to create end to end encryption tunnels.
The VPN server also generates the cryptographic keys
for every client i.e., VNF. The keys could be managed
by public key infrastructure (PKI) connected with vVPN
server. The other requirement in this approach is that the
VNF images need to be customized to include VPN client
tool and already acquired cryptographic keys from VPN
server. The VPN tunnel will be activated at startup when
VNF images are booted as depicted in Figure 3.
This setup eliminates any changes which should be
carried out in NFV and somehow ensures that VNF
operators could setup end to end encryption tunnels
and gain control over their traffic. In order to avoid the
VPN server becoming a single point of failure, a high
availability deployment model should be considered such
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Fig. 2. Virtualized VPN server setup

Fig. 3. VNF image with integrated VPN client

as spinning up new instances of VPN server on demand.

• Approach 2: VPN service provided by the NFV
This setup provides comparatively easier method for
VNFs to start secure communication between each other
without worrying about the image customization such as
installing VPN client tool and performing key manage-
ment. In this setup, NFV components such as compute
and network nodes, host VPN service to provide traffic
encryption. One node acts as a VPN server and hosts
VPN portal for the purpose of key generation and man-
agement, while all other nodes only host the VPN client.
The operator is provided with a VPN portal to generate
cryptographic keys, select the destination VNF/(s) and
start the VPN tunnel. Once the VPN tunnel is estab-
lished between compute nodes, all the communication
generated by the VNFs will be encrypted. The whole
setup is presented in Figure 4. This setup needs minimal
efforts at VNF level to exchange secure communication
but requires trust on its underlying infrastructure (cloud
service provider).

IV. IMPLEMENTATION

The implementation of the above-mentioned approaches
is carried out in OpenStack based cloud infrastructure. The
OpenStack release version used in this implementation is Kilo.
This implementation modifies parts of Openstack networking

Fig. 4. NFV provided VPN service

component which is known as neutron. Neutron is an Open-
Stack project which provides network connectivity as a service
between interface devices (e.g. virtual network interface cards
(vNICs)) managed by other OpenStack services [12]. Neutron
can be implemented with Linux bridge or Open vSwitch [13]
technologies.

Our testbed experiment consists of four phyiscal server
machines and two virtual machines, all running Debian Linux
Ubuntu 14.04. This configuration setup contains two Intel
Xeon Servers E5-2600 v3 @2.20 GHz with 72 GB RAM,
two HP ProLiant servers DL360 G5 having Intel Xeon 5160
@3.00GHz and 24GB RAM. Both virtual machines have 2 GB
RAM and 1 virtual central processing unit (vCPU) allocated.
The OpenStack environment have a very light workload during
this performance testing.

In implementing the VPN functionality for VNF com-
munication, we have considered two separate approaches as
described above. In the first approach, we set up two VNFs
and a dedicated virtualized VPN server. Virtual VPN server
is setup on Ubuntu 14.04 cloud image and runs OpenVPN
package [14]. The cryptographic keys for VNFs are manually
generated from VPN server and integrated in the VNF image
file along with VPN server’s certificate by customizing the
VNF image. This was performed by using open source tool
known as libguestfs which has the library for modifying virtual
machine images [15]. VPN server is also provided with IP
address and host name of the VNF instances so that it could
perform the routing of the traffic. In a large and automated
setup, the key generation and management could be performed
efficiently using existing PKI tools.

In the second approach, we enabled the NFV infrastructure
to provide the VPN functionality for its hosted VNFs. This
approach requires modification in OpenStack networking com-
ponent. As mentioned above, OpenStack uses multiple bridges
which are inter-connected. In Figure 5, we present the diagram
which shows the communication path between two VNFs
running on different compute nodes in a standard OpenStack
implementation. It can be seen that traffic generated by VNF1
is first passed through Linux bridge named as qbr04d6a998-b8
and then through integration bridge br-int and tunnel bridge
br-eth1 and the same process follows at receiving compute
node.

Now, in order to encrypt the traffic flowing between VNF1
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Fig. 5. Standard OpenStack network communication diagram

and VNF2, we need to add one extra bridge for providing
interface to OpenVPN tool. We named this bridge as br-
vpn. Traffic generated from VNF1 is directly feed into the
br-vpn which then forwards the traffic to OpenVPN tool for
encryption. OpenVPN uses cryptographic keys associated with
VNF1 to encrypt the traffic and sends it back to br-vpn which
then forwards the traffic to Linux bridge and the rest of the
communication path remains the same as shown in Figure
6. We developed Python based guardian tool for fetching
the information about the VNFs running on OpenStack. The
collection of information about nodes and interfaces running
on compute nodes is a relatively complex process. First,
Openstack nova compute is used to check the information
about all the VNFs running on each compute node. Then
guardian tool checks the interfaces of all the VNFs such as
their IP addresses, MAC addresses, and network ID. Using
this information, port name and VLAN tag in Open vSwitch
instance are resolved. The guardian agent updates itself pe-
riodically and this process is repeated for all VNFs running
on each compute node. We then build graphical user interface
(GUI) for the operator to select the source and destination
VNF and their interfaces on which traffic encryption should
be performed. Upon pressing the VPN start button in GUI,
the interface names are sent to the back end to make the
modifications in the existing OpenStack neutron bridges and
start OpenVPN tunnel between selected VNFs. Again, the
cryptographic keys used in this approach are manually created.
This might be sufficient for proof of concept demonstration

Fig. 6. Modified OpenStack network communication diagram

but in production environment existing key generation and
management tools such as PyKIMP [16] could be leveraged.

A. Detecting the encrypted traffic

In order to detect the encrypted traffic between the VNFs,
traffic must be captured at either the VNF end or even between
VNFs. We used open source traffic capturing tool known
as tcpdump on compute nodes. For simplicity purpose, we
generated ICMP traffic from one VNF using ping command:
"ping -i 0.2 targetIP". We observed plain traffic generated from
VNFs and flowing between compute nodes.

We then established OpenVPN tunnel between VNF1 and
VNF2 from VPN portal and captured the traffic in the similar
manner as mentioned earlier. We found that tcpdump did not
capture any ICMP traffic. We checked all traffic flowing at
lo interface at both compute nodes and eventually found the
traffic with port number 1194. Port 1194 is the standard port
for OpenVPN traffic. The ping traffic is now encrypted and is
flowing inside OpenVPN packets.

B. Performance evaluation

Installing security softwares on virtual appliances, designed
for standalone physical machines, could lead to performance
degradation as these security tools can be CPU-intensive. In
one of our proposed approaches, VPN server is virtualized so
its actual performance could vary in comparison to running
it in a dedicated physical machine [6] [17] [18]. Performance
overhead also depends on the application and its sensitivity to
the packet delay.
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Fig. 7. Packet delay with VPN tunnel insertion

Our solution proposes integrating OpenVPN software tool
in OpenStack’s compute nodes. When encrypting the data
generated by the VNFs using OpenVPN, there are a number
of factors which affect the throughputs:

1) number of OpenVPN clients connecting simultaneously
2) bandwidth per client
3) encryption algorithms or ciphers
4) compression
5) packet size
6) transport protocol (TCP/UDP)
7) network errors
In order to measure delay of using encrypted traffic through

VPN tunnel, we ran 100 VPN start events and summed the
delay time to get the average delay which was about 1 seconds.
This is the time taken to setup the br-vpn bridge, mapping the
cryptographic keys in OpenVPN tool and also performing the
path modifications in OpenStack neutron. The same delay time
is observed in tearing down the VPN connection between the
VNFs. This 1 second delay seems to be reasonable keeping in
mind the number of components that need to be reconfigured
in the process. The performance evaluation of OpenVPN
solution is already benchmarked and available in [19].

Fig. 8. Packet delay with VPN tunnel removal

Next, we measured the round trip time (RTT) and network
throughout between the VNFs before and after establishing
the VPN tunnel. The results are shown in Figure 7 and 8 and
also in Table I and II. In both figures, the y-axis represents
the packet delay and the x-axis shows the measurement time
duration and the red line shows the time interval when a
VPN tunnel is initiated or teared down. Figure 7 shows the
increase of the average packet delay to 0.756 milliseconds
when VPN tunnel is established. The average packet delay

decreases to 0.429 milliseconds when VPN tunnel is teared
down as portrayed in Figure 8. These figures demonstrate that
encrypted network traffic comes at the cost of a slight drop
in performance. Next, we measured the network throughput
impact using the iperf tool [20]. One VNF was running iperf
as a server and and the other was serving as a client. It can
be observed from Table I that traffic latency is higher for
the encrypted traffic in comparison to the unencrypted traffic.
The same is the case with network throughput in Table II.
In our experiment, we noted that while traffic encryption and
decryption was taking place, all the computing resources were
fully utilized. The openVPN tool was observed in utilizing
100% of the CPU resources when taking the throughput
measurements. One way to improve the network throughput
is to use crypto accelerators, which perform computationally
intensive cryptographic operations.

TABLE I
ROUND TRIP TIME IMPACT

VPN Tunnel min(ms) avg(ms) max(ms) mdev(ms)

No 0.228ms 0.429ms 1.539ms 0.167ms
Yes 0.510ms 0.756ms 22.905ms 2.813ms

TABLE II
THROUGHPUT IMPACT

VPN Tunnel Proto Packet/datagram size Jitter Throughput

No TCP 1470 Bytes - 15.5 Gbits/sec
No UDP 1470 Bytes 0.005ms 806 Mbits/sec
Yes TCP 1470 Bytes - 585 Mbits/sec
Yes UDP 1470 Bytes 0.022ms 72.05 Mbits/sec

V. CONCLUSION AND FUTURE WORK

In this paper, we discussed the need for securing the
communication among VNFs in telco cloud environment. In
this vein, we devised mechanisms to address these problems.
We implemented a testbed setup on OpenStack based cloud.
In order to integrate our solutions, we modified OpenStack
networking component known as neutron in one of our
approaches and incorporated open source OpenVPN tool to
perform traffic encryption between VNFs.

Furthermore, we evaluated the performance of our testbed
setup using metrics such as time delay to setup VPN tunnel
between two VNFs and impact of encryption overhead on
RTT and throughput. In the performance evaluation, we found
that it takes about 1 second on average to setup and also
tear down a single VPN tunnel. The RTT and throughput are
also affected as encryption comes with cost of performance
overhead. We believe that the results provided in this paper
could be improved by using crypto accelerators which can
speed up the encryption and decryption process.

In the future, we would like to build an efficient cryp-
tographic key generation and distribution mechanism along
with optimizing the existing solution. This would help in
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reducing the delay in setting up VPN tunnel between VNFs
and improving the network latency and throughput by using
dedicated crypto accelerator devices.
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