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Asynchronous Time-Sensitive Networking for 5G
Backhauling
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Abstract—Fifth Generation (5G) phase 2 rollouts are around
the corner to make mobile ultra-reliable and low-latency services
a reality. However, to realize that scenario, besides the new 5G
built-in Ultra-Reliable Low-Latency Communication (URLLC)
capabilities, it is required to provide a substrate network with
deterministic Quality-of-Service support for interconnecting the
different 5G network functions and services. Time-Sensitive
Networking (TSN) appears as an appealing network technology
to meet the 5G connectivity needs in many scenarios involving
critical services and their coexistence with Mobile Broadband
traffic. In this article, we delve into the adoption of asynchronous
TSN for 5G backhauling and some of the relevant related
aspects. We start motivating TSN and introducing its mainstays.
Then, we provide a comprehensive overview of the architecture
and operation of the IEEE 802.1Qcr Asynchronous Traffic
Shaper (ATS), the building block of asynchronous TSN. Next,
a management framework based on ETSI Zero-touch network
and Service Management (ZSM) and Abstraction and Control
of Traffic Engineered Networks (ACTN) reference models is
presented for enabling the TSN transport network slicing and
its interworking with Fifth Generation (5G) for backhauling.
After, we cover the flow allocation problem in asynchronous
TSNs and the importance of Machine Learning techniques for
assisting it. Last, we present a simulation-based proof-of-concept
(PoC) to assess the capacity of ATS-based forwarding planes for
accommodating 5G data flows.
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I. INTRODUCTION

5G technology is here to accelerate the digitalization of
economies and society. Over the last decade, the combined
efforts from academy and industry have materialized in ma-
tured 5G standards (e.g., Third Generation Parnetship Project
(3GPP) Releases 15 and 16), and the 5G commercializa-
tion is now a reality. The initial deployments of 5G can
be considered as a natural evolution of Fourth Generation
(4G). They are based on 3GPP Release 15 and intended for
enhanced Mobile Broadband (eMBB) communications, i.e.,
user-centric services with unprecedented capacity demand and
enhanced connectivity and mobility requisites. However, the
most challenging mobile network upgrading is yet to come
with phase 2 5G rollouts (based on Release 16). Services
with delay and reliability constraints never seen before will
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be brought to mobile networks, thus opening new market
opportunities to Mobile Network Operators (MNOs).

Albeit 5G Release 16 standard includes capabilities
for supporting Ultra-Reliable Low-Latency Communications
(URLLCs) at both the Radio Access Network (RAN) and
the packet core domains, the Transport Network (TN) also
plays an important role to guarantee end-to-end (E2E) SLAs
(Service Level Agreements) and KPIs (Key Performance In-
dicators) especially for those applications that require strict
latency and bandwidth guarantee [1], [2]. The TN is the
network domain providing connectivity among the 5G network
functions and out of the 3GPP scope. There are two major
requirements for the TN technology in order to enable 5G to
support URLLCs affordably:

i) The TN shall provide low-latency and ultra-reliability to
convey 5G traffic in a deterministic way.

ii) The same TN infrastructure must be able to accommodate
all the 5G heterogeneous services.

TSN meets all the requisites referred to above and is,
therefore, an attractive solution for connectivity in 5G. TSN
is a set of standards specified by IEEE 802 aiming to provide
deterministic services via IEEE 802 networks, i.e., assured
streams transport with bounded latency, jitter, and frame loss.
Also, TSN is acknowledged as a converged layer 2 (L2)
network technology in all respects [3], harmonizing operation
principles from both packet and circuit switching and thus
fitting the necessities for conveying any traffic.

In this article, we delve into the application of asynchronous
TSN networks for 5G backhauling, i.e., the use of TSN
enabled networks not requiring the synchronization of their
constituent forwarding plane devices (TSN bridges) for in-
terconnecting the 5G system RAN and Core Network (CN).
Although asynchronous scheduling increases the latency com-
pared to synchronous one, it improves the network scalability
and the link utilization as it does not require a network-wide
coordinated time to schedule the traffic transmission of each
stream over reserved time slots. Asynchronous TSN is ideal for
conveying sporadic traffic with real-time constraints, such as
that generated by the management planes in fog computing-
enabled IoT services [4], and allowing its coexistence with
best-effort streams.

The building block of asynchronous TSN is the IEEE
802.1Qcr Asynchronous Traffic Shaper (ATS), which is based
on the Urgency-Based Shaper (UBS) proposed by Specht and
Samii [5]. ATS enhances traditional asynchronous scheduling,
in which a set of First Come, First Served (FCFS) queues,
each associated with a traffic class and a priority level, are
arbitrated by a strict priority transmission selection scheme.
Specifically, ATS adds traffic regulation to conventional asyn-
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chronous schedulers cost-effectively. In this way, per-hop
traffic regulation is enabled in the network, thus avoiding the
burst size or burstiness of the streams grows when they traverse
the network, and the worst-case delay becomes arbitrarily large
[6].

To the best of the authors’ knowledge, there is no work
addressing either the aspects related to the adoption of asyn-
chronous TSN for 5G backhauling or the assessment of
the capacity of this technology to accommodate 5G streams
considering a realistic setup. In this work, we cover this gap.
Specifically, the contribution of this article is threefold. First,
we provide a comprehensive overview of the asynchronous
TSN operation and its integration with 5G for backhauling.
Regarding the integration, we sketch a blueprint of an or-
chestration framework for ATS-based TNs, relying on ETSI
ZSM and IETF ACTN reference models. Second, we shed
light on the flow allocation problem in ATS-based 5G Back-
haul Networks (BNs), underlying the differences with flow
allocation in synchronous networks. Also, we propose a deep
Reinforcement Learning (RL)-based solution for handling the
configuration complexity of these networks. Last, we evaluate
the asynchronous TSN networks capacity to accommodate 5G
data flows while assuring their performance constraints via a
simulation-based proof-of-concept (PoC). Results show that
the flow rejection probability exhibits a logarithmic depen-
dency on bottleneck links utilization for our setup.

This article is organized as follows. We commence with
an overview on TSN and its synergies with 5G, and clarify
the IEEE 802.1Qcr Asynchronous Traffic Shaper (ATS) and
Urgency-Based Shaper (UBS) operations. Next, we identify
the key requisites for interoperating TSN BNs with 5G system.
Following that, we address the flow allocation in 5G TSN
networks, highlighting the possible implementation options
and comparing them. After, we discuss the use of Machine
Learning (ML) for handling the configuration complexity and
leveraging the flexibility of TSN networks. Then we present
the results of our performance evaluation. Finally, we draw
the main conclusions.

II. BACKGROUND

A. TSN and Its Synergies with 5G

TSN standards come to satisfy the needs of many industries,
such as professional audio/video, electrical utilities, building
automation systems, wireless industrial applications, and cellu-
lar transport networks, among others, for deterministic network
services [3]. That is the ability to establish a multi-hop path
over the network for a given flow with deterministic Quality
of Service (QoS) guarantees in terms of latency, jitter, frame
loss, and reliability.

One of the main TSN components is to define flow control
mechanisms, which are in charge of handling the frames within
the TSN bridges, with bounded low latency. The performance
of these flow control mechanisms is mathematically analyz-
able, i.e., we can derive analytical expressions for the end-to-
end (E2E) maximum delay, jitter, and frame loss experienced
by any flow given its characteristics (e.g., committed data rate
and burst size), the current state of the network (e.g., ongoing

flows), and its allocation setup (e.g., priority level or Traffic
Class (TC) for the ATS). Then, the flow allocation algorithms
reverse somehow these expressions to find an allocation setup
for every incoming flow while ensuring its QoS requirements.
Other TSN pillars are

1) time synchronization for enabling a precise and common
time reference among the bridges of a synchronous TSN
network,

2) capabilities for ultra-reliability such as frame replication
and elimination, and

3) resource management functionalities like the Stream
Reservation Protocol and YANG models.

We refer the interested reader to [3] for a detailed and didactic
explanation of all these concepts.

This work focuses on the use of asynchronous TSN for the
deterministic transport of 5G data flows between the RAN and
the CN. However, it is noteworthy that two well-known use
cases encompass the combined functioning of TSN and 5G.
The first use case is TSN and 5G integration for industrial
automation as specified in 3GPP TS 23501 version 16.2.0
Release 16. For this use case, a whole 5G system behaves as
a virtual TSN bridge through including translation capabilities
at the edge. On the other hand, TSN IEEE 802.1CM standard
defines a profile for conveying fronthaul streams between the
radio heads and the baseband units for both the Common
Public Radio Interface (CPRI) and enhanced CPRI (eCPRI).

B. Asynchronous Traffic Shaper

The ATS defines an asynchronous method for handling the
frames at the egress ports of the TSN bridges [3], [7]. The ATS
specified in TSN standards [7] is based on the UBS originally
proposed by Specht and Samii in [5]. Figure 1 sketches the
internal architecture operation for both the UBS and the ATS.

Figure 1a includes the UBS queuing model. The figure
shows only one egress port for simplicity, but it shall be noted
that there is an UBS instance per bridge egress port. The UBS
consists of two stages of queuing: i) a set of shaped queues
for interleaved shaping, and ii) a set of priority queues. All
these queues follow a FCFS discipline.

The interleaved shaping is the novel and critical concept
behind the ATS for achieving per-flow and per-hop traffic
regulation cost-effectively. It enables the use of a single queue
(shaped queue) for realizing the traffic regulation of a set
flows, each with its own constraints. To that end, only the
eligibility of the head-of-line (HOL) frame is checked, i.e., to
examine whether the HOL frame is eligible for transmission
according to the regulation constraints of its flow. If so, the
frame is released for transmission to the following queuing
level. Interestingly, the interleaved shaping does not increase
the worst-case latency of the UBS [5], [6]. UBS supports per-
flow leaky bucket shaping constraints to enforce the respective
committed data rate and burst size for each flow.

The flows-to-shaped buffers assignment is subject to a set
of rules, referred to as queue allocation rules (QARs). In a
nutshell, each shaped buffer can be associated with only one
ingress port (QAR1 rule), one priority level in the previous
hop (QAR2 rule), and one internal priority level (QAR3 rule).
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Fig. 1: UBS and ATS architectures and operation.

QAR2 and QAR3 rules are required to provide deterministic
QoS, whereas QAR1 isolates the flows from different nodes,
avoiding the propagation of non-conformant traffic overloads.
These rules determine the required number of shaped queues
to implement P priority levels. By way of illustration, an ATS
with P internal priority levels and receiving traffic from N
input ports requires at least P ·N shaped queues.

The second stage in the UBS queuing hierarchy includes
one FCFS queue per priority level in the scheduler. Each
queue merges the output of all shaped queues assigned to
the same priority level. The transmission selection algorithm
at this stage is strict priorities, i.e., a given Traffic Class
(TC) has preference over those with lower priority levels in
accessing the physical medium. In other words, frames ready
for transmission at a given TC have to wait as long as the
higher priority TCs buffers have data.

Figure 1b shows the ATS architecture and its operation.
The ATS can be regarded as the implementation of the UBS
in TSN standards. The ATS forwarding process consists of the
following steps:

1) Stream filtering. It refers to the ATS per stream classifica-
tion and filtering. Each received frame is mapped to one
filter using its priority and part of its connection identifier.

Each filter is associated with a gate and ATS scheduler
and might block a stream if any of its frames exceed the
maximum service data unit (SDU).

2) Stream Gating. For ATS, this stage optionally assigns
an internal priority value (IPV) that overrides the actual
priority of a stream in step 4 of the forwarding process.
Its purpose is to ease the adjustments in the ATS per-hop
delay bound to meet the E2E flow requirements.

3) ATS scheduling. This stage realizes the interleaved shap-
ing concept previously explained. The ATS schedulers
associated with the same input port and TC in the
previous hop (QAR1 and QAR2 rules) might be grouped.

4) Queuing and Transmission. As in the UBS’s second
queuing level, the frames are queued to the corresponding
TC (priority level) buffer to be transmitted according to
a strict priority scheduler. Observe that IPV assignment
are enabled in Fig. 1b. Then, the flows to TCs mapping
is done according to the IPV previously assigned. At
every egress port, there is a manageable table to map
flow priorities to TCs.

III. FLOW ALLOCATION IN ATS-BASED NETWORKS

Given an optimization goal like the maximization of the
flow acceptance ratio, the flow allocation involves the optimal
selection of one or several paths for every TC and optimally
finding the configuration for every ATS included in paths. An
ATS flow allocation configuration primarily defines the flow-
to-shaped buffer and flows-to-priority level assignments. These
decisions are subject to the QoS constraints fulfillment of the
incoming flows and all the ongoing flows. For critical flows,
typical E2E performance requisites are the following:

• Frame delay budget: the upper bound for the time the
network takes to transport a packet between the source
and the destination.

• Maximum jitter delay: the permitted delay variation in
the frame delivery from the source to the destination.

• Frame loss ratio: the fraction of the frames that are lost
when they traverse the network.

• Reliability: the probability of network success to carry out
the communication and fulfill the flow’s required service
level during its entire lifetime.

Besides the QoS requirements, the problem is also subject to
technology constraints, such as the available links capacities
and ATSs buffers size.

The flow allocation problem in asynchronous TSN networks
is in its early stages. To the best of our knowledge, this
combinatorial optimization problem has been only tackled
by Specht and Samii in [8]. Specifically, they consider the
maximization of delay surplus as the optimization objective
and explore the following two approaches to solve it: i) a pure
Satisfiability Modulo Theories (SMT) solver and ii) a heuristic
approach dubbed Topology Rank Solver (TRS) to cope with
the computational complexity of the SMT solver.

The flow allocation in synchronous TSN networks has
attracted more attention from academia. For instance, in [9]
Steiner et al. address the flow allocation in a IEEE 802.1Qbv
Time-Aware Shaper (TAS)-based network. TAS schedules the



4

transfer of the traffic from the different flows over synchro-
nized time slots (time-division multiplexing [10]). For this pur-
pose, it uses a gate control list whose entries are binary vectors
indicating which gates are open for transmission during the
respective time window (see stream gating in Fig. 1b). Then
the flow allocation problem in a TAS-based network consists
of finding a feasible configuration for all the involved TASs.
The configurable parameters for each TAS are the number of
time windows and their duration, and the gate control entries.

Synchronous TSN is suitable to transport performance-
sensitive traffic with periodic patterns like that one generated
by closed-loop control systems in Industry 4.0 [11]. Con-
versely, asynchronous TSN networks perform well in scenarios
where deterministic aperiodic (or sporadic) and best-effort
traffics are predominant. However, the exact number of flows
to be allocated, and their features are often unknown in
these scenarios. Thus, the flow allocation in asynchronous
TSN networks is a stochastic optimization problem in nature.
We can harness historical data and predictive analytics to
foresee traffic volume between all possible pairs of sources
and destinations (traffic matrix) and its stochastic features
(e.g., distribution of the sustainable rate per-5G QoS Identifier
(5QI)) to use them as optimization process inputs.

We can distinguish two approaches for performing the
flow allocation in TSN networks, namely, offline and online
methods. Online methods compute the flow’s allocation con-
figuration right after it arrives at the network. Hence, they
might run an optimization algorithm to find the allocation for
every incoming flow. Conversely, offline methods compute a
long-term configuration for the whole network for each type
of traffic. Specifically, the flows are clustered into classes, e.g.,
according to their 5QI or 5QI and slice in 5G TNs, then, the
allocation configuration is computed for each class. Offline
methods require less state information (same configuration
for all the flows of a traffic type), and the access control
mechanism becomes a lightweight process that only needs to
check whether there are enough resources (links capacities
and buffer space) for the incoming flow. Conversely, online
methods offer higher flexibility (flows with the same 5QIs
might have different configurations) and greater agility to
adapt to the changing network conditions.

IV. ZSM-BASED TRANSPORT NETWORK ARCHITECTURE

Figure 2 sketches a blueprint of a possible management and
orchestration framework for TNs based on ETSI ZSM [12] and
IETF ACTN [13] reference models. This architecture enables
the customer to create and operate Virtual Networks (VNs)
(TN slicing) while hiding the complexity of the underlying
physical infrastructure. Also, it provides cross-domain coordi-
nation, which is crucial to ensure the cohesion and satisfiability
of the configurations applied to the distinct domains. For
instance, the E2E delay budgets imposed by the services
need to be distributed among the different network domains
(e.g., RAN, TN, and CN). We consider a fully centralized
(SDN-like) TSN network. Since we target deterministic single-
digit delays (i.e., less than 9 ms), it becomes trivial that
the geographical area is of small size. Hence, considering

Fig. 2: Transport network management and orchestration ar-
chitecture.

a centralized SDN-like architecture specific to that area is
technically sound and shall not incur any scalability issues.
Please refer to [3] for a detailed description of its components
and operation.

The ACTN defines a three-tier reference model to realize
the concept of VN as a service in TNs [13]. ACTN model
comprises the following three components (see Fig. 2):

• Traffic Provisioning Manager (TPM): VN service con-
sumer in charge of issuing requests/commands to create
and manage VNs (TN slices). This functionality might
be part of the 5G core control plane. TPM also estimates
the foreseen traffic volume between all pairs of sources
and destinations in the VNs. To that end, it might harness
historical data and predictive data analytics. Last, it maps
5G flows onto TSN traffic classes according to 3GPP slice
and 5QI defined for each flow so that the TN can grant
the service level agreed. The TSN traffic class assigned to
each 5G flow is encoded in a packet header’s immutable
field.

• Multi-Domain Service Coordinator (MDSC): It is re-
sponsible for orchestrating the different TN domains.
Although Fig. 2 shows only one TN domain for sim-
plicity, the TN might comprises multiple domains de-
fined, for example, according to the underlying vendor
technology or administrative zones. It translates the TPM
requests/commands into a set of parameters specific to the
underlying TN infrastructure so that the TSN controller
can use them as input to configure the network. Last, it
abstracts the underlay TN resources to hide the network
configuration complexity from the TPM.

• Software-Defined Networking (SDN)/TSN Controller
(SDN/TSN-C): it acts as provisioning network controller.
It controls the network devices and monitors and collects
telemetry data about the network. It is also responsible
for finding feasible configurations of the network and
allocating enough resources to the VNs to fulfill the
performance constraints of the 5G services. Specifically,
the TSN-C has to solve the flow allocation problem
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stated in the previous section to configure all ATSs
within a given VN properly. For that purpose, TSN-C
might leverage predictive data analytics and Artificial
Intelligence (AI) techniques.

V. MACHINE LEARNING FOR TSN NETWORKS
OPERATION OPTIMIZATION
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Fig. 3: Reinforcement Learning (RL) for flow allocation and
time-sensitive networks optimization [14].

Due to the ever-increasing complexity of the wireless access
networks, ML is envisioned as a cornerstone for achieving
their full automation through assisting the different decision
engines at the management planes [2], [15]. The composition
of E2E services across the diverse infrastructure components
easily yields overly complex or even intractable decision
problems. Particularly, in the context of ATS-based BNs, the
primary applications of ML are:

• Predictive data analytics on the upcoming workload to
adapt the network configuration and drive the flow allo-
cation process according to the working conditions.

• Assistance in the flow allocation and configuration pro-
cesses. TSN networks offer a large space of possible con-
figurations, and their optimization via analytical solvers
exhibits high computational complexity. On the other
hand, modeling the associated optimization programs
might require a high domain knowledge for some op-
timization objectives.

The main concern for applying ML in this context is that
we cannot ensure the validity of the decisions taken by the
current ML methods. A valid decision corresponds to a flow
allocation configuration that fulfills all the problem constraints.
To that end, the feasibility check of the actions made by
ML agents is required using the TSN analytical performance
models. This approach is a practical solution as the per-hop
performance bounds offered by ATS schedulers are known
[5], [6]. Further, the feasibility checking process using these
performance models is lightweight even for large networks.

Here, we consider deep Reinforcement Learning (RL) to
solve the flow allocation problem in asynchronous TSN
networks as its features are well suited for that problem.

In contrast to alternative ML techniques, deep RL supports
online learning efficiently, which is advisable for the model
adaptability to the changing network conditions. In the same
way, the RL exploration capability also allows adapting the
agent’s decision policy. On the other side, deep RL can handle
large state-action spaces as required in medium and large
scale TSN networks. Last, RL might act alone to output the
solution directly from the input without any restriction on the
optimization objective.

Figure 3 shows an online RL-based solution for the flow
allocation policy-making in ATS-based networks proposed in
our previous work [14]. First, every incoming flow allocation
request is parsed to determine the flow type and characteristics
(step 1). Then the flow characteristics, along with the traffic
predictive data analytics and the network information and
status, are taken by the agent as observations. Next, the agent
outputs an action, which is validated through verifying the
following conditions analytically:

• The E2E delay/jitter experienced by the incoming flow
has to be lower than its E2E delay/jitter budget.

• If the flow were allocated, the ongoing flows must keep
experiencing an E2E delay lower than their E2E delay
budgets.

• The aggregated burstiness allocated to any shaping buffer
has to be lower than its size.

• The aggregated rate allocated to any link must be lower
than its capacity.

• The flow to shaped queue allocation rules (QAR) have to
be met.

If the action is validated, the agent will be positively rewarded,
and the action applied. Otherwise, if it would impact anyhow
the deterministic performance requirements, it is simply not
applied. In this way, the analytical models’ information is
transferred to the agent, and, most importantly, the flow al-
location process becomes fully reliable. Also, it is remarkable
that some performance metrics like the worst-case delay can
be only efficiently estimated through analytical models.

Although deep RL fits the necessities of the flow allocation
problem, at least theoretically, it has several practical issues
(e.g., low interpretability, complicated configuration, ineffi-
cient training process, and lack of robustness). Then, it is
still interesting to explore alternative ML techniques to find
feasible configurations. For instance, robust decision trees or
support vector machines based classifiers could be used to
assist a master algorithm in lower-level decisions, such as
the mapping of 5QI onto TSN TCs. Finally, it shall be noted
that the ML method that yields the best performance for the
flow allocation problem is still an open question. Thus, further
research is required to address it.

VI. RESULTS

This section includes simulation results for evaluating the
capacity offered by an ATS-based BN to accommodate data
flows. To that end, we carried out a simulation-based PoC.
The simulator consists of the following five main modules:

• Network generator. It is in charge of the network topol-
ogy generation. In particular, we consider a backhaul
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network topology like that shown in Fig. 2, where each
M1 node provides access to six gNodeBs (5G base
stations) through 1 Gbps point-to-point links. The link
capacities for the access ring (M1 devices), aggregation
ring (M2 devices), and core ring (M3 and M4 devices)
were set to 10 Gbps, 40 Gbps, and 100 Gbps, respectively.
All link capacities of the access ring (M1 devices) and
aggregation ring (M2 devices) were set to 10 Gbps, 40
Gbps, and 100 Gbps, respectively. All the links were
duplicated for reliability. We consider both M4 nodes
to provide access to the 5G system core and the data
network. All ATSs include eight shaped buffers without
buffer space limitation and eight priority levels.

• Flow arrival process generator. It simulates the flow
arrivals according to a renewal process. The flows inter-
arrival times distributions implemented were: i) exponen-
tial, ii) Erlang-2, and iii) hyperexponential. The Erlang-2
and hyperexponential distributions can approximate any
probability function with a coefficient of variation lower
and greater than one, respectively. We observed a similar
network performance regardless of the arrival process
type. The 5QI, source (M4 devices), and destination
(gNodeB) for each flow are selected randomly following
discrete uniform distributions. The demand of resources
and QoS constraints for every 5QI are contained in Table
I.

• Network optimizer. This module aims at optimizing the
configuration of the BN for a given goal. In particular,
for this PoC, we consider an offline solution (see Section
III) mixing analytical and heuristic methods for the flow
rejection ratio minimization. The solution heuristically
assigns predefined paths for each combination of 5QI,
source, and destination, relying on predictive data ana-
lytics to minimize the workload imbalances throughout
the network. For the delay critical Guaranteed Bit Rate
(GBR) flows (e.g., 5QIs 82, 83, 84, and 85), frame
duplication through disjoint paths was set to ensure
their reliability. The BN delay budget for each 5QI
is distributed among the links of the respective path
inversely proportional to the link capacity. The 5QI BN
delay budget was set to 10% of the E2E one defined in
3GPP standards. Last, a convex program for minimizing
the flow rejection probability subject to the constraints
listed in Section Section III is run to find the optimal
configuration of every ATS in the network.

• Flow admission control. It is executed at runtime for
every incoming flow for checking whether there are
enough resources to accept the flow.

• Flow allocator/releasing. It updates the status of the
network-related variables (e.g., available resources) for
every flow entering or leaving the network.

Figure 4a depicts the flow rejection ratio as a function of the
demanded link utilization at the access links interconnecting
M1 devices and gNodeBs. Every point shown in Fig. 4a
was obtained via simulating the arrivals and departures of
1.8M of flows. As observed, the flow rejection ratio depends
logarithmically on the demanded edge link for our setup.

Specifically, the logarithmic function 24·ln(Ul)−39 accurately
fits the measured points in Fig. 4a, where ln() and Ul denote
the natural logarithm function and the access link demanded
utilization, respectively. We observed that our algorithm offers
high rejection probability (penalizes) flows with high data rate
demands, e.g., those with 5QIs 2, 7, and 5 (see Table I), as it
seeks for maximizing the number of accepted flows.

Figure 4b shows both the BN delay budget per 5QI (labeled
as “5QI BN Delay Budget”), which is 10% of the E2E
delay budget defined in 3GPP standards (see fifth column in
Table I), and the worst-case delay per 5QI obtained through
simulation (labeled as “Exp. Max. Delay”). As observed, the
delay constraint is met for every 5QI. The maximum delay
experienced by each 5QI primarily depends on its priority level
in the TSN network, which is assigned by our algorithm. This
fact explains the variability observed in the obtained maximum
delay for the different 5QIs.
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Fig. 4: ATS-based BN performance.

VII. CONCLUDING REMARKS

The imminent upgrading of Fifth Generation (5G) mobile
networks for supporting ultra-reliable and delay-sensitive ser-
vices will require breakthrough architectural changes, opera-
tion optimizations, and technologies to every mobile network
segment, including the transport network. In this regard, Time-
Sensitive Networking (TSN) is envisaged to play a central
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TABLE I: Flow types characteristics

5QI Prio Rate (Mbps) Burstiness (bits) Dmax (ms) Rmin (%) Income Avg. Dur. (s) Lmax (bits) Ex. service
1 20 0.064 6400 100 95 1 130 6400 Conv. voice
2 40 1.5 2250000 150 95 1 130 10832 Conv. video
3 30 0.1 5000 50 95 1 1200 5000 Real Time gaming
4 50 0.083 2500 300 95 1 231 2500 Non-conv. video
5 10 0.01 2040 100 95 1 130 2040 IMS signaling
7 70 2 10832 100 95 2 231 10832 Live video
65 7 0.064 6400 75 95 1.5 600 6400 MCPTT
67 15 0.5 10832 100 95 1.5 300 10832 MCV
69 5 0.01 2040 60 95 1.5 600 2040 MCPTT signalling
70 55 0.01 2040 200 95 1.5 600 2040 Mission Critical Data
79 65 0.0003 2040 50 95 1.5 300 2040 V2X messages
80 68 5 32496 10 95 1.5 600 10832 Augmented Reality
82 19 0.1 2040 10 99.999 2.5 1200 2040 Discrete Automation
83 22 0.2 10832 10 99.999 2.5 1200 10832 Discrete Automation
84 24 0.3 10832 30 99.999 4 1200 10832 Intelligent transport systems
85 21 0.3 2040 5 99.999 3 1200 2040 Electricity distribution HV

Internet Multimedia Subsystem (IMS); Mission Critical user plane Push To Talk voice (MCPTT); Mission Critical Video user
plane (MCV); Vehicle-to-Everything (V2X); High Voltage (HV). Some data included in this table (e.g., E2E delay budget,
critical flows burstiness, default priorities, and services) were extracted from 3GPP TS 23501 version 16.2.0 Release 16.

role in many scenarios for providing connectivity among
the network functions and services of the upcoming mobile
networks. In this article, we have motivated and offered fresh
insights into the use of asynchronous TSN networks for 5G
backhauling. Currently, the ATS is the building block of the
asynchronous TSN enabled bridges. The relevance of this
bridge egress port scheduler lies in cost-effectively enabling
per-hop traffic regulation. Per-hop shaping is a solution against
the large worst-case delays exhibited by FIFO buffering.
On the other site, asynchronous networks are preferred over
synchronous ones because of its lower complexity and better
scalability as they do not need a precise and common reference
time reference among all the network devices. Besides, syn-
chronous networks offer worse network resource utilization.

As the main contributions of this work, we have provided a
comprehensive overview of the key concepts of asynchronous
TSN networks. Second, we have discussed the flow allocation
problem in ATS-based networks and presented the different
approaches to address it. Next, we have tackled the adop-
tion of Machine Learning (ML) techniques for automating
the management of TSN BNs. There, we have stressed the
importance of assisting the ML agents’ decisions with analyt-
ical performance models for ensuring a fully reliable policy-
making. Last, we have carried out a simulation-based proof-
of-concept (PoC) for assessing the capacity of ATS-based BNs
for accommodating heterogeneous and sporadic data flows.
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