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Abstract—Generative Diffusion Models (GDMs) have emerged
as key components of Generative Artificial Intelligence (GenAl),
offering unparalleled expressiveness and controllability for com-
plex data generation tasks. However, their deployment in real-
time and mobile environments remains challenging due to the
iterative and resource-intensive nature of the inference process.
Addressing these challenges, this paper introduces a unified
optimization framework that jointly tackles service placement
and multiple access control for GDMs in mobile edge networks.
We propose LEARN-GDM, a Deep Reinforcement Learning-
based algorithm that dynamically partitions denoising blocks
across heterogeneous edge nodes, while accounting for latent
transmission costs and enabling adaptive reduction of infer-
ence steps. Our approach integrates a greedy multiple access
scheme with a Double and Dueling Deep Q-Learning (D3QL)-
based service placement, allowing for scalable, adaptable, and
resource-efficient operation under stringent quality of service re-
quirements. Simulations demonstrate the superior performance
of the proposed framework in terms of scalability and latency
resilience compared to conventional monolithic and fixed chain-
length placement strategies. This work advances the state of the
art in edge-enabled GenAl by offering an adaptable solution
for GDM services orchestration, paving the way for future
extensions toward semantic networking and co-inference across
distributed environments.

Index Terms—Generative Diffusion Model (GDM), Generative
Artificial Intelligence (GenAl), inference, service placement,
multiple access, mobile edge networks, Deep Reinforcement
Learning

I. INTRODUCTION

Generative Diffusion Models (GDMs) have recently
emerged as a compelling framework within Generative Arti-
ficial Intelligence (GenAl), enjoying the distinctive capability
of generating high-quality outputs by progressively denoising
stochastic input data [1] (Fig. 1). Their inherent expressive-
ness and controllability make them particularly suitable for
complex generative tasks, leading to their integration into
communication systems for tasks such as channel-distortion-
aware image reconstruction [2], image manipulation [3], and
intelligent resource orchestration [4], [5]. Furthermore, GDMs
are being recently explored for diffusion-based reasoning [6].
In vehicular networks, one of their applications involves the
improvement of road intelligence to facilitate immersive in-
vehicle experiences, which include the generation of real-
time three-dimensional content [7]. Despite their versatility,
GDM services present significant challenges for real-time and

0.8/ prompt: Urban intersection with traffic
lights and cars dinteracting via vehicular
communication, overlaid with transparent
AR-style data streams

0 10 20 30
Denoising step

Fig. 1. An example of GDM inference utilizing Stable Diffusion. The
image quality, quantified by the Structural Similarity Index Measure (SSIM),
gradually enhances during the denoising process. The shaded area illustrates
the standard deviation computed across 10 distinct prompts.

mobile deployments due to their computationally intensive
inference process arising from their iterative nature [1]. Ad-
dressing this bottleneck has emerged as a central theme in
recent literature, with approaches that include sampling step
reduction and model compression, in conjunction with auto-
regressive techniques [8], as well as more systemic solutions
that leverage the substantial computing power of edge nodes
[9]-[13].

In the latter category, the inherent gradual nature of the
denoising process is acknowledged, and edge computing is
seen as a promising enabler, offering low-latency access to
computational resources for mobile users. In this regard, Feng
et al. [9] proposed an edge-user collaborative GDM inference
framework in which a proportion of the denoising steps can
be offloaded to the edge servers. Also, Quality of Experience
(QoE) for users is considered, which is defined as image
quality minus weighted latency and energy consumption. Xie
et al. [7] introduced a framework for collaborative fine-tuning
and distributed inference in vehicular networks, with a split-
ting strategy of inferences to optimize latency and content-
generation capability. Similarly, in the proposal of Yang et
al. [10], the inference process for each user was split into
two phases with an optimizable split point: a shared model
for low-level generation at the edge, followed by personalized
user models. Zeng et al. [11] adopted a different approach
by partitioning multi-modal content and offloading partial
diffusion tasks to multiple servers. Lie er al. [12] proposed
a reinforcement learning algorithm that leverages diffusion
models and context-aware attention to improve multi-type
task orchestration at the network edge. Finally, FlexGen [13]



sought to improve quality and cost adjustability by modulation
of model width (i.e., the layer size).

Nevertheless, these efforts often fall short of addressing the
dynamic and mobile nature of real-world users navigating
through networks [14], [15]. Particularly, the potential for
distributing the denoising steps of GDM services across
various heterogeneous edge nodes, while considering the
latent transmission costs and adaptable chain lengths, remains
underexplored. In addition, existing works do not account
for multiple access policies that coordinate how users share
transmission channels to avoid collisions and ensure fairness
under resource constraints [16], [17]. Building on our prior
work on joint design of communications and computation
[18]-[21], we propose an adaptable framework that jointly
optimizes service placement and multiple access control for
GDMs in mobile edge networks. We consider a group of Base
Stations (BSs) equipped with computing resources, where
mobile users intermittently request GDM-generated outputs.
The framework aims to deliver the highest possible quality for
users and is influenced by two primary cost factors: (i) place-
ment costs, representing the energy and resource overhead of
deploying services at edge nodes, and (ii) transmission costs,
typically associated with latency requirements. Our system
dynamically allocates GDM services to edge nodes while
managing multi-user access to shared wireless channels. Our
main contributions are outlined as follows:

« Unified optimization framework for joint channel alloca-
tion to users (for prompt/initial-condition transmission)
and placement of GDM services on edge-computing-
equipped BSs. Notably, GDMs are iterative and quality-
progressive, produce large intermediate latents, and
thus impose strict ordering, latency, and communica-
tion—compute coupling that require resource allocation.

e LEARN-GDM: a decision-making algorithm that par-
titions denoising blocks across heterogeneous nodes,
incorporates latent transmission costs among them, and
enables adaptive reduction of denoising steps to balance
performance and resource consumption.

o Simulations demonstrating scalability and flexibility by
evaluating (i) the impact of available access channels on
user-request quality and (ii) quality maintenance under
increasing numbers of simultaneous requests.

In the remainder of this paper, Section II introduces the
system model and formulates the optimization framework.
Section III details the proposed approach to service place-
ment and multiple access control. The numerical results are
presented in Section IV, while final remarks and directions
for future research are presented in Section V.

II. PROBLEM DEFINITION

A. Glimpse into GDM

A GDM service can be characterized as a combination of
forward and reverse processes. The forward process maps

the initial state, denoted by x(, to a noise vector xz (that
is sampled from a Gaussian prior)'. The reverse process
denoises it to its original state (zg — xp—_1 — ... — Zg),
conditioned on a prompt or guiding signal ¢ and utilizing
learned transition kernels. This process, parameterized by 6,
is

p@(xt—l ‘ It,C) = N(xt—1§li0(xt7tyc)726(33%@ C))7 (1)

where 19 and ¥y denote the learnable mean and variance of
the reverse Gaussian transition kernel, respectively. Moreover,
B signifies the number of denoising step blocks, with B =
{1,...,B} representing the set of their blocks, with Q¥ (z)
output quality of the k-th block for input data z. Notably, a
higher number of blocks provides more degrees of freedom
for service placement, and yet enlarges the problem size. In
the example illustrated in Fig. 2-B, the output quality for
various blocks is presented.

In this study, we assume that each block requires a single
time frame for execution; however, this framework can be
extended to scenarios in which the execution time of each
block exceeds one time frame. Accordingly, it takes B time
frames to fully complete a service, while executing only the
first K’ < B blocks of service is possible, aiming to trade off
quality for resource efficiency. In addition, it is possible to
execute different blocks in distinct BSs, based on available
resources and UEs’ mobility patterns.

B. System Model

The system consists of a set of heterogeneous edge-
computing-equipped BSs, denoted with N = {1,...,N},
capable of providing GDM services to a collection of U
mobile User Equipment (UE). This heterogeneity arises from
various BS types, such as roadside units (RSUs), macro, and
micro nodes, each with distinct computational capacities. UEs
are uniquely labeled as w;, where i € U = {1,...,U}.
Fig. 2 depicts a modest scenario with A’ = 2 and U = 4.
To execute each service with k blocks, it is necessary to
specify its execution path, which is defined as the sequence
of k nodes (ni,...,nk), with each node representing the
executing BS of its corresponding block. This sequence is
denoted by p € P = [J,cp P*, where P* represents the
set of all k-permutations of IN with repetitions permitted.
In this regard, the inclusion of node n in path p at step
k is represented with jp’fn. In the scenario of Fig. 2 with
B = 2, set P? = {(1,1),(1,2),(2,1),(2,2)}, where the
first path executes two blocks on BS 1 and the second path
executes on BS 1 and 2 respectively. For the second path (i.e.,
(1,2)), J3, and J3, are equal to 1. Table I consolidates the
aforementioned symbols and the others discussed hereafter.

IThe forward process is employed during the training phase and is not
within the scope of this study [1], [4].

2Evidently, this set is composed of N'*. For example, even in a small
scenario with only four nodes and five blocks, 45 = 1024 paths exist.
Therefore, a subset of existing paths should be considered in practice.



TABLE 1
NOTATIONS OF SYMBOLS USED IN THE SYSTEM MODEL.

Symbol Description
Us UE with index ¢ € U = {1,...,U}
n BS index € N = {1,...,N}
s GDM service index € $ = {1,...,S}
c Communication channel index € C={1,...,C}
t Time frame index € T
B Set of blocks in a service, {1,...,B8}
P/ Pk Set of all / k-length execution paths
p A specific execution path € IP

J¥, € {0,1} |Indicator if n is used in path p at step k
U = (¢ ]
A =[]

i, € {0,1} |UE i selects path p at ¢

eﬁ’k,n € {0,1}|block k of UE 4’s service, executed on BS n at t

Association graph: 1 if u; connected to n at ¢

UE to service assignment matrix

mﬁyc € {0,1} |UE i uploads on channel ¢ at ¢

m? € {0,1} |UE i uploads on any channel at ¢
wt/ W, |Actual / Max blocks executed on BS n at t
Qs (k) Service s output quality with k blocks execution
Qi Q, Received / Min required output quality for UE ¢
Yn,n/ Cost of transmission from node n to n’
Y} Total transmission cost for UE ¢ at ¢
€n Execution cost of a single inference on BS n
a, B Execution and Transmission cost trade-off

The system is divided into a total of A predefined service
areas, which vary in size due to geographical factors such as
obstacles. UEs move dynamically between areas, but for sim-
plicity, they are assumed to stay within a single area during
each time frame ¢ € T. These mobilities create a dynamic as-
sociation graph W = [} | Jurx A< 7> equals 1 if u; is connected
to BS n at time frame ¢, otherwise 0. In the example of Fig. 2,
the association graph W' = [[1,0], [1,0], [1,0],[0, 1]]. UEs in
the same area are engaged in contention for access to a set of
C = {1,...,C} perfectly time-slotted communication chan-
nels designated for uploading their data to BSs. Consequently,
their simultaneous transmissions over a single channel lead to
a collision. In contrast, service responses are delivered to UEs
via collision-free downlink channels. It is also assumed that
BSs have broadband channels between them.

The system offers a collection of GDM services represented
by the set $ = {1,...,S}. We consider each service s as
a trained and ready-to-use GDM model. UEs have been as-
signed to services through a predefined matrix A = [A; sJuxs.
This matrix is constructed through a scalable and dynamic
service discovery mechanism [19]. In the example of Fig. 2,
matrix A = [[1,0,0],[1,0,0],[0,1,0],[0,0, 1]].
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Fig. 2. Sample scenario with N' = 2, Y = 4 and S = 3. UEs are fixed,
except uz, which changes its associated BS between two time frames. A)
u1 and uo are both registered to s1, and w3 and w4 are registered to so
and s3, respectively. B) GDM Model of s2 with maximum B denoising step
blocks. C) The first transmission attempt of w1 resulted in a collision, while
their next packets were transmitted successfully, resulting in the execution
of the corresponding service. All blocks of s1 are executed in BS 1. On the
other hand, the last (B — k) blocks of so are executed in BS 2 so that by
generating the final synthetic data, u3 is able to receive it from the associated
BS.

GDM Model (Service) i
blocks p to q

C. Problem Formulation

To fulfill the services requested by UEs, the initial step is to
determine the execution path for each UE. The binary decision
variable Tf,p indicates selection of execution path p for u; at
the beginning of time frame ¢. Moreover, the support variable
e; k.n 18 Tesponsible for indicating whether block & of UE ¢’s
service is executed on the BS n at time frame ¢. The variables
r and e are subject to constraint C1, which specifies that the
selection of a path of length k necessitates the execution of all
k blocks of the associated service at the corresponding nodes
over the subsequent k time frames. Hereafter, we assume out-
of-bounds indices are O for simplicity. Moreover, each UE can
select only one path per time frame (C2), and each BS n can
execute maximum Wn blocks per time frame (C3)°.

3While all blocks of a GDM service are implemented with the same neural
network, they require separate inferences and thus separate processing power.
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Another binary decision variable is m} ., which indicates
the upload transmission of UE ¢ on channel c at time frame
t. Each UE can transmit only on one channel, and no more
than one of the UEs connected to the same BS may transmit
data simultaneously, as stated by channel constraints in C4

and C5, respectively.

mie> " ml <1 VieUteT (C4)
ceC
> omiowl, <1 VneNceCteT (C5)

i€U

In order to establish an end-to-end transmission for each
UE and its designated execution path, it is essential to
correlate the variables e and m. Constraint C6 facilitates this
linkage by stipulating that the initial block of the correspond-
ing service may only be executed if a request is present in
the preceding time frame ¢ — 1. Recall that the initial block
starts the denoising process from noise, with the UE prompt
serving as a required conditioning input.

Spep iy < Tece mg;l VieU,teT (C6)
Moreover, the end-to-end assignment of each UE must be
ensured in terms of output quality. We define in C7 the quality
of synthetic data generated for UE ¢ at time frame ¢ as the
number of executed blocks applied to the function (.),
which generally increases with k. In practice, a minimum
acceptable quality is set, represented by @ in C8. For example,
in Fig. 1, if Q = 0.5, delivering the output at step 10 offers
no advantage. Notably, C8 must be satisfied if at least one
path is selected for the UE.

QEE D> rhy - Nis - Qs(lpl) (€7)
sel,pelP
>Q; Y rht, VieUteT (C8)
peP

The final step is to establish a metric to measure the
costs of intermediate latent data transfer between executing
nodes, along with the transfer of UE data from the Point
of Attachment (PoA) to the first execution node and the
generated data from the last execution node to the final PoA
(C9). Note that in this formulation, the execution path head
and tail can differ from PoA nodes, but their negative impact
on the transmission cost is considered. Here, Ymn/ is the cost
of transmitting data from node n to n’.

Vi S T T Y
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VieU,teT (C9)

Now, we can set the objective of our problem to maximize
the total quality of UEs over all time frames, subtracted by the
scaled total cost of service execution and data transfer. Here,
€, 1s the cost of a single inference on node n. Given that
this objective exhibits non-linearity and certain parameters,
such as 4(.) (i.e., the quality per block function), are
not practically known, traditional gradient-based optimization
techniques may struggle to converge to an optimal solution.

max Z Qt—a- Z en-WE—8- Z Y}

i€U,teT nEN,teT i€UteT
s.t. (C1-C9) (2)

III. PROPOSED SCHEME

To address the previously mentioned challenges associated
with problem complexities and incomplete knowledge, we
propose muLtiplE Access and seRvice placemeNt for GDMs
(LEARN-GDM), an intelligent resource allocation algorithm
that allocates channels and places services per time frame.
LEARN-GDM operates effectively despite uncertain system
information since it incorporates user mobility prediction
and proactively deploys services closer to where users are
likely to move. LEARN-GDM consists of a greedy Mul-
tiple Access Algorithm (MAC) and Double and Dueling
Deep Q-Learning (D3QL)-based service placement [14], [20],
[22]. Deep Reinforcement Learning, including D3QL as a
value-based method, has been extensively utilized to address
complex network optimization challenges, even with limited
knowledge of wireless networks, while continuously learning
and enhancing understanding of the environment [23].

The MAC component in LEARN-GDM greedily assigns
channels to UEs connected to the same BS, prioritizing those
whose ongoing inference processes are closest to the quality
threshold. For example, between two UEs with ongoing
qualities 0.3 and 0.4, the UE with 0.4 has higher priority
when the threshold is 0.5; if the threshold is 0.25, both would
have equal priority.

D3QL enhances Deep Q-Learning (DQL) by decoupling
action selection and evaluation [24] using the target value
defined in (3), followed by integrating Wang et al.’s dueling
approach [25]. This target incorporates reward p, observation
O, real action a € A, and predicted action a’ to update DQL
weights (W) for each observation-action of time ¢ (Of, a?).
Here, a'=argmax, . 4Q(O"! a;W") with W representing
evaluation weights updated at each step, and W™ as target



network weights, synchronized every > 0 step. Moreover,
separate estimators calculate state values () and action
advantages (AD), combining them to compute Q-values (4)
and weights (5). This approach improves training stability,
accelerates convergence, and mitigates overestimation issues.

Yi=pl+9-QO dsWiT)
3

Q(O%, at; Wh) = V(0O W) + (AD(Ot,at;Wt)

1

—MvmeW@wm>w

a’e A
WHL W Lo [V — Q(OF, ab; WHI Ve Q(OF, at; W)
(©)

To define action space (A), it determines which BS (if any)
should initialize or continue a process for the next time frame.
A non-zero action for UE i signifies its continuity if it has
already started but not yet finished. More concretely, if block
k < B is executed in the current time frame, a non-zero value
indicates that block k£ + 1 will be executed in the next time
frame; otherwise, the first block will be executed. Conversely,
a zero value prevents starting a new inference process or stops
an existing service. When a service stops, the generated image
is delivered to the corresponding UE.

A={a; : 0UN | Vi e U} 6)

Observation space must provide the resource allocator with
sufficient information regarding the current and historical state
of the allocated resources, as well as the ongoing state of each
chain and multiple access information.

ot = {Wy/Wn,enln € N}U{Q! - Q;li € Uy U {m!™ i € U}
U {¢!,IneN,ie U}

Ot:{oh\he{t—H,...,t}} )

To circumvent the problem of delayed rewards [26], we
reward users based on their image quality increase resulting
from successful allocations and constrained to exceed the
quality threshold, subtracted by the scaled cost of allocations
and transmissions.

Pl = (R QN 1(QE > Q) (8)
— Q- (ZnelNen'WrtL) R (ZieUYii)

Our approach, outlined in Algorithm 1, consists of several
key components. Steps 4-8 implement the greedy MAC
algorithm, while steps 10—14 apply an epsilon-greedy action
selection strategy for service placement. For each UE, the
placement procedure (steps 16-21) is executed as follows:
the system first checks whether the maximum chain length
has been reached. If it has, the inference process concludes,
and the result is delivered to the UE. If not, the placement
decision depends on the selected action—specifically, whether
the action assigns a service placement to the UE—and the
current node capacity status. If inference has already been

Algorithm 1: muLtiplE Access and seRvice placemeNt for
GDMs (LEARN-GDM)

Input: 7, Set of Episodes (),
2 W<+ 0, W <0, e« 1, memory < {}
foreach ep in E do
3 foreach ¢ in T do

4 x Multiple Access *
UE Priorities < max {1/@ —Qh, 10*8}

Usorted SORTu{lU7 key = UE Priorities}
foreach ¢, i in C, Usoptea[l : C] do

5 ‘ mi 1
6 * Service Placement
¢ « sample uniformly from Uniform(0,1)
if ¢ > € then
7 a « argmax . 4Q(O", a'; W)
8 else
P ‘ select a random a! from A
10 foreach i in Ugyrteq do
11 if Maximum blocks (B) has reached then
12 | Deliver the result to the UE
13 else if (a! = n € N) A (W,, < W,,) then
14 ‘ Deploy the first/next block on n
15 else
16 | Deliver the result (if available) to UE
17 Observe p' and construct O**! acc. to (7)

* Training *

memory <+ memory U {(pt, 0%, a*, O'T1)}
Choose a batch of samples from memory
Train the agent according to (5)

if € > € then

18 ‘ e+ €€

initiated, the placement advances to the next block; if not, it
begins at the first block. In cases where the action is null or
the node’s capacity is exhausted, any available latent data is
sent to the UE. Finally, steps 23-28 address the D3QL agent

training phase.
IV. PERFORMANCE EVALUATION

In this section, we conduct a numerical analysis of the
D3QL-based solution using the parameters outlined in Table
II. As a first step, we analyze convergence, followed by a
comparison of performance. To illustrate the learning process
involved in service placement, Fig. 3 displays the service
placement reward (blue line) within learning episodes. The
learning algorithms are trained over 200,000 time frames. The
reward increases gradually, which illustrates the efficiency of
DRL in placement. Additionally, rewards stabilize after the
175,000 time frame, indicating convergence.

For comparison, we explore two practical scenarios: 1) the
impact of user numbers on scalability; 2) how the number
of channels, indicative of a communications bottleneck in
real-world applications, affects performance. Notably, in all
scenarios, UEs are randomly distributed across the grid and



TABLE 11
SYSTEM MODEL PARAMETERS.

Parameter Value
Network area 4x4 grid
Node Processing Capacity (W) ~U(1,3)
Node Placement cost () ~ U(1,4) per inference
Quality Threshold (Q) ~ U (0.1,0.5)
Number of Services (S) 3
Max. blocks per service (1) 4
Default number of UEs 15
Default number of channels 2
Scaling Factors («, ) 0.1, 0.1

LSTM history size (H) 3 experiences
Capacity of experience memory 5000 experiences
Batch size 32
Discount factor (vy) 0.9
Learning rate 0.0008
Exploration parameters ¢, ¢’ 0.00001, 0.99995
LSTM with 128 units
+ fully-connected layers
with 128, 64 and 32 units
Every 150 steps

Approximator model

Target network update frequency

move according to the Random Waypoint Model, with an
average speed of 10 m/s and a pause time of 3 seconds.
During comparison, we employ four benchmarks. First, the
Monolithic Placement (MP) method, indicated by a purple
line, operates with a single node per inference, placing a
flexible number of blocks on that node. This method is a
relaxed version of the approaches proposed by [12], rep-
resenting an upper bound for their results in the present
analysis. Second, a Fixed Chain Placement (FP), which is also
based on the D3QL algorithm, lacks the flexibility of variable
chain lengths that are helpful for tradeoffs. Third, a Greedy
algorithm (GR), illustrated by a red line, serves as another
benchmark by assigning each block to the PoA. Finally, the
Optimization algorithm (OPT) solves the problem defined in
(2) with full knowledge, utilizing the Gurobi optimization
solver [27], and establishes a universal upper bound applicable
to all approaches.

1) Number of Users: The number of users reflects the
scalability of the system concerning growing demand. In this
scenario, we put this under test by setting different values of
U. Fig. 4-(A) clearly shows the superiority of our approach
over MP, FP, and GR methods. OPT possesses knowledge of
the UE movements; therefore, they keep their performance
despite heavy loads. Among MP and FP, the comparison
depends on the problem scale. In a small number of UEs,
MP outperforms, meaning that in such situations, having the
option of variable chain length matters more. On the other
hand, in a large number of UEs, distributing diffusion blocks
on various nodes yields more benefit than setting a variable
chain length.

2) Number of Channels: With the proliferation of GenAl
services and in particular, GDMs on the edge, it is expected
that the communications factors of the system play an im-
portant role in service provisioning. By varying the number
of available channels (denoted as C), we can assess how
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Fig. 3. Reward and Mean Squared Error (MSE) Loss evolution of the service
placement learning algorithm over 5,000 training episodes (each with 40 time
frames), showing increased rewards and decreased MSE loss over time.

the communications bounds affect system performance. As
illustrated in Fig. 4-(B), a reduced number of channels leads to
slightly increased collisions, which hinders the users’ capacity
to transmit their data containing prompts and initial conditions
to the executing nodes. However, our approach demonstrated
a considerably diminished negative impact in comparison to
other methods. This resilience is attributed to its flexibility of
variable chain lengths and executing nodes, the lack of which
makes the MP, FP, and GR methods struggle.

V. CONCLUSION

This work introduced a unified problem formulation for
channel allocation to GenAl users for transmitting their
prompts or conditioning inputs, alongside the placement of
GDM services on edge-computing-enabled BSs. The problem
considered the distribution of denoising blocks across multiple
nodes, accounting for latent transmission costs, and poten-
tially reducing the number of denoising steps to balance per-
formance with resource consumption. Moreover, we proposed
and evaluated LEARN-GDM, a decision-making algorithm
built upon D3QL, which is an enhanced version of Deep Q-
Learning. To this end, the state and action spaces, as well as
the reward mechanism, were thoroughly customized for the
problem at hand. Our analysis demonstrates that the proposed
algorithm enhanced overall QoS compared to conventional
approaches.

While this study focuses on GDMs, the proposed frame-
work is modifiable to other gradual inference processes,
such as DNN partitioning use cases [28] or Large Language
Models (LLMs) deployments over space-air-ground integrated
networks comprising numerous heterogeneous nodes [15].
Additionally, our research aligns with the ongoing semantic
revolution in communication systems, which emphasizes the
role of data semantics in achieving task-specific goals [29].
Future work includes extending this approach to semantic
networking that enables co-inference—sharing computation
blocks across GenAl services for different users. This can
be facilitated by incorporating tasks with similar intents into
a unified knowledge graph [7]. Last but not least, there is
potential to explore GDM resource allocation in a quantum
internet in the future, yielding greater sustainability and
applicability [30].
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