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Abstract—Duplicated download has been a big problem that
affects the users’ quality of service/experience (QoS/QoE) of
current mobile networks. Edge caching and Device-to-Device
communication are two promising technologies to release the
pressure of repeated traffic downloading from the cloud. There
are many researches about the edge caching policy. However,
these researches have some limitations in the real scenarios.
Traditional methods are lacking the self-adaptive ability in the
dynamic environment and privacy issues will occur in centralized
learning methods. In this paper, based on the virtue of Deep
Q-Network (DQN), we propose a weighted distributed DQN
model (WDDQN) to solve the cache replacement problem. Our
model enables collaboratively to learn a shared predictive model.
Trace-driven simulation results show that our proposed model
outperforms some classical and state-of-the-art schemes.

I. INTRODUCTION

At present, the pervasive utilization of the Internet of Things
(IoT) technology has led to the rocket-increasing requirements
for existing cellular networks, which results in the upsurge
of mobile traffic. In fact, duplicated download [1] is one of
the desirable problems that affect the users’ quality of service
(QoS). Mobile Edge Caching (MEC) is a promising technolo-
gy to release the pressure of repeated traffic downloading for
network operators. Illustrated as Fig. 1, contents can be cached
in proximity to the edge of networks (e.g. base stations and
mobile devices), which shortens the transmission delay and
reduces the traffic pressure of backhaul networks by device-
to-device (D2D) communications as well.

Recently, the research on edge caching has been more
specific and many efforts on network resources (user mo-
bility, content popularity, spectrum usage, etc.) optimization
have been explored. Authors in [2]- [4] proposed the edge
caching strategies by optimizing the single factor, such as user
mobility, file utility of system and multi-user participation.
Others considered the joint optimization, Peiyan et al. [5]
addressed the tradeoff between transmission distance and
network capacity. In [6] [7], authors showed that combined
factors such as file popularity, user preferences and mobility
may contribute the better network performance. However, most
of the related studies are based on the assumptions of small-

scale scenarios or the homogeneous distribution of content
popularity.

Furthermore, edge caching strategies based on conventional
optimization approaches are lacking self-adaptive ability in
dynamic environment. To tackle this problem, some studies
explored the learning-based methods (e.g. machine learning,
deep learning, etc.) to design the edge caching strategies.
Pang et al. [8] showed the advantages of long short-term
memory (LSTM) in terms of time series prediction to realize
the cooperative edge caching. Authors in [9] attempted the
multi-agent reinforcement learning (RL) to achieve the long-
term reward of the cache replacement algorithm. Deep Q-
learning Network (DQN) solves the problem of action/state
space-explosion in RL, which was used to settle the problem
of joint edge computing and caching resource allocation [10].
However, most of the studies are centralized training models,
which may lead to a huge burden on the datacenter and pose
serious security risks to users’ privacy.

Motivated by the aforementioned, we propose a weighted
distribute DQN training architecture. In our architecture, every
base station (BS) trains its own DQN model based on its
local data and local content popularity. The cloud server will
aggregate all the local model parameters in a reward-based
adaptive boosting manner and then disperse the global model.
The distributed training method can reduce the privacy risk
of users and the reward-based aggregation manner improves
the BS’s self-adaptive ability in the dynamic environment. The
contributions of this paper are summarized as follows:

• This paper considers the difference of content popularity,
user preferences and social networks in different BSs and
establishes a D2D sharing model. After that, we propose
a replacement policy for the edge cache content.

• We model the cache content replacement problem as
a Markov decision process (MDP) and train the DQN
model via a reward-based distributed manner which re-
duces the privacy risk of users, speeds up the training
process and improves the BS’s self-adaptive ability in the
dynamic environment.

• Experimental results show that proposed policy achieves



better performance compared to the algorithms including
FIFO, LRU, LFU and Centralized DQN, the hit rate
enhancements are 21%, 23%, 18% and 5%, and the
offload rate enhancements are 15%, 18%, 12% and 5%.

The rest of this paper is organized as follows. We introduce
the system model in Sec. II. The details of the edge caching
policy are presented in Sec. III. We use the weighted distribut-
ed DQN model to solve the problem at BS since the massive
state space in Sec. IV. We conduct the large-scale real trace-
based experiment in Sec. V. Finally, we conclude the paper in
Sec. VI.

II. SYSTEM MODEL

A. Basic Definition

Shown as Fig. 1, we divide the architecture into three layers,
the cloud layer is in charge of the parameters aggregation
computation using a cloud server. There are B BSs in the edge
layer, denoted as B = {b1, b2, ..., bB}, with the cache size of
CB = {cBS

1 , cBS
2 , ..., cBS

B }. Mobile users with the local cache
buffer cU are uniformly distributed in the coverage of each
BS, represented as SBS

B = {UBS
1 , UBS

2 , ..., UBS
B } where UBS

i

denotes the set of users in the user layer. Assuming that there
are F = {f1, f2, ..., fF } files stored in the content library. For
each BS i, it stores local associated users’ cache state matrix
Ωi = (xu,f )

UBS
i ×F , where xu,f = 1 means user u has content

f , otherwise xu,f = 0.
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Fig. 1. Illustration of system architecture.

B. Content Popularity and User Preferences

1) Content Popularity: F denotes the probability distribu-
tion of content requests in the content library. Generally, the
content popularity follows the MZips [11] distribution as:

ωb
f =

K

(fi + q)α
, (1)

where fi is the local popularity index of content f in the
descending order, α is the skewness factor and q ≥ 0 defines
the plateau shape near to the left-most part of the distribution,
K is the sum of 1/(fi + q)α.

2) User Preferences: denoted as pfu, is the probability dis-
tribution of a users request for each content. Content popularity
and user preference are assumed to be stochastic.

C. D2D Sharing Model

In order to model the D2D sharing activities, physical
domain and social domain are two important factors should
be concerned.

1) Physical Domain: Due to the physical constraints such
as signal attenuation, only a subset of nodes that are closely
enough (e.g., with the detectable signal strength) can be
feasible relay candidates for the node n. Thus we introduce
the physical graph Gb

P , {UBS
b , Eb

P } where the set of
nodes associated with BS b (UBS

b ) is the vertex set and
Eb
P , {(n,m) : epnm = 1,∀n,m ∈ UBS

b } is the edge set
where epnm = 1 if and only if node m is a feasible relay for
node n.

2) Social Domain: The social graph Gb
S has the same form

as the physical graph. Here, the edge set is given as Eb
S ,

{(n,m) : esnm = 1,∀n,m ∈ UBS
b }. The edge esnm = 1 in

the set Eb
S is mainly based on the social network research that

one would establish a D2D share communication with another
mainly by two key social phenomena: social trust [12] and
social reciprocity [13].

3) Communication Graph: Based on the Physical Graph
and the Social Graph, we can get the communication graph
Gb
C , {UBS

b , Eb
C}, where Eb

C , {(n,m) : ecnm = 1,∀n,m ∈
UBS
b } is the edge set where ecnm = 1 if and only if there is a

path (the length of which is less than a threshold l) between
n and m in the Physical Graph as well as the Social Graph.

4) D2D Share Probability: Considering the request ID of
user u at time t as statistics variable X and the shared content
ID by the user v at time t as statistics variable Y . If X = Y
then there may be a D2D communication between u and v.
So there is some correlation between X and Y . We use the
correlation coefficient ruv during a certain time to measure
the D2D share probability between u and v. It is given by:

ruv =
Cov(X,Y )√
V ar[X]V ar[Y ]

, (2)

where Cov(X,Y ) denotes the covariance between X and Y ,
V ar[X] means the variance of X . we use the correlation
coefficient to describe the D2D share probability between user
pair (u, v). We define ruu = 0 for the pair (u, u). After
getting the R = (ruv)

1×UBS
b , we normalize R to make sure∑B

1 R = 1.

D. Content Transmission between BS and User

If the content request from the mobile user u cannot be
satisfied through D2D sharing, then users have to ask BS for
the content. The BS Serving Rate PBS

u can be obtained as
PBS
u +

∑
v∈UBS

b

ruve
c
uv = 1,∀u ∈ UBS

b .

III. CACHING REPLACEMENT POLICY OPTIMIZATION

We are aiming to optimize the network edge caching policy
by offloading the contents to mobile users via D2D communi-
cation, and the system cost of content exchange between BSs
and cloud will be reduced as well.



A. D2D Caching Gain

To measure the total D2D sharing in the local BS, we define
GaD2D

b which is calculated via the D2D sharing probability,
content size and user cache state.

For a local BS b and all the pairs (u, v) of its associated
users UBS

b , v can get the requested content f from u, if u
has the content (xu,f = 1) and v does not (xv,f = 0) with
the probability rvue

c
vu during time slot t. Thus the content

offload gain via D2D communication between u and v at time
slot t can be obtained as fv,trvue

c
vu where fv,t represents the

content size of file that user v requests at time slot t. Then the
total D2D gain in the BS b at time slot t can be calculated as:

GaD2D
b,t =

∑
u,v∈UBS

b

fv,trvue
c
vuxu,f (1− xv,f ). (3)

It gives us global insight into the D2D sharing activities, which
can be regarded as a reference for the system efficiency.

B. Backhaul Traffic Cost

If the request can not be satisfied by the D2D sharing, u
can get the content if the content is cached in the local BS.
Otherwise, the local BS has to download the content from
other BS or the core network, we regard these requests as the
cost of the system since these requests increase the burden of
the backbone network.

We define the backhaul traffic cost at time slot t as CoD2D
b,t ,

through the communication probability between user u and BS
b, content size and BS cache state. It can be gotten from

CoD2D
b,t =

∑
u∈UBS

b

fu,tP
BS
u (1− xBS

b ). (4)

It gives us insight into the backhaul traffic that can not be
avoided.

C. System Reward

Based on the above reference in our system, we define
Rb,t(S) as the total reference of the system performance at
time slot t. The system reward of BS b can be calculated as

Rb,t(S) = β0GaD2D
b,t − β1CoD2D

b,t , (5)

where β0, β1 ∈ (0, 1). They are users’ preferences for D2D
communication and BS communication.

Note that β0, β1 will be different in the different BSs,
since every group has their own preference for D2D and BS
communication considering the difference in time cost and
convenience of these two kinds of communication modes.

The system reward Rb,t(S) is essential for the following
DQN training, it directly decides which content should be
replaced in the system.

D. Caching Replacement Policy

Once the new requests come, the local BS will determine
how to update the cache state of its associated users and which

content in the user’s cache should be replaced. Therefore the
optimization problem can be defined as:

max
A∗(f−,f+)

∑
b∈B

Rb,t(S
′ |S),

s.t.
∑
i∈F

xu,ifi ≤ cUu ,∀u ∈ UBS
b∑

i∈F
xb,ffi ≤ cBS

b

xu,f , xb,f ∈ {0, 1}

, (6)

where S denotes all the local BS state before the action A∗,
and S

′
denotes the new BS state after action A∗. Our aim is

to optimize the best action A∗ at current state to maximize
the total system reward (maximize the D2D caching gain and
minimize the backhaul traffic cost) of the next state while
satisfying the all the constraints about the cache size of all
mobile users and BSs.

Problem (6) has the same structure with the problem formu-
lated in [14], which has been proved as NP-hard. It is difficult
to find a mathematically optimal solution. Instead, we use the
DQN model to get the approximate optimal solution in the
next section.

IV. WEIGHTED DISTRIBUTED DQN BASED CACHE
REPLACEMENT POLICY

We model the cache replacement problem as a Markov De-
cision Process (MDP) problem and use a weighted distributed
DQN model to solve the problem. There are three main phases
during the training which are as follows:

A. DQN Model Training

The cache state of BS b is set as Sb
0 initially. Every time

slot the DQN agent would observe current D2D cache state Sb
t

and choose a replacement action At to maximize the possible
system D2D traffic.

The reward function is the most important part of DQN,
since it directly decides which content should be replaced. In
our system, the difference between the total reward of old state
and new state rt = (RS

′

b,t −RS
b,t−1) is regarded as the reward

of the action. For a standard reinforcement learning method,
the sequence {Sb

0, A0, S
b
1, ..., At−1, St} could be modeled as

the MDP directly. The discounted reward for the future Rt

could be gotten through:

Rt =

T∑
t′

γt′−trt, (7)

where γ ∈ (0, 1]. The target of the DQN is to maximize the
action-value function:

Q∗(S,A) = max
π

E[R0|S0 = S,A0 = A, π], (8)

where π is the strategy for choosing of the best action.
According to the Bellman equation, it is equal to maximize
the expected value of r + γQ∗(S

′
, A

′
), if the optimal value

Q∗(S
′
, A′) of the sequence at the next time step is known.

Q∗(S,A) = E[r + γmax
A′

Q∗(S′, A′)|S,A]. (9)



We use a neural network function approximation with
weights θ to estimate Q∗, Q(S,A, θ) ≈ Q∗(S,A). The loss
function is defined as:

Li(θi) = E[(yi −Q(S,A; θi))
2], (10)

yi is the target, which is calculated by the previous iteration
parameter result θi−1. The gradient of the loss function is:

∇θiLi(θi) = E[(yi −Q(s, a; θi))∇θiQ(S,A; θi)], (11)

the process is shown in Algorithm 1. Where M represents
the whole experience pool and M̃ is a random sample of M.
Throughout the training process, we use two Q-network which
are evaluation network Qe and target network Qt. Qt is mainly
used to give cache replacement results while Qe is mainly used
to update the parameters based on the new transition T . We
will replace Qt with the parameters of Qe every ϕ times.

Algorithm 1 WDDQNLearning
1: Initialize Local BS Parameter and eporch K
2: for i ∈ [0,K] do
3: Ri = new request
4: Get init State S
5: if Ri in cacheu then
6: Ai = Get the Content from cacheu
7: else if Ri in cache of neighboru then
8: Ai = Get Content from neighbors
9: else

10: Ai = Get content from BS
11: end if
12: Get Reward ri
13: Get current State S′

14: Store T = (Ri, S, S
′, Ai, ri) into M

15: update Qe(S,A; θi) with M̃ and ∇θiLi(θi)
16: update Qt every ϕ times
17: end for

B. Global Model Aggregation

In the aggregation phase, each BS disperses its parameters
to the cloud server after M epoch and the Cloud will integrate
these parameters. The process is shown as Fig. 2.

The aggregation frequency M is set as [15] to make
the available resource is most efficiently used. The loss in
supervised learning is related to the training data and it can
be regarded as the reward of the learning process. However,
in the DQN model, the loss is the difference between current
and previous Q-network which has no direct relation with the
training data but shows the convergence of the Q-network.

Inspired by [16], we use a reward-based adaptive boosting
manner in the supervised learning problem to learn the BS
neural network and the aggregation process. The reward has
a strong relation with the input transition (Ri, S, S

′, Ai, ri).
We employ the average reward rb of BS b in a certain time
to represent the BS’s contribution to the global model. The

MNO

… …

Fig. 2. Global Parameter Aggregation Process

contribution rate αb of the BS b is calculated by:

αb = rb

/∑
i∈B

ri. (12)

The αb is regarded as an important measurement for local
BS’s contribution. Thus, the guidance parameter Θ of the
global model can be calculated by:

Θ =
∑
b∈B

αbθb. (13)

C. Local Model Update

To make the BS agent more adaptive and make full use of
the training results of other BSs, we would update the local
model via the global model after the aggregation.

Algorithm 2 Local Parameter Update
1: Initialize episode K and aggregation frequency M.
2: for episode t ∈ [0,K] do
3: for each BS b do
4: if t%M == 0 then
5: θt+1

b = ω0θ
t
b + (1− ω0)Θ

6: else
7: θt+1

b = θtb − η∇θtLt(θt)
8: end if
9: end for

10: end for

The local update process is shown in algorithm 2. If there
no aggregation happens, local DQN will update the parameter
normally by gradient descent. Otherwise, we update the model
by global Θ, local θ and ω0. ω0 is the factor that controls the
proportion of Θ, θ. The update process can be calculated as:

θnewb = ω0θ
old
b + (1− ω0)Θ (14)

The computation complexity mainly includes collecting
transitions and back propagation. Assume that the length
of replay memory is M , the complexity is O(M). Let a
and b denote the layer number and the number of units in
each layer. The complexity of training parameters with back



propagation and gradient descent requires O(mabk), where m
is the number of transitions randomly sampled from the replay
memory and k denotes the number of iterations, respectively.
Specifically, the replay memory stores M transitions which
requires the space complexity of O(M) and it requires the
space complexity of O(ab) to deal with the storage complexity
by the parameters of DQN.

V. EXPERIMENT

In this section, we evaluate the proposed cache replacement
policy and give the experiment results.

A. Parameter Settings

Initially, the local content popularity via MZip’s law with
α = 0.8. Further, we set different q in Eq. (1) to set different
local content popularity, shown as Fig.3. Other parameters are
shown in the Tab.I.

Fig. 3. Different local content popularity

TABLE I
EXPERIMENT SETTING

Content Number 100
Users Number 50
User Cache Size 10
BS Cache Size 100
Qt update frequency ϕ 250
Local Users Cache State (0)U×F

BS Cache State (0)1×F

Local User Preference (fuf )
U×F

Local U2U Share Probability (puv)U×U

Local U2B Share Probability (pub)
U×B

B. Experimental Results

We compare the training loss of Centralized and Distributed
DQN. Fig. 4 shows that the distributed DQN model converges
faster than the Centralized DQN model and gets less training
loss which means the distributed DQN model gets a more
stable Q-network. Even though there are some concussions
after the model converged due to the local model update, the
model can be stabilized very quickly soon after that.

We also evaluate the performance of the strategy in terms
of hit rate and offload rate.

Fig. 4. Loss Comparison Between Centralized and Distributed DQN

Hit Rate: denoted as HR = Nh/Nr, where Nh is the
number of satisfied user requests, Nr is the total number of
requests.

Offload Rate: we use the offload rate to compare the
D2D offload traffic with the traffic of the total requests.
Ttotal denotes the total requests traffic during the time slot
and Td2d is the D2D offload traffic. It can be calculated as
OR = Td2d/Ttotal.

Compared with state-of-the-art algorithms such as FIFO,
LRU, LFU, and Centralized DQN, we can see that the pro-
posed Distributed DQN outperforms others, shown as Fig.5.
The users’ requests changed With the simulation time moving
so that the metrics values have a little concussion. We can
observe the proposed distributed DQN model achieves the
almost 58% average hit rate performance, which is better
than 37% (FIFO), 35% (LRU), 40% (LFU), 53% (Centralized
DQN). The Offload Rate of Distributed DQN is also better as
we can observe in Fig.5(d).

To better explore the network performance of the proposed
algorithm, we compare the performance of WDDQN with
different cache sizes and mid layer sizes. Shown in the Fig.5,
the proposed WDDQN model increases the performance of
21% (FIFO), 23% (LRU), 18% (LFU), 5% (Centralized DQN)
and 15% (FIFO), 18% (LRU), 12% (LFU), 5% (Centralized
DQN) in terms of hit rate and offload rate, repectively. The
hit rate and the offload rate are always better compared with
other algorithms as the cache size increases. Meanwhile, the
performance of our proposed model will get better and better
as the mid layer size increases since it can greatly adapt to the
local requests of the users. Moreover, the worst of our models
can also achieve the effect of the centralized DQN model and
guarantee the user’s privacy through distributed ways at the
same time.

VI. CONCLUSIONS

In this paper, we propose a weighted distributed DQN based
edge caching strategy to tackle the duplicated downloading
problem in wireless networks. Specifically, we use MDP to
model the edge caching process and communication graph
which considers both physical and social domains to model



(a) Hit Rate (b) Hit Rate with different mid layer size (c) Hit Rate with different cache size

(d) D2D offload Rate (e) Offload Rate with different mid layer size (f) Offload Rate With different cache size

Fig. 5. Performance Demonstration of Hit Rate and Offload Rate with different Algorithm

the D2D sharing process. To find the optimal replacement
policy, we propose weighted distributed DQN architecture.
The ”weighted” in the architecture means that in the aggre-
gation process we give each BS a weight based its average
reward and do the global model aggregation via weighted
summation. During this process, D2D Caching Gain and
Backhaul Traffic Cost are two important indicators which
are utilized to quantify the reward. We alleviate the whole
training efficiency by the proposed architecture, which allows
the training data remained on the local BS. Simulation results
show the proposed strategy can outperform the FIFO, LRU,
LFU and Centralized DQN schemes in terms of request hit
rate and offload rate, and it also has a faster convergence speed
compared with the Centralized DQN model.
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