
Network Slice Mobility for 6G Networks by
Exploiting User and Network Prediction

Hao Yu∗, Zhao Ming∗, Chenyang Wang†, and Tarik Taleb∗
∗Oulu University, Oulu, Finland.

†Tianjin University, Tianjin, China.

Abstract—Beyond 5G applications, future 6G services would
need to support very large data volumes for emerging industry
verticals, such as holographic-type communications, as well as
time-sensitive services, e.g., industrial control. Network slicing is
the key technology to deliver such customizable services. Slices
and their dedicated resources should be provisioned optimally
where the services will be run with low network latencies and
associated expenses. However, the user dynamics on resource
demands within and between slices result in different resource
re-allocation triggers, ultimately lead to distinct mobility pat-
terns, e.g., scaling, migration, where sufficient resources must be
transferred. Efficient slice mobility requires increasing flexibility
in network operation and management to ensure the customized
QoS while minimizing the corresponding mobility cost. In this
paper, a prediction-based intelligent network analytic is proposed
to facilitate the optimized network slice mobility scheme. We will
investigate how to utilize the user and network prediction as the
auxiliary information to make the slice mobility decision with the
objective of maximizing the long-term profits while minimizing
the latency and mobility cost. Finally, we evaluate the proposed
prediction-based network slice mobility scheme in a simulated
environment and compare its performance in terms of system
costs, revenues, and profits with two benchmark solutions.

I. INTRODUCTION

6G, as compared to current fifth generation (5G) wireless
networks [1], goes beyond just meeting the KPI criteria for
higher data rates, larger network capacity, and reduced latency.
It will confront much more challenging situations which ex-
pect the following special characteristics within 6G networks.
First, it will be an open communication ecosystem including
radio access networks (RAN) and core networks for the vari-
ous communication types and applications, e.g., holographic-
type communication. Each service of a new vertical industry,
e,g., automotive, smart medical and AR/VR, imposes unique
requirements, which will motivate decoupling logical network
functions from the physical infrastructure to form the self-
contained, programmable and highly customizable networks.
Second, to achieve the goal above, the resource virtualization
using network slicing technique, which facilitate the advanced
network virtualization, will demand higher network manage-
ment level. Third, ubiquitous intelligence from end users to
the network edges, boosts the intelligent network/performance
analysis which will not only advance the network management
level in terms of QoS guarantee and cost reduction, but also
bring considerable challenge to coordinate multiple intelligent
network nodes.

Network slices [2], represented by logically independent and
self-contained networks running on software-based smaller

modular network functionalities with varied granularity, are
sufficiently adaptable and flexibly configurable to concurrently
support a variety of business-driven 6G use cases over the
same network infrastructure [3]. In this paper, we will refer
to a network slice as an logical network consisting of a
set of virtual network functions that operates on top of a
common underlying network, is completely autonomous in
terms of its management and control, and can be flexibly
programmed to satisfy the service level agreement (SLA) and
ensure the deterministic network performance [4] associated
with a particular type of service. The computing and storage
resources within a network slice are connected via virtual
networks and connections. Multiple service requests issued by
different mobile devices (MDs) are able to run simultaneously
within one slice, e.g., video streaming services.

To achieve the necessary SLAs of services, network slices
are provisioned with specific resources that are only used for
that purpose. Such slice-specific resources should be coupled
with services, as well as the corresponding mobile users,
during the whole lifetime of the slices. Especially for some
dynamic scenarios where the user demands rise or drop, it
needs strict slice adjustment and migration strategies, for both
the network resources and services running on them, which can
be referred as network slice mobility (NSM) [5]. While a slice
is migrated from one service region to another, all of these
factors, i.e., service migration and network resource migration
must be considered to guarantee service continuity. As a
further step, the authors leveraged the reinforcement learning
(RL) method in [6] to determine the trigger selection for
different NSM options, i.e., slice mobility, slice splitting, slice
merging and slice scaling, by analyzing the user demand pat-
tern. Although, using RL method can bring intelligence to the
network by solving some complicated scheduling problems,
e.g., the trigger selection for NSM, there still exists lots of
challenges that need to be addressed. For example, it generally
takes a long time to train the RL agent before it works well.
The trained agent has to adapt to the realistic production
environment to work optimally if the agent is trained based on
a simulation environment, since the network topology and the
distribution of user demand in realistic networks environments
may be different from the simulated environment and vary over
the time. To cope with these issues, a intelligent NSM strategy
that can leverage directly the realistic network information,
including user, slice and network state information is exigent.
Whether a mobility action, e.g., migrating a network slice,

© MOSA!C LAB 2021

1112

MEC slice state

2424

…
…

…

VM Pool VM Pool
User demand
(predictable)

CPU: 2
RAM: 1G

CPU: 4
RAM: 2G

MEC
slices

MEC
platform
(Metric

measure)

CPU: 8
RAM: 4G

8 4 6 3

MEC server state

MEC server 1

2348 2222

MEC server 2

CPU: 8
RAM: 4G

CPU: 2
RAM: 2G

MEC
slices

MEC
platform
(Metric

measure)

CPU: 16
RAM: 8G

16 8 10 6

AB

C

Slice capacity

VM Pool

User demand
(predictable)

Slice capacity

Server
capacity

Slice
demand

MEC slice state MEC slice state MEC slice state

Server
capacity

Slice
demand

MEC server state

Fig. 1. Network representation for network slice mobility architecture

is optimal globally depends on if it has not only spatially,
but also temporally global view of the network environments.
Therefore, we introduce a user and network prediction-based
NSM approach by taking advantage of the user and network
prediction to facilitate intelligent trigger selections for the
NSM. Existing prediction-based solutions in [7] [8] which
introduced a predictive approach based on CPU load variation
to detect over-utilized and under-utilized servers and schedule
the Virtual Machines (VMs) migrations and determine optimal
decisions. Although both studies considered using prediction
to make decision on VM placement or migration, they ne-
glected the internal user demand of a service and averted the
actions such as scaling up/down various resource types, e.g.,
CPU, RAM to avoid performance degradation of applications
with dynamic workloads. In this paper, we take into account
the user, slice and network resource status (physical and
virtual) comprehensively in a mobile edge computing (MEC)
environment [9] and propose a user and network prediction-
based NSM scheme by analyzing the historical user demand,
resource utilization of physical nodes and network slices. The
proposed prediction-based heuristic scheme utilizes network
and data analytic functionality [10] and ubiquitous intelligence
inside the networks to support the advancement of 6G network
operation and management. Based on these observations, the
contributions of this article are:

• We introduce different slice mobility patterns to corre-
spond to the changing user demand and network status;

• We design a user and network prediction-based NSM
strategy to optimally provision and manage network to
satisfy the QoS while maximizing the system profits;

• Extensive simulation results demonstrate that the pro-
posed solution outperforms two benchmark solutions.

The remainder of this paper is organized as follows. Section
II presents the system model and formulates the NSM prob-
lem. Our proposed prediction-based solution is presented in
Section III. The performance evaluation results are discussed
in Section IV. Section V concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Fig. 1 depicts an overview of the envisioned architecture
which consists of two levels of networks, i.e., physical layer
and slice layer. For the sake of simplicity, we assume that a
network slice consisting all the necessary network functions,
e.g., radio access network (RAN) functions, can be deployed in
a single MEC server. This layering concept conforms to ETSI’s
MEC and network function virtualization (NFV) standards
[11]. The infrastructure layer consists of a set of MEC nodes
associating with cellular base stations (BSs). The wireless
connections between MDs and networks should be established
through the BSs, while each MEC node is comprised of CPU
and RAM resources to support the computing and storage tasks
of mobile services. On the other hand, the virtual network
functions (VNFs) instantiated based on the NFV paradigm
can form the network slices that server multiple mobile users,
which are also featured by a certain amount of CPU and RAM
capabilities. We define two types network representation, i.e.,
MEC server state, MEC slice state, to effectively express
the network status. Different slice mobility patterns will be
triggered according to the MEC server state and MEC slice
state. Similar to the definition in [5], the triggers in this paper
can be classified into two types as follows:

1) Slice Resource Trigger (SRT): the SRT trigger focuses
on the performance of a single network slice, i.e., the internal
resource consumption of the MEC applications. The primary
objective of designing this trigger is to monitor the slices
themselves, allowing for more flexibility and exploration of a
wider variety of new activities, such as scale up/down opera-
tions. Moreover, these information may be expanded to include
other characteristics, such as the number of requests/MEC
applications. To this end, each MEC server transmits its local
data to the orchestration layer for the slice demand data
analytic.

2) Slice Migration Trigger (SMT): this trigger is concerned
with the aggregate infrastructure-level resources associated to
the underlaying nodes, i.e., MEC servers, hosting virtualization

© MOSA!C LAB 2021

LP slice MP slice HP slice

MEC server 1 MEC server 2

MEC
slice

MEC
slice

C
PU

R
A

M

time time
t+1 t+1 t tt+2 t+2

MEC server 1 MEC server 2

MEC
slice

MEC
slice

C
PU

R
A

M

time time

Slice mobility trigger: t+1
4 2 4 2 4 2 6 4

t+1 t+1 t tt+2 t+2

(a) User prediction-based network slice mobility (b) Network prediction-based network slice mobility

2 1 1 1 2 1 4 2

(a) (b)

Simple Policy Intelligent Policy Simple Policy Intelligent Policy

Migrate MP slice to
MEC server 2

Scale down LP
slice

Scale down LP slice
in MEC server 1

Migrate MP slice to MEC server 2 and scale
down LP slice in MEC server 2

Slice resource trigger: t+1
4 2 4 2 4 2 6 4

68 4

8 4 6 3

2 1 1 1 2 1 4 2

10 t+3 t+3

User demand prediction D(t)~D(t+3)

68 4

8 4 6 3

10 t+3 t+3

Network demand prediction R(t,3)

Fig. 2. The motivational example of prediction-based NSM scheme

instances. The SMT trigger may result in slice migration based
on the CPU and RAM utilization of the MEC server, if the
current residual resources in a MEC server cannot support
the scaling up of some slices. All the slice demands will be
collected to compose the MEC server state, the proportion of
each MEC server’s used resources after receiving information
from all the MEC servers constitute the network environment.
The system will decide whether and where to migrate slices
based on these network environment information.
B. Problem Formulation

We consider a distributed system comprised of a set of N
MEC servers, each MEC server n ∈ N runs a number of MEC
slices, i.e., a set of VMs or containers, s ∈ S as in [12]. The
mapping between the MEC servers and the MEC slices are
defined as xs,n(t) = 1 if slice s is deployed in MEC server
n, otherwise 0, which means the location of slice s will vary
over the time.

For each MEC slice running on the MEC server, we
define Cs(t) and Rs(t) as the allocated CPU and RAM
resources to the MEC slice s at time slot t. We use Ms(t) =
{Cs(t), Rs(t), cs(t), rs(t)} to represent the MEC slice state
of v at time t, where cs(t), rs(t) denote the accumulated user
demand within slice s at time t. The variation of each item
in Ms(t) denotes a NSM pattern, i.e., migration from a given
source MEC server to a target MEC server, or scale up/down
different resource types such as CPU and RAM.

In this paper, we define a cost model C(t) which consists
of two parts: migration cost and resource cost. To evaluate the
performance impact that a NSM pattern will induce at time
t, the migration cost of a mobility pattern can be evaluated
from the mobility type and slice size. Basically, the operation
of migration or scaling up/down needs some operation time
to finish the whole procedure. We consider the time for the
migration operation depends on the slice size, and assume the
time for scaling up/down to be static in this paper. The more

resources a slice is associated, the higher migration cost it will
induce. Regarding the cost for system resources, the higher
utilization of resources, the higher resources cost that network
slice provider (NSP) should pay for the infrastructure provider
(IP). Moreover, we also reverse the sum of the service latencies
Ts of the total users within the slice s, to denote the impact
of allocated resources on QoS. The lower latencies, the higher
system cost. The total system cost is finally calculated by

C(t) =
∑
s∈S

MCs +
1

Ts
(αCs(t) + βRs(t)), (1)

where MCs denotes the migration cost of s and Cs(t) and
Rs(t) denote the CPU and RAM resource capacity of MEC
slice s. α and β are defined to balance the impact of two types
of resources on system cost.

Then, considering that different network slice types corre-
spond to the applications with different QoS guarantees, thus
each network slice is featured with a unique priority level,
i.e., ps. For simplicity, smaller value means the lower priority.
On the one hand, instantiating a network slice will consume a
certain amount of resources, which will induce resource costs.
On the other hand, network slices with different priorities will
produce differential revenue for NSP. Naturally, the network
slice which can provide stricter QoS guarantee will make
higher revenue, thus it should be prioritized regarding net-
work resource provisioning, i.e., CPU, RAM. The revenue by
providing network slices to the slice tenants can be calculated
by

R(t) =
∑
s∈S

1

Ts
ps(αcs(t) + βrs(t)), (2)

where cs(t) and rs(t) represent the actual utilized CPU and
RAM resources of MEC slice s. α and β are also used as the
coefficient to adjust the weights of different resource types in
evaluating how they affect the revenue [13]. Note that, due to

the resource constraints, MEC slice cannot always satisfy the
user requirements in terms of the CPU or RAM, some slices
cannot scale up successfully in response to the increasing user
demands.

Therefore, the NSM problem can be formulated as maxi-
mizing the system profits over the time concerning the slice
mobility as

max
∑
t∈T

R(t)− C(t). (3)

For the online scheduling purpose where a mobility decision
will be generated immediately upon the SRT or SMT trigger,
we propose a prediction-based NSM scheme which is near
optimal but with less computation complexity.

III. PREDICTION-BASED NETWORK SLICE MOBILITY
SCHEME

In this section, we propose a network and user demand
prediction-based NSM scheme, which takes the advantage of
the network prediction information to eliminate the limitation
of greedy strategy. We assume the edge networks to be a
time-slotted system and we can obtain the accurate prediction
information of networks and users prior to the current time
slot t, for example, user resource demands of T time slots
ahead of current time slot will be given (predicted) by using
the traffic prediction method, e.g., multiple linear regression
(MLR) [14]. Therefore, no prediction error will be considered,
which actually may have an effect on the system.

As shown in Fig. 2, regarding to the user demand Di(t) =
(ci(t), ri(t)), the prediction information of user demand
Di(t+1), Di(t+2), ..., Di(t+T) is given. Let U(s) denote
the set of users which are served by network slice s, the
resource demand of network slice s at time slot t should
be Ds(t) =

∑
i∈U(s) Di(t). In the proposed scheme, the

prediction information of slice resource demand will indicate
the future trend of mobility pattern, e.g., scaling up/down or
migration. The resource demand trend of multiple network
slices located in one MEC server will be taken into account
as a key factor to determine the migration target. Thus, we
define a variable Rn(t, T) to reflect the traffic demand of MEC
server n in the next T time slots as follows:

Rn(t, T) =
∑

s∈S(n)

As(t, T), (4)

where if As(t, T) = Ds(t+T)−Ds(t) > 0 means the traffic
demand is increasing in the next T time slots and vice versa.

On the one hand, the prediction information of traffic
demand within an existing slice will indicate 1) when this
slice needs to be scaled up in the future and 2) whether the
network resources should be reserved in advance according to
its priority level. Besides, the network load prediction could
also facilitate the optimized slice mobility scheme which will
take advantage of a complementary mobility strategy, e.g.,
migrating a network slice with increasing resource demands
to a MEC server with decreasing network loads. Thus, the
network resource competition could be mitigated. Moreover,

the user and network prediction will also promote the priority-
based slice mobility scheme. With the prediction information,
the network slice with higher priority can always be prioritized
by provisioning or reserving adequate network resources to
ensure the QoS. As shown in Fig. 2, two motivational ex-
amples are presented to illustrate the prediction-based slice
mobility scheme. Three types of network slices with high
priority (HP), medium priority (MP) and low priority (LP)
exist in the networks. In Fig. 2(a), the MP slice needs to be
scaled up at time t+1 due the increasing resource demands of
users, i.e., (8, 4), and the resource demand of LP slice is also
increasing in the following time slots. Considering the physical
resource capacity constraints, there are not enough network
resources, e.g., CPUs, for this scaling up operation. Thus,
an intuitive policy might be migrating this MP slice to MEC
server 2, which still has adequate network resources. However,
if we consider the future resource demand of this MP slice, we
will find there is a downward tendency of resource demand in
the next time slot, e.g., from t+ 2. As a result, an intelligent
policy should be scaling down the LP slice in MEC server 1 at
time t+1 since slice migration operation will also induce some
cost. In the other case, if the resource demand of an MP slice
increases continuously in t+1, t+2..., there will be resource
competition in the next time slots with LP slices for a relatively
long time period, which will induce much degradation cost for
this LP slice. At the same time, the total resource demands of
MEC server 2 present a decreasing tendency from t + 1 as
shown in Fig. 2(b) if we have the prediction information of
all the slices in MEC server 2. Under this circumstance, an
intelligent policy should be migrating the MP slice towards
MEC server 2 to accommodate the increasing user demands,
eventually minimizing the total system cost.

We aim to design an intelligent NSM strategy that takes ad-
vantage of the complementary user demand profiles provided
by the user and network prediction information to determine
the NSM policies. The proposed scheme is detailed in the
Alg. 1. Given the geographically distributed MEC servers and
mobile users, the network slices are firstly initialized based
on the user distribution and resource demands. For example, a
high priority slice will be deployed within the MEC server
which covers most of mobile users requiring high priority
services (Line 1). Afterwards, we iteratively determine the
appropriate slice mobility as the resource requirements of
mobile users change. (Line 2-15). Specifically, we first sort
the network slices deployed in the networks in terms of the
priority levels and operate on the slices to highest priority
to ensure the resource provisioning of critical network slices
(Line 3). When the resource demands Ds(t) of slice s increase
at time slot t compared with t − 1, we check if there are
enough resources to scale up the slice in the current MEC
server of s. If not, we consider other MEC server that satisfy
the resource requirements of s (Line 9-13). In Line 9, the
rank values of the neighbor MEC server including the current
MEC server of slice s, i.e., Rn(t, T), are calculated to provide
an evaluation of the load tendency of MEC server n in the
next T time slots. After sorting the MEC server in N(s),

Algorithm 1: Network Prediction-based Network Slice
Mobility Scheme

Input: Network Topology G, Mobile Users U
Output: Network Slice Configuration

1 Initialize: Deploy network slices based on user
distribution

2 for t ∈ T do
3 S ← Sort the slices in terms of priority in a

descending order.
4 for s ∈ S do
5 if Ds(t) > Ds(t− 1) then
6 if LI(n)(t) > Ds(t)−Ds(t− 1) then
7 Scale up slice s.

8 else
9 Calculate the rank Rn(t, T) of neighbor

MEC server n ∈ N(s).
10 N̂(s)← the set of neighbors in terms

of Rn(t, T) in ascending order.
11 for n′ ∈ N̂(s) do
12 if Check(s, n′) > 0 then
13 Migrate the slice s with

Migrate(s, n′).
14 else
15 Continue

16 else
17 Scale down the slice s or no action.

Algorithm 2: Check(s, n)

if n ̸= I(s) then
MC(s, n)← |U(s)| ∗ fs.

else
MC(s, n)← 0.

MB(s, n)← ps ∗ (Ds(t)−Ds(t− 1))
if Ln(t) < (Ds(t)−Ds(t− 1)) then

MP (s, n)← Penalty for release the network
resources (Ds(t)−Ds(t− 1)) from the network
slice s′ with lower priority than s multiplied by a
factor Ps′ .

return MB(s, n)−MC(s, n)−MP (s, n).

we check if MEC server n′ is a valid migration option. As
shown in Alg. 2, three indicators are defined to check if the
MEC server n is a feasible destination for slice s to migrate.
MC(s, n) denotes the migration cost since slice migration
will induce the service interruption and degrade the QoS for
a while. Hence, the migration cost is defined as the number
of users |U(s)| served by slice s multiplied by a factor fs
which indicates the slice size. Migration benefit MB(s, n) is
defined to indicate how much revenue the slice s can obtain by
scaling up operation in the target MEC server. If the residual

network resources are not enough for slice s to scale up, the
corresponding resources will released from an existing slice s′

with lower priority than s. And a certain of penalty will be paid
for degrading this slice which is Ps′ ∗(Ds(t)−Ds(t−1)), i.e.,
MP (s, n). To evaluate the necessity to migrate slice s, Alg. 2
will return the value of MB(s, n) −MC(s, n) −MP (s, n).
If this value is positive, the MEC server n is a valid option
for migration (Line 13), otherwise, the algorithm will iterate
to the next candidate MEC server.

IV. PERFORMANCE EVALUATION

In this section, we demonstrate the performance evaluation
of our proposed scheme. We first present the simulation set-
tings used in the evaluation. Then, we compare our proposed
scheme with the existing benchmark schemes and evaluate
their performance in different cases.

A. Simulation Setup

We initialize a scenario consists of several BSs, each of
which serves 20 mobile users and deploys an ES with 8 CPU
cores and 32 GB RAM. The topology of the BSs is generated
by the internet graph generator of Networkx tool [15]. We
set the latency from each BS to its served mobile users as
10 ms, and the latency between two connected BSs as 50
ms. We set the CPU cores that each user request each time
slot randomly from 2 to 4, and RAM from 2 to 12 GB. The
priorities of requests are set randomly from 1 to 5. Moreover,
to observe the simulation performances in a long term, we
collect the simulation results of 50 time slots and iterate the
process of determining the strategies of NSM for 100 times to
obtain more stable performances. We evaluate the performance
of the proposed scheme in terms of system cost, revenue, and
profit. To demonstrate the effect of predicting the user demand
in NSM, we compare our proposed scheme with two schemes
as: 1) Reset scheme: the slices in t scale up/down based on
user demand, and the slices cannot migrate to other MEC
servers even the resources are exhausted; 2) Greedy scheme:
the slices scale up/down firstly, if the resources are exhausted,
the slices greedily migrate to the nearest MEC servers of its
users. Different from these two schemes, all the slices can
determine its nearest MEC server of its users in our prediction-
based scheme, and we try to greedily migrate the slices to its
nearest MEC server according to the priorities of slices.

B. Performance Results

Based on these settings, we evaluate the performances in
different numbers of MEC server, and different combinations
of α, β which control the proportion of CPU and RAM
resources in calculating the performance metrics.

We investigate the system cost, revenue, and profit under
different combinations of α, β versus different N in Fig. 3.
Note that the simulation results are averaged over 100 itera-
tions. From Fig. 3(a), we can observe that the system cost of
different schemes and combinations gradually increase with
N , since the increasing MEC server serve much more users,
who request more resources. Moreover, in Fig. 3(a), each
scheme with lower α results in higher cost, which reflects

5 10 15 20 25 30 35 40 45 50
Number of MEC Hosts N

0
2000
4000
6000
8000

10000
12000
14000
16000

Co
st

Proposed(α=0.4, β=0.6)
Greedy(α=0.4, β=0.6)
Reset(α=0.4, β=0.6)
Proposed(α=0.5, β=0.5)
Greedy(α=0.5, β=0.5)
Reset(α=0.5, β=0.5)
Proposed(α=0.6, β=0.4
Greedy(α=0.6, β=0.4)
Reset(α=0.6, β=0.4)

(a) Cost

5 10 15 20 25 30 35 40 45 50
Number of MEC Hosts N

0
2000
4000
6000
8000

10000
12000
14000
16000

Re
ve

nu
e

Proposed(α=0.4, β=0.6)
Greedy(α=0.4, β=0.6)
Reset(α=0.4, β=0.6)
Proposed(α=0.5, β=0.5)
Greedy(α=0.5, β=0.5)
Reset(α=0.5, β=0.5)
Proposed(α=0.6, β=0.4
Greedy(α=0.6, β=0.4)
Reset(α=0.6, β=0.4)

(b) Revenue (c) Profit

Fig. 3. The cost, revenue, and profit of the considered system versus N .

that the requested RAM resources cost more than the requested
CPU cores. The proposed scheme with all (α, β) combinations
has much higher cost compared to the reset scheme and greedy
scheme, which means that more resources are utilized.

In Fig. 3(b), we compare the revenue of different schemes
with different parameter combinations. We can observe that
the each scheme with lower α haves higher revenue, and
the proposed scheme with all (α, β) combinations has much
higher revenue compared to the reset scheme and greedy
scheme, since the proposed scheme’s strategy considers to
migrate all the slices to their nearest MEC server and thus
achieves much lower system latency. To further evaluate the
performances of different schemes, we investigate profit of
these schemes, as shown in Fig. 3(c). We can observe that the
proposed scheme outperforms other schemes in all parameter
combinations. As a result, the proposed scheme averagely
increases the system profit by up to 30 times and 19 times
compared to reset scheme and greedy scheme, respectively.

V. CONCLUSION

In this paper, we have investigated the user and network
prediction-based NSM problem in 6G MEC environments.
We have firstly formulated the mathematical model of this
problem with the objective of maximizing the system profits
and then proposed a novel network analytic-enabled slice mo-
bility algorithm by exploiting user demand and network load
prediction information to make the mobility decision. The pro-
posed scheme will leverage the complementary user demand
profiles or the complementary network load in different MEC
servers to avoid the resource competition from a long term
perspective. To this end, the network slices with high priorities
can always be provisioned with enough resources to ensure the
QoS associated services. The performance evaluation results
have shown that the proposed prediction-based scheme obtains
higher overall profits regarding mobility and network resources
compared with two benchmark strategies.

ACKNOWLEDGMENT

This research work is partially supported by the Euro-
pean Unions Horizon 2020 Research and Innovation Program
through the Charity and aerOS projects under Grant No.
101016509 and 101069732, respectively; the Academy of

Finland 6Genesis project under Grant No. 318927 and the
Academy of Finland IDEA-MILL project under Grant No.
352428.

REFERENCES

[1] T. Taleb, B. Mada, M.-I. Corici, A. Nakao, and H. Flinck, “Permit:
Network slicing for personalized 5g mobile telecommunications,” IEEE
Commun. Mag., vol. 55, no. 5, pp. 88–93, May 2017.

[2] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling technolo-
gies, and solutions,” IEEE Commun. Surv. Tutorials, vol. 20, no. 3, pp.
2429–2453, Mar. 2018.

[3] M. Shokrnezhad and T. Taleb, “Near-optimal cloud-network integrated
resource allocation for latency-sensitive b5g,” in GLOBECOM 2022-
2022 IEEE Global Communications Conference. IEEE, 2022, pp. 4498–
4503.

[4] H. Yu, T. Taleb, J. Zhang, and H. Wang, “Deterministic latency bounded
network slice deployment in ip-over-wdm based metro-aggregation
networks,” IEEE Transactions on Network Science and Engineering,
vol. 9, no. 2, pp. 596–607, 2022.

[5] R. A. Addad, T. Taleb, H. Flinck, M. Bagaa, and D. Dutra, “Network
slice mobility in next generation mobile systems: Challenges and poten-
tial solutions,” IEEE Netw., vol. 34, no. 1, pp. 84–93, Jan. 2020.

[6] R. A. Addad, D. L. C. Dutra, T. Taleb, and H. Flinck, “Toward using
reinforcement learning for trigger selection in network slice mobility,”
IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 2241–2253, May 2021.

[7] F. Farahnakian, P. Liljeberg, and J. Plosila, “Lircup: Linear regression
based cpu usage prediction algorithm for live migration of virtual
machines in data centers,” in Proc. IEEE Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), Sept. 2013,
pp. 357–364.

[8] R. Shaw, E. Howley, and E. Barrett, “A predictive anti-correlated virtual
machine placement algorithm for green cloud computing,” in Proc.
IEEE/ACM International Conference on Utility and Cloud Computing
(UCC), Dec. 2018, pp. 267–276.

[9] Y. Chen, Y. Sun, B. Yang, and T. Taleb, “Joint caching and computing
service placement for edge-enabled iot based on deep reinforcement
learning,” IEEE Internet of Things Journal, vol. 9, no. 19, pp. 19 501–
19 514, 2022.

[10] T. Taleb, R. L. Aguiar, I. Grida Ben Yahia, B. Chatras, G. Christensen,
U. Chunduri, A. Clemm, X. Costa, L. Dong, J. Elmirghani et al., “White
paper on 6g networking,” 2020.

[11] G. ETSI, “Mobile edge computing (mec); deployment of mobile edge
computing in an nfv environment,” ETSI ISG, Feb. 2018.

[12] X. Wang, R. Li, C. Wang, X. Li, T. Taleb, and V. C. M. Leung,
“Attention-weighted federated deep reinforcement learning for device-
to-device assisted heterogeneous collaborative edge caching,” IEEE
Journal on Selected Areas in Communications, vol. 39, no. 1, pp. 154–
169, 2021.

[13] H. Yu, T. Taleb, and J. Zhang, “Deterministic latency/jitter-aware service
function chaining over beyond 5g edge fabric,” IEEE Transactions on
Network and Service Management, vol. 19, no. 3, pp. 2148–2162, 2022.

[14] R. Vinayakumar, K. Soman, and P. Poornachandran, “Applying deep
learning approaches for network traffic prediction,” in Proc. IEEE
International Conference on Advances in Computing, Communications
and Informatics (ICACCI), Sept. 2017, pp. 2353–2358.

[15] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proc. Python in
Science Conference (SciPy), Jan. 2008, pp. 11 – 15.

