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Optimal VNFs Placement in CDN Slicing
Over Multi-Cloud Environment

Ilias Benkacem, Tarik Taleb, Miloud Bagaa, and Hannu Flinck

Abstract— This paper introduces a content delivery network
as a service (CDNaaS) platform that allows dynamic deploy-
ment and life-cycle management of virtual content delivery
network (CDN) slices running across multiple administrative
cloud domains. The CDN slice consists of four virtual net-
work function (VNF) types, namely virtual transcoders, virtual
streamers, virtual caches, and a CDN-slice-specific Coordinator
for the management of the slice resources across the involved
cloud domains. To create an efficient CDN slice, the optimal
placement of its composing VNFs using adequate amount of
virtual resources for each VNF is of vital importance. In this vein,
this paper devises mechanisms for allocating an appropriate set
of VNFs for each CDN slice to meet its performance requirements
and minimize as much as possible the incurred cost in terms of
allocated virtual resources. A mathematical model is developed to
evaluate the performance of the proposed mechanisms. We first
formulate the VNF placement problem as two Linear Integer
problem models, aiming at minimizing the cost and maximizing
the quality of experience (QoE) of the virtual streaming service.
By applying the bargaining game theory, we ensure an optimal
tradeoff solution between the cost efficiency and QoE. Exten-
sive simulations are conducted to evaluate the effectiveness of
the proposed models in achieving their design objectives and
encouraging results are obtained.

Index Terms— Content delivery network, network function
virtualization (NFV), slicing, network softwarization, edge cloud,
optimization, bargaining game theory.

I. INTRODUCTION

OVER the last decade, Content Delivery Networks
(CDNs) have played a valuable role in hosting and

distributing content to users. Thanks to its architecture that
consists of multiple servers distributed geographically, con-
tent is replicated across a wide area and has accordingly
become highly available. Several studies have demonstrated
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the effectiveness of CDNs in improving the Quality of Expe-
rience (QoE) by making applications and services faster and
more reliable [3]–[5]. Furthermore, the CDN concept has
helped many renowned companies to develop and to expand
their revenues. CDNs can improve the access to content by
caching content nearby end-users, leveraging many distributed
caches collaborating to deliver content across different network
nodes. Hence, CDN providers have distributed topologies
around the world. Moreover, these CDN providers have two
types of users, namely (i) the customers – CDN administrators
who must pay fees to the supplier; and (ii) CDN clients – the
end users who download content through the CDNs.

Cloud providers own a number of globally distributed data
centers which are expanding continuously. Their different ser-
vices, including compute, storage, network, and virtualization,
allow both elasticity and flexibility in service deployment.
Most cloud providers use machine virtualization to provide
flexible and cost-effective resources, and the price can vary
depending on the computation resources demanded by the
Virtual Network Functions (VNFs). Recently, a great number
of companies such as Amazon, Google, and Microsoft, have
launched their cloud service businesses. Nowadays, users
rent machine instances with different capabilities as needed
and pay at a certain per machine hour billing rate. For
example, the Amazon EC2 solution supports the instantia-
tion of multiple VNF instances on a single physical server.
However, CDN infrastructure can benefit from these virtual-
ization techniques and gain geographically dispersed nodes in
large-scale [6].

To deliver content to end users with QoE guarantees, a CDN
administrator should ensure that his content is strategically
placed across the globe [7], [8]. This can be done leveraging
some algorithms [9]–[12] which specify the locations of VNFs
running the applications, in order to achieve an improved
performance with a low infrastructure cost. In this vein, some
parameters are of crucial importance such as the number
of VNFs, allocated virtual resources, where those VNFs are
geographically located, and which VNF will serve end-users’
requests. Oljira et al. [10] proposed a model for the placement
of VNFs, guaranteeing the QoS and latency requirements of
the service chains. The goal is to optimize resource utilization
in order to reduce cost satisfying QoS such as end-to-end
latency. A trade-off solution between the two conflicting
objectives in terms of resource utilization and Service Level
Agreement (SLA) requirements is proposed in [9] and [11].
Abu-Lebdeh et al. [12] focused on the VNF placement and
aimed at minimizing the operational cost without violating
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the performance requirements. They provided an integer lin-
ear programming formulation and proposed an algorithm to
solve larger instances of placement problem with a significant
reduction in the operational cost of large-scale distributed NFV
deployments.

In this paper, we introduce a CDN as a Service (CDNaaS)
platform whereby a user can create a CDN slice defined as
a set of isolated distributed network of edge servers over
multi-cloud domains where an edge server hosts a single VNF
such as virtual cache, virtual transcoder, virtual streamer and a
CDN-slice-specific coordinator for the lifecycle management
of the slice resources and also for managing uploaded videos
and subscribers. This platform is designed to have the max-
imum level of flexibility for scaling out and down a CDN
slice on top of different public and private Infrastructure as
a Service (IaaS) such as Amazon AWS service, Microsoft
Azure, Rackspace, and OpenStack-managed cloud. Further-
more, the platform employs mechanisms and algorithms that
create cost-efficient QoE-aware CDN slices, involving an opti-
mal number of required VNFs and deciding on their optimal
placement taking into account the desired QoE level. Hereby,
the main challenge is to provide a delicate balance between
cost and customer satisfaction (in terms of QoE). Therefore,
the objective of this paper is to find an efficient cost of CDN
slice respecting, on one hand, the CDN owner requirements in
terms of QoE, and on the other hand, the cloud infrastructure
and its cost. Three solutions are proposed for VNF placement
across multiple cloud domains. While the first solution, dubbed
Efficient Cost Solution (ECS), aims to minimize the cost as
much as possible, the second solution, named Efficient QoE
Solution (EQS), aims to increase as much as possible the
QoE in the network. Meanwhile, the third solution, named
Fair Trade-off between cost and QoE Solution (FTS), uses
bargaining game theory to ensure a fair trade-off between cost
and QoE.

The rest of this paper is organized as follows. Some related
work is summarized in Section II. In Section III, the proposed
CDNaaS platform is introduced. In Section IV, the system
model and problem formulation for VNF allocation problem
are given. Section V presents the solutions proposed for plac-
ing different streaming VNFs, that reduce both cost and QoE.
Section VI describes the simulation setup and discusses the
obtained results. Finally, the paper concludes in Section VII.

II. RELATED WORK

Regarding network slicing, network management and
orchestration (MANO), there have been an important
amount of research work conducted recently, summarized
in [13] and [14]. Network slicing enables the deployment of
multiple logical, self-contained networks on a common physi-
cal infrastructure, allowing resource isolation and a customized
network operation as detailed in [15]. In other words, network
slicing introduces a multi-tenant environment supporting flex-
ible provisioning of network resources as well as dynamic
instantiation and placement of virtual network functions [16].
Ordonez-Lucena et al. [17] provide a comprehensive study of
the architectural frameworks of both Software Defined Net-
working (SDN) and Network Function Virtualization (NFV)

as key enablers to achieve the realization of network slices.
Peter and Christian [18] provide the necessary flexibility and
scalability associated with future network implementations.
The authors propose 5G based on network slicing with the
coexistence of dedicated as well as shared slices in the net-
work. Bin et al. [19] present a network slice design for
the multicast/broadcast of ultra high definition (UHD) video
to achieve higher network efficiency and improved QoE.
Nakao et al. [20], Taleb et al. [21], and Zhang et al. [22]
improve the flexibility of network resource allocation and the
capacity of 5G networks based on network slicing and discuss
the potential of network slicing to provide the appropriate cus-
tomization and highlight the relevant technology challenges.

In the context of CDN, several studies have been conducted
proposing different algorithms to place strategically servers.
Li et al. [23] propose a dynamic programming algorithm
for cache placement aiming at improving the performance
of CDNs. Other algorithms have been proposed for this issue,
e.g., the Greedy algorithm [24], [25]. The VNF placement
problem is of vital importance and differs from one case to
another. Generally speaking, the problem is to place a number
of VNFs in different locations in a way that yields the lowest
cost. For example, in Carrier Cloud [26], [27], the placement
of VNFs was the subject of several kinds of research [28]–[31].
The goal here is the placement of VNFs in specific data centers
for a given user or a group of users, respecting architecture
constraints and target service requirements. This problem can
be studied in two ways [31]: (i) placement within the same
data center – the research has been done with the goal of
reducing cost using Bin packing, Simulated Annealing, Ant
Colony, Transient cooling effects, N-dimensional set, etc., and
(ii) placement across a federation of data centers. However,
as discussed below, it is important to employ an intelligent
VNF placement strategy across a federation of data centers for
the CDN owner to provide better services, maintain efficient
cost, and meet the performance requirements.

Zhang et al. [32] use a fair resource allocation to ensure
fairness between cloud and big data applications while virtual
machine migration is used to make each virtual machine in
cloud application reach the desired level of performance. The
authors used Nash Bargaining game to model the situation
whereby virtual machines compete for more resources while
their minimal demand is ensured. Iyer et al. [33] consider
addressing the resource allocation and pricing strategies in
a Compute Cloud. They introduce the concept of asymmet-
ric pricing scheme wherein a user can specify his budget
constraints and the cloud service providers can attempt to
maximize the revenue without compromising the performance.
The authors employ two axiomatic bargaining approaches,
namely Nash Bargaining Solution (NBS) and Raiffa Bargain-
ing Solution (RBS), to formulate the problem and derive an
optimal solution for allocating virtual CPU instances in a
Compute Cloud. In the context of mobile relay networks,
Baharlouei and Jabbari et al. [34], Zheng et al. [35], and
Zhang et al. [36] proposed a Nash bargaining approach to
balance the information transmission efficiency of source-
to-destination pairs and the residual harvested energy of
relays.
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Fig. 1. CDN as a Service Architecture.

III. CDN AS A SERVICE PLATFORM

A. Architecture and Components

Recently, performance and reliability have become the
major factors that directly impact the user experience.
In our highly connected world and to efficiently serve an
ever-growing community of mobile users demanding high-
bandwidth services, it has become very important to reach
clients whenever and wherever they are. In case of CDNs,
the content is delivered to end-users based on their geo-
graphical locations and availability of resources using the
geographically dispersed servers of CDNs. To make efficient
usage of CDNs, it is important to cache video contents in
an intelligent fashion, leveraging smart caching strategies that
are based on content popularity and geographical distribution
of end-viewers. Although video contents can be transcoded
into various formats, this operation requires greedy processes
that need a large amount of computation for decoding and
encoding. Moreover, efficient media delivery requires high
performance transcoding and that is in case of both Video On
Demand (VOD) and live broadcast to various types of user
devices.

For an efficient delivery of video services, our envisioned
CDNaaS platform aims for improving service responsiveness,
not only by replicating the contents in several caches to
ensure their availability but also by running on-demand other
virtual services, such as virtual transcoder to transcode videos
on the fly into optimal resolutions before streaming them
to the interested viewers [37]. In the following, we intro-
duce the architecture of our CDNaaS platform along with its
components.

Our envisioned CDNaaS platform allows the creation and
life-cycle management of multiple slices of virtual CDNs
running across multiple cloud domains. The CDN slices
include virtual transcoders, virtual streamers, virtual caches,
and a CDN-slice-specific Coordinator for the management
of the uploaded videos and the subscribers as well as the
slice resources across different private and public Infrastruc-
ture as a Service (IaaS) providers such as OpenStack-
managed data-centers, Amazon AWS service, Microsoft Azure

and Rackspace. Fig. 1.a shows an overview of the CDNaaS
architecture. As stated earlier, a CDN slice consists of a num-
ber of virtual services and is administrated by only one server,
called Coordinator, that manages the communication among
VNFs of the same slice. As depicted in Fig.1.a, our envisioned
CDNaaS platform consists of five main components:

- The Orchestrator server: The orchestrator server allows
consumers to create new CDN slices or modify/delete their
existing CDN slices over the available IaaS providers. The
owner of a slice also logs into the orchestrator to manage the
VM instances of the slice. This includes instantiation of new
VMs specifying their flavors, termination of existing ones, and
definition or update of policies for the management of slice
resources (e.g., for scaling out and down). For every slice,
the orchestrator updates its respective coordinator whenever
new VMs are created for the slice or existing VMs of the
slice are updated.

- The Coordinator server: Each CDN slice has only one
NFV manager, called the coordinator, that ensures the commu-
nication among virtual cache servers, virtual transcoder servers
and virtual streaming servers associated to the CDN slice. The
owner of a slice can manage through its respective coordinator
its videos and administers its subscribers. The coordinator
runs concrete methods including the smart selection of the
closest and least loaded virtual transcoder. It also defines
the service function chaining (SFC) between the slice VNFs
(i.e., the triplet Cache, Transcoder, and Streamer) and then
publishes the jobs in the queues of the concerned servers.

- The Cache server: Basically, a CDN slice essentially con-
sists of a network of geographically dispersed cache servers.
Each node caches static content and stores videos uploaded
by the end-users and also the transcoding output. When a
user requests a video with a specific resolution and quality,
the closest cache in proximity to that user will deliver the
content, ensuring the shortest distance (i.e, latency), therefore
providing the best user experience possible.

- The Transcoder server: This network function is in charge
of transcoding videos in different formats and at different
resolutions. It consumes high computing resources. The virtual
transcoder is always listening to orders from the coordinator
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Fig. 2. Sequence diagram for managing resources of CDN slices and their videos in our envisioned CDNaaS platform.

by the mean of a queuing management server. It mounts the
concerned cache server, starts transcoding, sends feedback
to the coordinator specifying the progress in real-time and
notifies the Coordinator once the transcoding operation is
successfully completed.

- The Streaming server: This network function plays the
role of a load balancer as it receives requests from end-
users for playing specific videos and redirects the requests
to proper cache servers. The streaming server tracks also the
video accesses and sends the statistics back to the coordinator
to be used in data analysis in order to improve the business
intelligence of the CDN slice in question.

B. Sequence Diagram

Fig.2 shows the sequence diagram for managing resources
of CDN slices and their videos in our envisioned CDNaaS
platform. VNFs belonging to the same CDN slice commu-
nicate through a well-defined Application Program Interface
(API). A log of such communication is stored to build a knowl-
edge base for future data mining purpose. In the following,
we explain the data flow between different components of the
system and highlight the communication technologies used.

1) Communication Between the Orchestrator and VNFs:
As stated earlier, the orchestrator of a CDN slice manages the
life-cycle of its VNFs and accordingly scales out and down the

CDN slice. The Orchestrator bootstraps virtual machines for
hosting specific VNFs and updates constantly the respective
VNF managers.

2) Communication Between the Coordinator and
Transcoders: The CDN slice owner authenticates to the
interface management via web and launches massive
video uploads over a distributed set of virtual caches. The
Coordinator load balances the uploaded videos over the
network of virtual Transcoder nodes, by the means of an
Advanced Message Queuing Protocol (AMQP) implemented
in the Coordinator server, e.g, RabbitMQ Server. For each
new instantiation of a transcoder node, a new queue is
created in the system, that ensures the communication
(Read/Write) between that transcoder and the coordinator.
When a CDN slice owner decides to transcode some of
his videos, the coordinator server publishes the jobs in the
respective queue of each transcoder. The transcoders are
always listening to their queues, consume the messages in
First In First Out (FIFO) order. The message is an API
that describes the order and contains information about the
video, specifies the cache server where the video resides
and information about the transcoding parameters. During
the transcoding operation, the virtual transcoder publishes
in the queue the progress in real time. A progress-bar will
be rendered to the end-user through the coordinator web
interface.
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3) Communication Between the Coordinator and Streamers:
Streaming servers receive requests for videos from end-users
and load balance their streaming among the available caches.
As a potential technology for the streaming server, we use
Nginx. All streaming servers contain a running service that
tracks the video accesses and publishes in the common
streamers’ queues the following information: the streamer’s
public IP address, timestamps, IP address of the requesting
user, the viewer’s city and country, video ID, resolution,
the IP address of the cache server where the video resides,
and the distance between the requesting client and the cache
server in Kilometers. These information are needed to build a
dashboard and statistics for the CDN slice owners to measure
the performance and to also improve the Business Intelligence
of the specific CDN slices.

4) Communication Among Transcoders, Caches, and
Streamers: In many cases, it may become too much demand-
ing to handle constant file transfers to and from virtual
machines. For instance, there could be a situation whereby a
transcoder is transcoding videos and simultaneously receiving
the uploads of other large files from multiple end-users.
This could largely downgrade the overall system performance.
To cope with such an issue, transcoders may mount Virtual
Private Server (VPS) file systems that consist of cache servers
where videos can be stored. The transcoder can then make
transcoding on the fly and treat the mounted cache server as
local storage. Similarly, the virtual streaming servers can be
configured to read/stream the content from the virtual caches
belonging to the same slice, rather than from local caches
associated with the virtual streaming servers.

C. Management and Orchestration

The envisioned CDNaaS platform is designed to offer
users an easy way to manage a great number of videos for
plenty of subscribers, providing the flexibility of launching
different VNF instances using resources from different cloud
suppliers [8], [20]. Fig. 1.b shows the most important stake-
holders in the envisioned CDNaaS architecture. It consists of a
public network connecting different data centers across several
geographical areas. Server racks within a data center are
connected through a private network. The virtual infrastructure
is created using different IaaS providers, e.g., Amazone AWS
service, Microsoft Azure, and Rackspace. The architecture of
the CDNaaS orchestrator is depicted in Fig. 3. The orchestrator
acts as the main management component of the CDNaaS plat-
form and is responsible for running core front and back-end
services. Front-end services help to meet users’ preferences
and set up VNFs for the coordinator, cache, transcoder, and
streamer images. Regarding the back-end related functions
used in the orchestrator, they are as follows:

• Main Orchestration component: This component is
responsible for checking the database and VNFs creation
and deletion.

• Data Manager Component: This component contains all
database-related methods required for data management.

• Coordinator Agent: contains required methods used
for communications between the orchestrator and the

Fig. 3. High level architecture of our envisioned CDNaaS orchestrator.

coordinators of different CDN slices. For example,
the agent makes the coordinator aware of the topology
of its slice. It populates the coordinator database with all
useful information about the slice VNFs, including public
and private IPs, network function/service, cloud provider,
location (latitude and longitude), and image ID.The agent
constantly updates the coordinator regarding any change
in the slice topology in case of instantiation of new
VMs or deletion of existing ones.

• Amazon AWS Agent: contains methods required for
interfacing with the EC2 controller of Amazon AWS IaaS
provider.

• Microsoft Azure Agent: contains methods required for
interfacing with the controller of the Microsoft Azure
IaaS provider.

• OpenStack Agent: contains methods required for inter-
facing with an OpenStack-based Virtual Infrastructure
Manager (VIM).

• RackSpace Agent: contains methods required for interfac-
ing with the controller of the RackSpace IaaS provider.

The main steps beneath the creation of a CDN slice are
depicted in Fig. 4:

• R1: A customer (i.e., CDN slice consumer) requests the
creation of a CDN slice specifying its requirements.

• R2: Based on these requirements, the orchestrator deter-
mines the amount of virtual resources, their locations and
respective IaaS provider, and the VNFs to be installed in
each virtual instance. The orchestrator sends requests to
each IaaS provider indicating the VNF instances to be
instantiated and specifying the images (i.e., virtual cache,
transcoder, streamer, and coordinator) to be run on each
of them.

• R3: Using the right images, VNFs are created and infor-
mation on the statues of these VNFs are communicated
to the orchestrator.

• R4: The user (i.e., CDN owner) can manage the VNFs
of his CDN slice via the API of the orchestrator.

The coordinator server of a specific CDN slice is respon-
sible for getting information about available machines in its
CDN slice from the orchestrator and manages communications
among the different nodes such as the transcode request
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Fig. 4. Main steps beneath the creation of a CDN slice.

(i.e., sent by the coordinator to the transcoder) or the transcode
reply (i.e., sent by the transcoder to the coordinator) as
depicted in Fig. 2. As stated earlier, a CDN slice consists of
one coordinator, at least one transcoder, at least one streamer,
and at least one cache. Once a CDN slice is created, the CDN
slice owner can manage his videos through the coordina-
tor, which is a mandatory component used to manage the
entire CDN slice including caches, transcoders, and streamers.
It enables the owner to upload, modify or delete videos,
select the preferred transcoder, cache, and streamer among the
available ones to transcode one or a group of videos to desired
resolutions, store and stream the transcoded videos. Caches
are mainly in charge of storing videos after being uploaded
by users and after being transcoded by the selected transcoder
server. Transcoders get a request from the coordinator and
transcode videos at rates specified by the CDN owner. The role
of streamers is load balancing and receiving end users’requests
for playing a specific video and redirecting the requests to
proper cache servers (See Fig. 2). For the creation of cost-
efficient and QoE-aware CDN slices, a smart placement of
VNFs across the available IaaS along with decision on what
virtual resources to allocate for each VNF must be ensured
by the system. This placement concerns the geographical
locations of VNFs and the flavors of their respected VMs
(e.g., CPU, memory and storage) offered by available IaaS
providers [38]. Indeed, the placement of caches, transcoders,
and streamers has a great impact on the QoE. Moreover,
it affects the cost paid by the CDN owner (i.e., similar in spirit
to the general VNF placement problem in case of cloud-based
Telco [28], [31]). In the following section IV, the CDNaaS
VNF placement problem is formulated and two Linear Integer
Problem solutions are proposed. Based on these two solutions,
an optimal trade-off solution based on bargaining game theory
is also proposed.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

Once a user successfully logs into the orchestrator domain,
he is able to create a CDN slice. He defines a validity
period for the CDN slice and specifies an estimate of the
number of videos to be stored and a number of subscribers

to be serviced across a specific geographical area, withing
the service areas of a number of IaaS providers. Each IaaS
provider can offer a number of VNFs and run them on
VMs with specific flavors. A VM flavor defines the category
of the VM instance and is characterized by a number of
cores as vCPU, an amount of RAM, and a storage capacity,
in addition to other features [38]. Each flavor incurs a cost
which should be paid by the CDN owner. Each instantiated
VM shall run a VNF image that can be either for a coordinator,
a transcoder, a cache or a streamer. The objective is to create
a cost-efficient CDN slice minimizing the incurred cost while
meeting the requirements specified by the user (i.e., in terms
of QoE).

We model the physical network representing the cloud
infrastructure and subscribers as a weighted bipartite complete
graph and denote it as G = (V; E). The set of vertices is
V = V1∪V2 where V1 is the set of physical nodes constituting
locations of data centers and V2 is the set of subscribers’
locations. E is the set of physical links. We assume that
the QoE of each physical link is different because of the
distance between nodes considering the hops count that links
two cloud platforms where Deterministic Networking (DetNet)
can be used to estimate the packet delay variation and provide
multi-hop forwarding path with the deterministic properties of
controlled latency. In this article, we consider only the distance
between subscribers’ locations and the VNF hosting a streamer
has an impact on the QoE of the streaming service. Hence,
ω(k, l) = λk,l denotes the QoE of a physical link between
two locations where k ∈ V1 and l ∈ V2 [39] [40].

A CDN slice owner defines a location l ∈ V2 of his
subscribers, the minimum value of QoE (i.e., in terms of
Mean Opinion Score) the end-users of his CDN slice shall
experience, the capacities of the caches and the transcoders
which are denoted as μ, ρ and σ , respectively. Subscribers in
a location l and videos are denoted by the sets Ml and N ,
respectively. The CDN slice owner sets an estimated average
duration of videos to be cached which we represent by tv . The
set of desired resolutions is denoted as R = {r1, r2 . . .} where
rm = (wm , lm); wm and lm denote the width and the length of
the frame, respectively.
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TABLE I

NOTATIONS USED IN THE PAPER

In what follows, we consider the placement of caches,
transcoders, and streamers in different locations, running them
on VMs with different flavors. Let F = { f1, f2 . . .} denote
the set of available flavors and ci denote the cost of a flavor i .
Note that a flavor i can be available in a data center k but may
not be available in another data center k ′. The relationship of
flavors to a location k ∈ V1 is represented through a constant
matrix P(F,V1). If and only if a flavor i is associated with
a location k, then Pi,k = 1, otherwise Pi,k = 0. For the
sake of readability, the notations used throughout the paper
are summarized in Table I.

V. PROPOSED SOLUTIONS

A. ECS: Efficient Cost Solution

Knowing that the available disk memory of a VM of a
specific flavor has a great impact on the cache image, while
the CPU and the RAM have a great impact on transcoder
and streamer images, we denote by h(i, Y ) and g(i, Y ) the
capacities of a VM of flavor i running a cache and a transcoder
image, respectively, handling a size Y of videos. q(i, Ml , λk,l )
represents the QoE perceived by a streamer image running
on a VM of a flavor i in a location k ∈ V1 serving a set of
subscribers Ml in a location l ∈ V2. We assume that the QoE of
a link between a streamer and a cache is efficient and does not
affect q . h−1(i, ρ), g−1(i, σ ) and q−1(i, μ, λk,l ) are respec-
tively the inverse functions of the functions h(i, Y ), g(i, Y )

and q(i, Ml , λk,l ). In other words, h−1(i, ρ) and g−1(i, σ )
are the possible size of videos handled by a VM of flavor
i with the capacity ρ for the cache image and the capacity
σ for the transcoder image. Similarly, q−1(i, μ, λk,l ) denotes
the possible number of subscribers in a location l ∈ V2 that
can be handled by a VM of flavor i in a location k ∈ V1 with
a perceived QoE μ for the streamer image.

The function f estimates the cost of storing videos by
calculating an approximate video size (in Megabytes), given
the frame rate denoted by f rv and the color depth denoted
by dv where v ∈ N . Knowing that sv = (tv , f rv , dv ) ∈ N

3

and rm = (wm , lm) ∈ N
2, this function is defined as follows:

f : N
3 × N

2 → R

(sv , rm) �→ dv × f rv × tv × wm × lm

8 × 1024 × 1024
(1)

The total size of videos is calculated using Equation (1) as
follows:

YT OT AL =
∑

v∈N

∑

m∈R

f (sv , rm) (2)

Let C, T and S denote cache, transcoder and streamer
images, respectively. E = {C,T ,S} is the set of all images.
As mentioned in Table I, we define the integer variable Sk

i, j
that denotes the number of VNFs running on VMs of flavor i
in a location k ∈ V1 hosting an image j . S(F, E,V1) ∈ �
is a solution to the problem where � denotes the set of all
possible solutions. The cost of a solution S is calculated as
follows:

CT OT AL(S) =
∑

i∈F

∑

j∈E

∑

k∈V1

Sk
i, j × Pi,k × ci (3)

The aggregate utility minimization problem is shown as
follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min CT OT AL (S)

s. t.

j = C :
∑

k∈V1

∑

i∈F

h−1(i, ρ) × Sk
i, j × Pi,k ≥ YT OT AL

j = T :
∑

k∈V1

∑

i∈F

g−1(i, σ ) × Sk
i, j × Pi,k ≥ YT OT AL

j =S, l ∈V2 :
∑

k∈V1

∑

i∈F

q−1(i, μ, λk,l )×Sk
i, j ×Pi,k ≥|Ml |

∀i ∈ F,∀ j ∈ E,∀k ∈ V1 : Sk
i, j ∈ N

∀i ∈ F,∀k ∈ V1 : Pi,k ∈ {0, 1}
YT OT AL , ρ, μ, σ > 0

(4)

The objective is to minimize s much as possible the incurred
cost and then form a cost-efficient CDN slice. Meanwhile,
the constraints in linear programming (4) are used to ensure
the following conditions:

• Constraints 1 and 2 ensure that the capacities of the
cache and the transcoder desired by the user (i.e., CDN
slice owner) are respected and not exceeded. The size
of videos handled by all VMs of all selected flavors for
cache or transcoders image must be higher than or equal
to the total size of user’s videos.



BENKACEM et al.: OPTIMAL VNFS PLACEMENT IN CDN SLICING OVER MULTI-CLOUD ENVIRONMENT 623

• Constraint 3 ensures that the QoE of the streaming service
desired by the user is respected. Hence, the number of
subscribers handled by all VMs of all selected flavors for
a streamer image and by all physical links must be higher
than or equal to the number of subscribers defined by the
user.

• Constraint 4 ensures that the number of VNFs is valid.
• Constraint 5 ensures that the matrix P is binary.
• Constraint 6 ensures that the total size of videos, the num-

ber of subscribers, the QoE of the streaming service, and
the capacities of the transcoder and the cache are valid.

B. EQS: Efficient QoE Solution

First, We define the matrix N (F, Ml ). If and only if a
flavor i handles a number of subscribers n in a location l,
then Ni,n = 1; otherwise Ni,n = 0. Knowing that j = S and
l ∈ V2, the total QoE of all VMs of different flavors hosting
a streamer image is calculated as follows:

QT OT AL (S,N , l) =
∑

i∈F

∑

k∈V1

∑

n∈Ml

q(i, n, λk,l )

× Sk
i, j × Pi,k × Ni,n (5)

Assuming that the CDN slice owner can define a maximum
total cost denoted as CostMax , the aggregate utility maximiza-
tion problem can be shown as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max min
l∈V2

QT OT AL (S,N , l)

s. t.∑

k∈V1

∑

i∈F

∑

j∈K

Sk
i, j × Pi,k × ci ≤ CostMax

j = C :
∑

k∈V1

∑

i∈F

h−1(i, ρ) × Sk
i, j × Pi,k ≥ YT OT AL

j = T :
∑

k∈V1

∑

i∈F

g−1(i, σ ) × Sk
i, j × Pi,k ≥ YT OT AL

j =S, l ∈ V2 :
∑

k∈V1

∑

i∈F

∑

n∈Ml

n×Sk
i, j ×Pi,k ×Ni,n ≥|Ml |

∀i ∈ F,∀ j ∈ K ,∀k ∈ V1 : Sk
i, j ∈ N

∀i ∈ F,∀k ∈ V1 : Pi,k ∈ {0, 1}
∀i ∈ F,∀n ∈ Ml : Ni,n ∈ {0, 1}
YT OT AL , CostMax , ρ, σ > 0

(6)

The objective in the linear programming (6) is to maximize
as much as possible the QoE of the streaming service while
respecting the total cost paid by the user. Constraints in the
linear programming (6) are explained as follows:

• Constraint 1 ensures that the total cost desired by the
user must be respected. The total cost of all VMs of
all selected flavors for caches, transcoders and streamers
must be less than or equal to the total cost defined by the
user.

• Constraints 2, 3, 5 and 6 are the same as in the linear
programming (4).

• Constraint 4 ensures that the total number of subscribers
must be greater than or equal to the total number of
subscribers defined by the user.

• Constraint 7 ensures that the matrix N is binary.

• Constraint 8 ensures that the total size of videos, the num-
ber of subscribers, the maximum cost, and the capacities
of the transcoder and the cache are valid.

C. FTS: Fair Trade-Off Between Cost and QoE Solution

The Nash bargaining solution is the unique solution to a
two-person bargaining problem that satisfies the axioms of
scale invariance, symmetry, efficiency, and independence of
irrelevant alternatives. The Nash bargaining game is a simple
two-player game used to model bargaining interactions. In the
Nash bargaining game, two players demand a portion of some
good. If the total amount requested by the players is less than
that available, both players get their request. If their total
request is greater than what is available, neither player gets
their request. In our model, we can model the two players
as cost and QoE, they request the desired assignment to
the appropriate VNF running on the appropriate VM of an
adequate flavor. Our objective is to find the optimal assignment
in order to satisfy all players. Since the utilities of the cost
of steaming and the QoE are obviously conflicting, a Nash
bargaining game is adopted in this paper and the Nash bargain-
ing solution is considered as a reasonable solution to balance
the utilities of both objectives in order to find a trade-off
solution.

Indeed, our proposed FTS solution aims to find a fair
trade-off between the conflicting objectives, the cost and
the QoE. A bargaining game is used to find the fair trade-off
between these conflicting objectives. The deployment of a high
number of streaming VNFs in the network will enable getting
streaming servers closer to the end-users, which consequently
increases the QoE dramatically. Moreover, from another point
of view, they will increase the cost of streaming services for
the users significantly. However, the deployment of a low
number of streaming VNFs will negatively impact the QoE
and the end-to-end delay. In FTS, the cost and end-to-end
delay are considered as two players that would like to barter
goods.

1) Cooperative Games: In cooperative games, the play-
ers are assumed to attain either most desirable point when
negotiation succeeds or disagreement point when negotiation
fails. We consider two persons game who would like to
barter goods, each one of them wants to increase his benefits.
We define P as the vector payoffs of theses players. Formally,
P = {(u1(x), u2(x)), x = (x1, x2) ∈ X}, where X is the set
of the two players’ strategies. u1(x) and u2(x) represent the
utility functions of two players, respectively. In [41], Nash
bargaining model (NBS) is presented, which is a cooperative
game with non-transferable utility. This means that the utility
scales of the players are measured in non-comparable units.
Nash bargaining game is based on two elements assumed to
be given and known to the players. The first element is the set
of vector payoffs P achieved by the players if they agree to
cooperate. P should be a convex and compact set. The second
element is the threat point, d = (ud

1 , ud
2) ∈ P , which represents

the pair of utility whereby the two players fail to achieve an
agreement. In NBS, we aim to find a fair and reasonable point,
(u∗

1, u∗
2) = f (P, ud

1 , ud
2 ) ∈ P . Based on Nash theory, a set
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of axioms is defined that leads to f (P, ud
1 , ud

2) achieving a
unique optimal solution (u∗

1, u∗
2):

1) Feasibility: (u∗
1, u∗

2) ∈ P .
2) Pareto Optimality: There is no point (u1(x),

u2(x)) ∈ P such that u1(x) ≥ u∗
1 and u2(x) ≥ u∗

2
except (u∗

1, u∗
2).

3) Symmetric: If P is symmetric about the line
u1(x) = u2(x), and ud

1 = ud
2 , then u∗

1 = u∗
2.

4) Independence of irrelevant alternatives: If T is a
closed convex subset of P , and if (ud

1 , ud
2) ∈ T and

(u∗
1, u∗

2) ∈ T , then f (P, ud
1 , ud

2) = (u∗
1, u∗

2).
5) Invariance under change of location and scale: If

T = {(u′
1(x), u′

2(x)), u′
1(x) = α1 u1(x) + β1, u′

2(x) =
α2 u2(x) + β2, (u1(x), u2(x)) ∈ P} where α1 ≥ 0,
α2 ≥ 0 and β1 and β2 are given numbers the
f (T, α1 ud

1 +β1, α2 ud
2 +β2) = (α1 u∗

1+β1, α2 u∗
2 +β2).

Moreover, the unique solution (u, v), satisfying the above
axioms, is proven to be the solution of the following optimiza-
tion problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max (u1(x) − ud
1 )(u2(x) − ud

2 )

s. t.

(u1(x), u2(x)) ∈ P
(u1(x), u2(x)) ≥ (ud

1 , ud
2)

(7)

An enhanced solution of Nash bargaining game, named
KSBS, is proposed by Kalai and Smorodinsky [42]. KSBS
aims to enhance more the fairness between the players by shar-
ing the same utility fraction r among them. KSBS preserves
the same Nash bargaining axioms except the independence
of irrelevant alternatives. In addition, it has new axioms
called monotonically. In contrast to the Nash bargaining game,
in addition to the disagreement point d = (ud

1 , ud
2) ∈ P , KSBS

needs the ideal point for both players xb = (ub
1, ub

1)/xb ∈ P ,
which is the best utility that both players can achieve sepa-
rately without bargaining. Kalai and Smorodinsky proves that
the unique solution that satisfies KSBS’s axioms is the solution
of the following optimization problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max r

s. t.
(u1(x), u2(x)) ∈ P

r = u1(x) − ud
1

ub
1 − ud

1

r = u2(x) − ud
2

ub
2 − ud

2

(8)

Fig. 5 shows how the KSBS game enhances NBS in terms
of fairness and Pareto-optimality. As shown in Fig. 5(a), NSB
aims to increase as much as possible the size of the orange
rectangle. However, this strategy may favor one player over
the other. As shown in Fig. 5(b), KSBS enhances the trade-off
between the two players by sharing the same utility fraction.
To increase the benefit of each player, KSBS increases as much
as possible the fraction r .

r = u∗
1 − ud

1

ub
1 − ud

1

= u∗
2 − ud

2

ub
2 − ud

2

Fig. 5. NBS and KSBS solutions.

2) FTS Description: In the remainder of this section,
we will describe the FTS solution (i.e., Fair Trade-off between
cost and QoE Solution). We denote by d = (ud

C , ud
Q) and

b = (ub
C , ub

Q) the threat and best points of the KSBS

game that solves FTS. In the KSBS game, both players
(i.e., ECS and EQS) should bargain for increasing their bene-
fits. However, from the optimization (4), ECS aims to reduce
the cost, which is the opposite to its utility function. In order
to use the KSBS game for ensuring a fair trade-off between the
QoE and the cost, as depicted in Fig. 5(b), we need to change
the utility function of ECS to be a maximization problem. The
utility function of the ECS player is then updated using the
following optimization problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max −CT OT AL (S)

s. t.

j = C :
∑

k∈V1

∑

i∈F

h−1(i, ρ)Sk
i, jPi,k ≥ YT OT AL

j = T :
∑

k∈V1

∑

i∈F

g−1(i, σ )Sk
i, jPi,k ≥ YT OT AL

j = S, l ∈ V2 :
∑

k∈V1

∑

i∈F

q−1(i, μ, λk,l )Sk
i, jPi,k ≥ Ml

∀i ∈ F,∀ j ∈ E,∀k ∈ V1 : Sk
i, j ∈ N

∀i ∈ F,∀k ∈ V1 : Pi,k ∈ {0, 1}
YT OT AL , Ml , ρ, μ, σ > 0

(9)

Now, we introduce the proposed FTS solution. In what fol-
lows, we will show how d and b would be computed. Let
Ṡ and S̈ denote the two matrices of Sk

i, j variables obtained
by solving the two optimizations (6) and (10), respectively.
Then, d = (ud

C , ud
Q) and b = (ub

C , ub
Q) would be computed as

follows:

1) ud
C = −CT OT AL(Ṡ) = − ∑

i∈F

∑
j∈E

∑
k∈V1

Ṡk
i, jPi,k × ci

2) ub
C = −CT OT AL(S̈) = − ∑

i∈F

∑
j∈E

∑
k∈V1

S̈k
i, jPi,k × ci

3) ud
Q = min

l∈V2

QT OT AL (S̈,N , l) =
min
l∈V2

∑
i∈F

∑
k∈V1

∑
n∈Ml

q(i, n, λk,l ) × S̈k
i, j ×Pi,k × Ni,n

4) ub
Q = min

l∈V2

QT OT AL (Ṡ,N , l) =
min
l∈V2

∑
i∈F

∑
k∈V1

∑
n∈Ml

q(i, n, λk,l ) × Ṡk
i, j ×Pi,k × Ni,n
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Fig. 6. Performance evaluation by increasing the number of locations.

Fig. 7. Performance evaluation by increasing the number of flavors per location.

The fair Pareto optimal solution FTS will be then formulated
as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max r

s. t.∑

k∈V1

∑

i∈F

∑

j∈K

Sk
i, j × Pi,k × ci ≤ CostMax

j = C :
∑

k∈V1

∑

i∈F

h−1(i, ρ) × Sk
i, j × Pi,k ≥ YT OT AL

j = T :
∑

k∈V1

∑

i∈F

g−1(i, σ ) × Sk
i, j × Pi,k ≥ YT OT AL

j =S, l ∈V2 :
∑

k∈V1

∑

i∈F

∑

n∈Ml

n×Sk
i, j ×Pi,k ×Ni,n ≥ |Ml |

j =S, l ∈V2 :
∑

k∈V1

∑

i∈F

q−1(i, μ, λk,l )×Sk
i, j ×Pi,k ≥|Ml |

uC(S) = −
∑

i∈F

∑

j∈E

∑

k∈V1

Sk
i, jPi,k × ci

∀l ∈ V2 : uQ(S) ≥
∑

i∈F

∑

k∈V1

∑

n∈Ml

q(i, n, λk,l )

×Sk
i, j × Pi,k × Ni,n

r = uC (S) − ud
C

ub
C − ud

C

r = uQ(S) − ud
Q

ub
Q − ud

Q

∀i ∈ F,∀ j ∈ E,∀k ∈ V1 : Sk
i, j ∈ N

∀i ∈ F,∀k ∈ V1 : Pi,k ∈ {0, 1}
YT OT AL , Ml , ρ, μ, σ > 0

∀i ∈ F,∀n ∈ Ml : Ni,n ∈ {0, 1}

(10)

Then, the minimum QoE in the network QF and the cost
CF of FTC will be computed as follows:

QF = uQ(S) (11)

CF = −uC(S) (12)

VI. SIMULATION RESULTS

To simulate our proposed solutions, a simulator was devel-
oped using the Python programming language. The two linear
integer problem solutions are implemented using the Gurobi
optimization tool and are evaluated using the following met-
rics: i) the paid cost of VNFs; ii) the QoE of the streaming
service; and iii) the operation time. The optimization problems
are solved by varying: i) the number of data centers’ locations;
and ii) the number of flavors per location. In the first scenario,
we vary the number of locations of data centers and fix the
number of flavors to 8 in each location. While in the second
scenario, we vary the number of flavors in each location and
fix the number of locations of data centers to 10. Flavors and
their respective costs are defined after examining the prices of
87 flavors offered by Amazone AWS service, Microsoft Azure,
and Rackspace. For both cases, the total number of subscribers,
the total size of videos, and the capacities of the cache and
the transcoder remain unchanged. For the sake of simplicity,
we consider only one location of subscribers in V2. In the
simulation results, each plotted point represents the average
of 35 times of executions. The plots are presented with 95 %
confidence interval.

Figs. 6 and 7 show the performance evaluation of the
proposed solutions in terms of the number of flavors and the
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number of data centers’ locations. In case of the ECS and FTS
algorithms, the minimum acceptable QoE of the streaming
service μ is set to 2.5, while in case of the EQS and FTS
algorithms, CostMax is set to 1$. In the two figures, the QoE
value in case of the EQS and FTS algorithms is presented as
the average of the QoE values of all VMs hosting a streamer
image as VNF but not by QT OT AL .

Figs. 6(a) and 7(a) show the total cost incurred by the
instantiated VNFs when varying the number of locations
and varying the number of flavors per location, respectively.
In both figures, it is apparent that regardless the number of
data centers’ locations and the number of flavors per location,
the ECS algorithm exhibits the best performance in terms of
minimizing the total cost. When just one or two locations
are considered, the cost in case of the ECS algorithm is
high, and this also applies when the number of flavors per
location is small in Fig. 7(a). This is attributable to the
fact that there is not much choice of flavors, then the cost
could be high. Hence, the total cost decreases when the
number of locations and the number of flavors increase. From
Figs. 6(a) and 7(a), FTS exhibit a performance between
FCS and QCS in terms of cost. We also observe from these
figures that the curve of FCS has the same trend as the one
of ECS.

Figs. 6(b) and 7(b) show the QoE of the streaming service
while varying the number of data centers’ locations and
the number of flavors per location, respectively. The first
observation that we can draw from these figures is that the
EQS scheme exhibits the best performance in terms of QoE in
comparison to ECS and FTS. This is due to the fact that EQS
is designed to optimize the QoE without taking into account
the cost overhead. From these figures, we observe that FTS
has a performance similar to EQS in terms of QoE. Mainly,
the curve of FTS has the same trend as the one of EQS.
As depicted in these two figures, the QoE of the streaming
service in case of the EQS and FTS algorithms increases when
the number of data centers’ locations and the number of flavors
per location become higher. That is tied to the great number
of choices of flavors. We also observe from these figures that
the numbers of locations and flavors do not have an impact
on the QoE for the ECS solution. This is attributable to the
fact that the ECS solution aims at reducing the cost without
taking the QoE into account, and then the worst QoE values
would be achieved by the ECS solution. From the simulation,
it seems that the worst QoE value that was achieved in the
network is 2.5.

In Figs. 6(c) and 7(c), the execution time of the three
solutions is presented. As observed from these figures,
the ECS algorithm exhibits better performance than the EQS
and FTS algorithms in terms of execution time, regardless
the number of data centers and the number of flavors per
location. From Figs. 6(a) and 7(a), from one side, and
Figs. 6(b) and 7(b), from another side, we conclude that the
FTS solution achieves a fair trade-off between QoE and cost.
FTS performs similarly to ECS in terms of the cost, and
similarly to EQS in terms of the QoE.

VII. CONCLUSION

In this paper, we introduced a CDNaaS platform that allows
the creation of CDN slices across multiple cloud domains.
The platform is able to scale out and down by deploying
virtual resources from multiple IaaS providers, running differ-
ent VNFs (i.e., virtual caches, virtual transcoders, and virtual
streamers). In order to create a cost-efficient and QoE-aware
virtual CDN slice, the optimal placement of these VNFs, along
with decision on the amount of virtual resources to allocate
for each of them, is of vital placement. In this vein, this
paper introduced three relevant solutions. The first solution
aims at minimizing the incurred total cost, while the second
solution aims at maximizing QoE of the streaming services.
The third solution uses a bargaining game theory for ensuring
a fair trade-off between the cost and QoE. A mathematical
model is developed to evaluate the performance of these
three solutions. Simulations were conducted and the obtained
results demonstrated the efficiency of the proposed solutions
in achieving their key design goals.
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