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ARTICLE INFO ABSTRACT

Keywords: Deep neural networks (DNNs) have been extensively used in the domains of artificial intelligence (AI)
Cloud-edge-end architecture applications. Their inherent complexity primarily drives the deployment of DNN models in cloud environments.
Edge computing

However, the geographical distance between the cloud and the end-users fails to meet the low-latency
requirements of time-sensitive applications. Edge computing has emerged as a viable way to address this
issue, nevertheless, the inherent constraints of limited resources on edge servers pose challenges in supporting
intricate models. Solutions relying on network compression or model segmentation often fall short in meeting
both performance and reliability needs. For the few ensemble-based solutions, the diversity between base
models is not fully explored, and the low-latency advantage of edge computing is not fully utilized. In this
paper, we propose a cloud-edge-end integrated approach for building an efficient and reliable DNN inference
platform based on ensemble learning. In this design, heterogeneous models are trained on the cloud according
to the resource constraints of edge servers, and the inference process is performed independently on each edge
server, whose outputs are combined at the end-user side to get the final result. Furthermore, a diversity-based
deployment scheme is proposed to build a user-centric network for edge Al The generation of base models is
explored, and the effectiveness of the proposed approach is demonstrated through two case studies.

Ensemble learning
DNN

1. Introduction model and provide quality-guaranteed results. Various approaches have
been explored to mitigate this, primarily focusing on two categories:

Artificial intelligence (AI) has seen rapid and widespread develop- model compression and model segmentation [13]. The compression
ment in recent years, impacting domains such as computer vision [1], approaches are utilized to decrease the computation complexity during

natural language processing [2], speech recognition [3] and robot inference so that the simplified model fits the resource capacity of the
control [4]. For image classification tasks, Convolutional Neural Net-

works (CNNs) like VGGNets [5], GoogLeNets [6], and ResNets [7]
have shown outstanding performance. Particularly, the computational
complexity of DNNs/CNNs has progressively increased [8] with the
increasing demands of the users. Hence, the deployment of large-scale
deep learning (DL) models often involves their utilization in cloud
environments. In this design, end devices primarily transmit input data
to the cloud and then await the DL inference outcomes. However,
relying solely on cloud-based inference poses challenges in delivering
DL services ubiquitously, particularly for time-sensitive applications
like autonomous driving [9].

Edge computing is a promising solution to provide computing ser-
vices to users with low latency [10-12]. However, edge servers are
usually resource-limited and may be inadequate to run the complete DL latency.

edge nodes. By applying different compression strategies, a set of DL
models can be created, each offering a balance between performance
and resource use [14]. Nevertheless, high compression rates often come
at the cost of reduced performance. To guarantee task execution per-
formance, model segmentation techniques are widely studied, where
the original DL model is partitioned horizontally or vertically into
multiple sub-models and offloaded to the edge servers [15,16]. These
sub-models are partitioned based on resource requirements and data
exchange demands. For instance, [17] proposes Early Exit of Inference
(EEol) to shorten the inference time on edge servers for a portion
of the input. However, the high bandwidth should be guaranteed be-
tween edge servers for adjacent model partitions, leading to additional
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Fig. 1. The cloud-edge-end ensemble Al learning architecture.

In this paper, we present a cloud-edge-end integrated Al system
that addresses the aforementioned issues, as shown in Fig. 1. Initially,
base models (a.k.a., weak learners) are trained in a simplified manner
in the cloud. Second, simplified base models on edge servers provide
inference results for input from the end-user side. Third, we can obtain
the final result by aggregating the inference results on the end-user
side. Unlike traditional methods, we incorporate complexity constraints
in the generation of base models and emphasize both their similarity
and diversity. The proposed approach strikes a balance between model
complexity and performance, with minimal data exchange overhead.
Additionally, the failure of any edge server will have minimal impact
on service performance, as other servers will compensate for the loss.
The contributions of this paper are listed in the following:

+ Considering the geographical distance between end users and
the cloud, as well as the limited resources of edge servers that
cannot handle complex models, we propose an integrated intelli-
gence approach, the cloud-edge-end system, based on ensemble
learning. This approach enables rapid deployment to meet users’
low-latency requirements.

* To maximize model diversity in ubiquitous Al services, while
meeting the low-latency and high-accuracy demands of tasks,
we propose an edge server selection algorithm that achieves a
balance between delay and accuracy. By leveraging an ensem-
ble of multiple models and redundant deployment, the scheme
tolerates multiple model failures, significantly improving system
reliability.
Case studies, using ensemble ResNets of varying layers and VG-
GNets with different pruning rates, demonstrate that the ensemble
of diverse low-complexity models achieves accuracy comparable
to high-complexity models while maintaining strong performance
even with a single model failure. The results demonstrate the
superiority of the cloud-edge-end integrated system in ensuring
accuracy and enhancing reliability.

The rest of the paper is organized as follows: Section 2 introduces
the related works about edge Al and ensemble learning. In Section 3,
we propose the cloud-edge-end integrated system paradigm and the
diversity-based deployment scheme. The problem formulation is pre-
sented in Section 4. Then, we use the Markov decision process to model
the process of users selecting edge servers and discuss the generation
principle of base models in Section 5. Subsequently, two case studies
are presented in Section 6 to exemplify the efficacy of the proposed
methodology. Finally, Section 7 concludes the whole article.
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Fig. 2. Hlustration of ensemble learning process.

2. Related work
2.1. Basics of ensemble learning

Unlike traditional learning techniques that construct a single model
from training data, ensemble methods generate multiple models and
combine their predictions. As seen in Fig. 2, an ensemble is created
by many models, referred to as base models, which are derived from
training data using a base learning method such as a decision tree,
neural network, or any other kind of learning algorithm. Ensemble ap-
proaches may use either a single base learning algorithm or numerous
learning algorithms to generate ensembles that are either homogeneous
or heterogeneous. The approach used to merge the outcomes is to
conduct a vote or calculate the average of the category scores in classi-
fication issues. An alternative approach is to use an extra learner who is
specifically educated to integrate the base learners [18]. An ensemble’s
capacity to generalize is often more powerful than that of its base
learners. Ensemble techniques are appealing primarily because they can
amalgamate weak learners, which exhibit just a minor improvement
above random guessing, to construct strong learners that can generate
precise predictions.

2.2. Ensembles to improve the accuracy of CNNs

Ensembles are often used to enhance the target detection or clas-
sification accuracy of CNNs across many applications. To acquire a
variety of base models, one may use various training data or employ
alternative architectures [19,20]. Sirinukunwattana et al. [19] used
images with different pixel offsets to train the same CNN structure
which can generate diverse base CNNs to enhance the classification
accuracy. Similarly, different cross-sections of a lung nodule trained
a CNN structure to generate multiple CNNs in [20]. Other research
uses the same dataset to train CNNs with varying architectures. In [21],
AlexNet, GoogLeNet and ResNet are trained based on the same dataset
to improve the food classification accuracy. Duan et al. [22] used an
ensemble of AgeNet, RaceNet and GenderNet which are trained by the
same image net to make age estimation. In addition, Ding et al. [23]
and Pons et al. [24] used distinct datasets and CNN architectures
concurrently to enhance the accuracy of face recognition and facial
emotion categorization, respectively.

Two key characteristics are evident in previous studies that focus
on improving classification accuracy through ensemble methods. (1)
the factor of complexity is usually neglected in the base model; (2)
base models are expected to complement each other, and the failure
of base models will be discarded. This paper uses the same method
as [25] to assess ensemble diversity, which calculates the dissimilarity
between any two learners and then subsequently computes the average
dissimilarity over all pairs for a comprehensive evaluation. Typically,
greater diversity is associated with improved ensemble performance.

2.3. Application of ensemble learning in edge Al
Some research has considered applying ensemble learning to edge

intelligence. Chang et al. [26] promoted the EEol approach, in which
the inference results from different side branch classifiers are combined
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to further improve the task performance. However, the failure of a
lower branch classifier will fail the whole system, and the diversity of
each branch classifier, which shares weights, is not considered. Wang
et al. [27] considered the face recognition application in the cloud—-edge
cooperative scenario, where each edge server independently trains a
model with the same structure based on the diverse locally collected
samples. However, the failure of a lower branch classifier compromises
the entire system, and the diversity between branch classifiers, which
share weights, is not taken into account.

To achieve the trade-off between diversity and the performance of
base models, Chen et al. [28] proposed to exchange the part of data
to increase each data size, which can further improve the ensemble
performance. However, aside from data diversity, ensemble perfor-
mance depends on the performance of individual base learners, which
is influenced by the size of the training set.

3. System model
3.1. Basic idea and system architecture

As introduced above, the focus of this paper is to explore the use of
ensembles to enable high-performance Al services based on resource-
limited edge servers and improve the fault tolerance capability of the
system. First, only a single edge server around a user may fail in
most cases. Hence, the distribution and deployment of varied models
surrounding a user ensures that the loss of any one edge server will
have little impact on task execution. Furthermore, the collection of
weak classifiers might attain comparable or even superior performance
compared to a strong classifier due to its variety. Using a variety
of low-complexity base models makes it possible to achieve accuracy
comparable to that of more complex models. Ensemble-based edge
intelligence is a viable option for balancing the limitations of edge
resources with the need for high-performance capabilities.

In this paper, we consider that there is sufficient data collected
in the cloud for model training, and the system needs to provide a
low-latency Al service to end users. For such an application scenario,
we proposed a cloud-edge-end integrated Al system and a user-centric
approach for the service. Fig. 3 illustrates the fundamental operations
of an Al service based on the proposed method, which are outlined as
follows:

1. Cloud-based training is used for heterogeneous models.

2. The models are deployed on edge servers that are specifically
selected to meet the complexity of the model.

3. The Al service receives input from the end user, such as a picture
to be classified.

4. Every edge server operates independent inference upon the input
and sends its results to the end user.

5. The end user combines all the results to obtain the final result.

This design fully accounts for the complexity requirements at each
stage of the ensemble-based Al service, while considering the unique
characteristics of cloud computing, edge computing, and end users.
First, it is important to recognize that model training is highly demand-
ing in terms of time and resources. Given the extensive computational
resources available in the cloud, it is advisable to carry out model
training on the cloud platform. While model training is more complex,
the inference process is relatively simpler. However, due to the need for
quick response times, the inference process is executed on edge servers
that have limited resources and are near the consumers. Furthermore,
due to the straightforward nature of the result combination, the compu-
tational capacity on the end-user’s side is sufficient to obtain the final
outcome without any further delay.

In principle, the models on edge servers could be homogeneous
or heterogeneous. We additionally discuss this issue in Section 2.2
and shown by the case studies in Section 6, heterogeneous models
are preferred for higher diversity. Besides, the dataset is used in any
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Fig. 3. Cloud-edge-end integrated scheme for Al service.

way to train the models in the cloud, including the ones in [28,29].
The experimental study in Sections 6.2.3 and 6.3.3 further shows that
using all data for the training of each base model achieves the best
performance.

3.2. Diversity-based user-centric deployment

Compared with the cloud-centric approach in [26,29], our design
is user-centric so that the ensemble procedure introduces no delay. To
fully explore the model diversity for ubiquitous Al service for all users,
a diversity-based deployment of heterogeneous models is proposed.

The basic idea is borrowed from the spectrum reuse scheme for
mobile cellular networks [30]. As shown in Fig. 4, the models (indexed
by the number) are distributed throughout the serving region (the
hexagons), so that diverse models always surround a user (the red
point). For example, if the edge servers are so weak that the ensemble
7 models are needed to provide a service meeting the performance
requirement, the models can be deployed as shown in Fig. 4(a). As we
can see, an end-user in any position can access the 7 models on the
adjacent 7 edge servers. If the edge servers are stronger, the ensemble
of 4 or 3 stronger models would provide good enough service. Then the
base models could be deployed according to the patterns in Figs. 4(b)
and 4(c), respectively.

The deployment topology presented in Fig. 4 serves as an illustrative
example of user-centric deployment, but it is not a strict requirement
for the effectiveness of the proposed methods. The methods are de-
signed to be adaptable to various deployment topologies, depending
on the specific network and user requirements. In real-world scenarios,
achieving the exact deployment depicted may pose practical challenges,
such as infrastructure limitations and varying user densities. However,
the core principle of the approach is to optimize resource allocation
and performance in a user-centric manner which can be applied across
different topologies to achieve similar benefits.

Considering that the base stations (BSs) in mobile networks are
also deployed in this way for spectrum reuse, and edge servers are
very likely to be deployed at the BS in the future [31], the proposed
deployment of diverse models matches the trend of edge computing and
mobile wireless networks very well. It can be observed from Fig. 4 that
there are multiple copies of the same model deployed around the user
but at different distances. When a model on the closest edge server fails,
the user can access the same model from its neighbor edge server. Due
to this property, the failure of multiple models can also be tolerated,
which tremendously improves the system’s reliability. In other words,
the proposed edge intelligence scheme is double protected in two ways.
One is the ensemble of multiple models, and the other is the redundant
deployments of each model. Since dense small cells would be applied
in 5G or beyond [32], edge servers would be located closer to the users.
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{a) Ensemble of 7 models.

(c) Ensemble of 3 models.

(b} Ensemble of 4 models.

Fig. 4. Optimized distributed deployment of diverse models.

Then redundant deployment could improve service quality and system
reliability at the same time.

The users who publish tasks are deemed as U = {1,2, s NU}. The
set of edge servers that deploy the same type of model is considered
as S,(m=1,2,..., M), where the superscript m indicates the classes of
diverse models selected by users. Then all servers performing tasks can

be represented as S = {},5;,..., Sy }. For any user n, it can select N"
edge servers, expressed as S, = { S].,.57, ..., SR,,,} € S. For the uplink
between edge server S:' (i =1,2,...,N!) and user n, we suppose P:: L

is the transmitting power, I’y " is the received noise power and BY* is
the channel bandwidth. Therefore, the uplink rate rY% between user n
and edge server S} can be obtained as:

pUuL
UL _ pUL ni
ry =B, "log(l+ 5 ) (1)

hi UL
ni

Similarly, for the downlink between edge server S;‘(i =12,..,N" and
user n, we suppose PP~ is the transmitting power, I'?* is received noise
power and B2" is the channel bandwidth. Therefore, the downlink rate

DL s
f'm. 15

DL
ni )
DL

rm'

rﬁ’“ = BﬁL!og(l +

(2)

We consider that users send tasks with the same total bit length b,
and edge servers return data with the same length b, . Since the model
deployed on each edge server matches its computing power, the task
processing time is assumed to be r,. Therefore, the uplink time between
user n and the edge server S} is

b

ve _ UL

Im’ - PUL (3)
i

The downlink time between user » and the edge server S is

b
tPL = “BL 4

i T DL
rnf

According to Egs. (3) and (4), the total communication time between
user n and edge server S is

n_ UL DL
=t 5)

Considering all edge servers S, are selected by user n, the communica-
tion time of user n to the edge server is

t, =max {r] } (6)
4. Problem formulation

The total time to complete the task 1, increases as the distance
between the user » and the edge server S increases. For users, they

want to get task results with the minimum power consumption and high
performance in the shortest time. For edge servers, intelligent tasks are
expected to be completed with minimal power consumption. To this
end, this article aims to minimize the total performance time 7, which
can be expressed as a min-max joint optimization problem. That is,
each user should select a group of edge servers that can complete the
task so that all users can complete the task in the shortest time. In this
way, we have the following expression:

U N
Z Z s(@YE +1, + 100
n=1 i=1

o @)
st. nel,ie Sr

s=1{0,1}

min max
S, £

In addition to power, bandwidth and communication duration, user
n also needs to consider the diversity and accuracy of edge servers
for performance when selecting S,. The accuracy of different models
and their diversity to each other can be determined after training in
the cloud. The model accuracy of the same structure is similar, but
the model accuracy of different structures is different. The diversities
between the models of the same structure are close and relatively small,
while the diversities between the models of different structures are
relatively large.

We express the model accuracy of different structures as A,,(m =
1,2..., M), the diversity among the same structural models is expressed
as d,(m = 1,2..M), the diversity between class p and g models is
expressed as d,,(p,qg = 1,2..., M and p # g). Note that 4,, d,, and dy,
are all within (0, 1). The improvement of task performance by ensemble
learning is related to the current accuracy and the number of base
models, where better single model performance and a higher number of
diverse base models generally contribute to better ensemble accuracy.
Based on this, the ensemble accuracy of models with the same structure
is

Ny
AL = A, +a ) di! ®
i=2
where « E::'; d'~! accounts for the incremental improvement in accu-
racy derived from the diversity of additional models. Here, « is a scaling
factor that ensures the ensemble accuracy remains bounded. As N,
increases, the diversity parameter d'-! gradually diminishes, reflecting
diminishing returns in ensemble accuracy as more models are included.

To measure the diversity between base models, we calculate the
pairwise dissimilarity of their outputs on the same input dataset. For
classification tasks, it is defined as the proportion of input samples
where two models produce different predictions. Alternatively, for
probabilistic outputs, the dissimilarity can be calculated as the average
absolute difference in predicted probabilities. The overall diversity of
the ensemble is then obtained by averaging the pairwise dissimilarities
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across all model pairs. This approach ensures that higher diversity
corresponds to greater heterogeneity among the models, which is ben-
eficial for ensemble performance, as noted in [25]. Similarly, the
ensemble accuracy of models with different structures can be modeled
as Eq. (9).

d, d,
; b e B
AtL

= max(Ay, ) + a(dy,m, +( )

dmlrn4dm;rn4dm3rn4 )3 g ©)
Ny
- d Ng
+ 5 ; oy )V E)
where N is the number of models of different ensemble structures,
m, € [1,2,..., M], where p = {1,2,..., N} represents the serial number
of different model structures. In fact, when m, = m and dum, = dms
Eq. (8) is a special case of Eq. (9). Therefore, the ensemble accuracy of
all models selected by a user (including different architectures and the
same architectures) can be obtained directly based on Eq. (9). From the
perspective of accuracy, each user selects a group of edge servers, and
the optimal scheme selected by all users maximizes the average value
of all users’ task accuracy, which can be expressed as follows:
1 "VII
_ EL
=g 3L a

" i p=1

5. Ensemble deep reinforcement learning design

To address the above problem, we first define some crucial equa-
tions for the Markov decision process to model the process of users
selecting edge servers. Then the edge servers selection algorithm is
obtained. Finally, the generation of the base models ensemble for edge
intelligence is introduced.

5.1. Markov decision process

To better model the edge server selection process, we first define
some related equations, such as the total upstream and downstream
power, the total upstream and downstream bandwidth, and the total
delay of the system, shown as Eqgs. (11) to (15) respectively. To improve
the overall performance of a system, it is necessary to reduce the power
and bandwidth loss, reduce the delay and increase the accuracy.

N, Ni

Py =) ) PYE (1)
n=1 i=1
N, N:

Py =22Pn?L (12)
n=1 i=1
N, Ni

Byp=2 > Bi* (13)
n=1 i=1
N, Ni

BpL =2, > B (14)
n=1 i=1

Ty =max {1, } (15)

Based on the analysis, while it is possible to reduce delay by moving
closer to specific edge servers, this typically results in accessing a
smaller subset of the available models, thus limiting diversity. The
inherent trade-off between minimizing delay and maximizing diversity
remains because achieving large diversity generally requires accessing
models distributed across more distant servers, which can introduce
additional delay. Therefore, in most scenarios, small delay and large
diversity cannot be fully achieved simultaneously. To analyze how to
improve system performance, we use the deep reinforcement learning
method.

It is worth noting that when deploying ensemble models on edge
computing devices, there are notable differences in latency compared

to centralized or cloud-based systems. While edge devices may have
limited computational resources, leading to longer processing times
for complex ensemble models, they benefit from reduced transmission
latency due to their proximity to the user. In scenarios where network
latency is the primary bottleneck (e.g., high-bandwidth or real-time ap-
plications), edge computing significantly outperforms centralized sys-
tems by lowering the overall delay. However, for computationally
intensive tasks, there can be an increase in local processing time.
Therefore, the choice of where to deploy ensemble learning, on the
edge or in the cloud should depend on the specific use case, whether
prioritizing fast processing or minimizing network latency.

Therefore, to analyze how to improve system performance, we use
the deep reinforcement learning method. The definition of environ-
ment, state, action and reward is very important in deep reinforcement
learning.

System environment: We consider that there are S, =
{1,2,....m, ..., M} models with different structures. The Model dis-
tribution [M;, M,,..., My | represents the deployment of models of
different structures on edge servers. In addition, the environment
contains the transmission power and channel bandwidth required for
each user to communicate with each edge server.

System state: If the edge server § has been selected by a certain
user n, represented as s € {0, 1}, s = 1 means selected, 0 is otherwise.

System action: If the user » selects edge server S, represented as
a € {0,1}, a = 1 means selected, 0 is otherwise.

System reward: The reward function is designed to balance various
performance metrics, including time consumption, power, bandwidth,
and accuracy.

R = Ty + B(Pyy + Ppp)+ A(Byp + Bpy) +6
tmp T A

(6)
avg

where, u, f, 4, and @ are coefficients. These coefficients may vary de-
pending on the scenario. The 4,,, is served to penalize lower accuracy,
ensuring that the immediate reward R,,,, decreases as accuracy drops.
To ensure the objective of minimizing the average time consumption
of the system and achieving the maximum average task accuracy, we
hereby define the system reward by using the negative exponential
function to normalize the Ry
bounded and emphasizes differences between high and low rewards.

ie, R = e Rwr which ensures it is

5.2. Base models ensemble generated for edge intelligence

5.2.1. Basic principle

Compared to ensembles focused solely on improving accuracy,
ensemble-based edge Al introduces two key differences in base model
design. First, accuracy-focused ensembles pay little attention to model
complexity, whereas edge intelligence requires simpler base models to
fit within the limited resources of edge servers. Second, the accuracy-
oriented design tends to have base models as diverse as possible.
In this case, if one of the base models is not available (e.g, edge
connection breaks or server crashes), the accuracy of the ensemble will
decrease significantly. To enhance the reliability of the ensemble-based
edge Al system, intentional similarity among base models is essential.
This ensures that even if one model fails, the ensemble can maintain
high accuracy. In general, to meet the requirements for performance,
resource constraints on edge and system reliability at the same time,
the ensemble system prefers to have more and simpler base models,
so that the failure of a single base network has negligible influence on
the task performance. This principle differs from the approach used in
accuracy-focused ensembles.



Z. Gao et al

Table 1 Table 3
Parameter setting (Part I). Experimental results.
Parameter Value Parameter Value Parameter Value No. of users 1 2 3 4 5 6
A 0.100 A, 0.100 Ay 0.100 Delay 1.050 1.058 1.058 1.111 1.106 1.111
A 0.100 A, 0.100 Ay 0.100 Power 35.935 64.762 96.502 118.515 145.752 171.799
d, 0.100 dy 0.101 dy 0.099 Bandwidth (x10%) 0.224 0.431 0.651 0.812 0.987 1.145
dys 0.110 dyy 0.111 dyy 0.109 Accuracy (%) 92,210 92260 92,207 92.230 92,208 92,223
H 0.500 il 0.500 A 0.500
a 0.100 o 0.100
Table 2 6. Case studies for ensemble-based edge intelligence
able
Parameter setting (Part II). 6.1 . I
3 ESs By,. Bp,:500 Hz-1000 Hz; P, P, 1 W-1.3 W 1. Experimental sewup
3 other ESs B, By, :1000 Hz-1500 Hz; F;,, P,;:1.3 W-2 W
6 other ESs By, By, 11500 Hz-2000 Hz; Py, Pp,:2 W-3 W Tables 1 and 2 show the settings of experimental parameters, and
The other ESs By, Bp;:2000 Hz-3000 Hz; Pyy, Ppp:3 W-5 W we employ 3 models in the experiment. In addition, we set the maxi-

5.2.2. Low-cost heterogeneous models generated

Based on the principles discussed earlier and the observation that
diverse structures efficiently generate variety, we propose two methods
for constructing base models for edge intelligence. One approach is
to use models that have the same unit structure but vary in the
number of layers. The second method uses networks with different
compression rates while maintaining the same complex architecture.
These techniques naturally include both diversity and similarity in the
base networks.

Within the realm of popular deep neural networks (DNNs), several
models include identical unit structures but vary in terms of their
layers. ResNets consist of many networks that share the same residual
module but have varying numbers of layers. For CIFAR-10, these layers
are {20, 32, 44, 56, or 110}, while for ImageNet, they are {18, 34,
50, 101, or 152}. GoogleNet is built by stacking many Inception
modules together. To address the issue of gradient vanishing that occurs
throughout the training process, softmax layers are included in the
output of some Inception modules. Conversely, network compression is
a more straightforward approach to creating models with varying levels
of complexity. In general, networks that are deeper or less compacted
are anticipated to provide superior task performance.

The model segmentation strategy involves selecting the model with
the highest performance and dividing it into many parts for dispersed
deployment on the edge. Alternatively, we choose several simpler mod-
els that have lesser performance and rely on ensemble methods to get
high performance. This technique allows for the adaptive selection of a
base model with varying complexity based on the resource limitations
of the edge server. By utilizing edge servers with comparable resources,
these two approaches can be combined to create heterogeneous struc-
tures with similar levels of complexity. As an example, ResNet 20, 32,
and 44 may be compressed with pruning rates of 20%, 30%, and 40%,
respectively.

While the primary focus of this study is on validating the cloud-
edge-end integrated system architecture and model deployment strate-
gies, the experimental results presented in Figs. 5 and 6 are consistent
with the goals of the ensemble DRL design. The choice to focus on
these figures, rather than DRL-specific evaluations, was made to es-
tablish the foundational performance metrics related to system delay
and reliability. The improvements demonstrated in these areas through
optimized deployment and resource allocation strategies suggest that
the DRL method, which aims to dynamically optimize these aspects,
would likely be effective in further improving the overall performance
of the system. Although a direct empirical validation of the RL method
is not included in this study, the alignment between the results and
the objectives of the RL method provides a strong foundation for its
proposed application.

mum number of edge servers selected per user to 5, and the number of
users is less than 7.

Table 3 highlights the trade-offs between delay, power consump-
tion, bandwidth usage, and accuracy across different system configura-
tions. Based on the results, as the number of users increases (i.e., from
1 to 6), the delay rises from 1.050 s to 1.111 s, power consumption
increases from 35.935 W to 171.799 W, and bandwidth increases from
0.224 % 10° to 1.145 x 10°. The accuracy remains relatively stable, rang-
ing from 92.207% to 92.260%. The results show that reducing delay
often increases power and bandwidth usage due to the need for faster
processing and communication. Conversely, minimizing power and
bandwidth typically leads to higher delays. Accuracy, while generally
improved with higher resource usage, can be maintained at an optimal
level through careful balancing of these factors. This analysis under-
scores the optimization problem’s goal of minimizing delay, power, and
bandwidth while maximizing accuracy, demonstrating the importance
of finding configurations that best navigate these trade-offs.

Furthermore, we present two case studies that demonstrate the
efficacy of ensemble-based edge intelligence, as shown by experimen-
tal data. The first ensemble consists of ResNets with varying layers,
whereas the second ensemble consists of pruned VGGNets with varied
pruning rates. Each case study begins by introducing the implemen-
tation of basic models, followed by the execution of three kinds of
analysis.

The first objective is to demonstrate that a collection of numerous
weak base networks may achieve comparable or superior performance
compared to a complex network with similar total computational com-
plexity. The second objective is to demonstrate the reliability of the
ensemble system. The outcomes of these two components may demon-
strate the superiority of the proposed scheme compared to the model
segmentation system. Additionally, the impact of using different num-
bers of data on the overall performance of the ensemble is also shown.
The findings are derived exclusively from the PyTorch framework using
the CIFAR-10 dataset. The dataset comprises 60,000 images distributed
over 10 categories. Specifically, 50,000 images are allocated for train-
ing purposes, while the remaining 10,000 images are designated for
testing. Furthermore, the ensemble strategy used in the subsequent tests
is averaging the category scores, since the base models exhibit similar
performance. The results were derived from multiple independent runs
to ensure statistical significance and reliability.

Initially, we conducted the ensemble learning by using ResNet-20
models. The optimization framework is designed to minimize delay
across the cloud-edge-end architecture, balancing this objective with
the need for efficient resource allocation.

Fig. 5 validated the system’s efficiency in utilizing low-complexity
base models at the edge and demonstrates that the ensemble accuracy
surpasses 93% when there are 3 ResNet-20 models. However, even
with 10 ResNet-20 models, the ensemble accuracy remains below 94%.
The performance exhibits a consistent upward trend as the number of
models in the ensemble grows. Specifically, the accuracy dramatically
rises from 1 to 2 and stabilizes from 3 onwards. It is demonstrated
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Fig. 6. Performance of the ensemble of multiple VGG16 with 0.2 pruning rate.

Table 4

Performance and complexity of base ResNets.
Base ResNets 20 32 44 56 110
Accuracy (%) 90.27 90.88 91.17 91.8 91.96
Parameters (M) 0.27 0.46 0.66 0.85 1.7
Complexity (x107) 4.09 6.95 9.80 12.66 25.5

that the proposed architecture achieves high accuracy with minimal
resource consumption, highlighting its ability to balance performance
and efficiency in edge scenarios. The results validate the system’s
design principle of distributing lightweight models across edge servers
to reduce latency and computational burden. Hence, in the following
scenarios, we use a combination of three different ResNet models for
our investigation.

Fig. 6 highlights the performance of pruned VGG16 models, which
were tested to evaluate the system’s adaptability to
resource-constrained edge environments, demonstrating that when the
number of VGG16 models is 3 and a pruning rate of 0.2 is used,
the ensemble process exhibits a consistent accuracy trend. The curve
representing the accuracy has gone beyond the first rapid develop-
ment stage and is approaching a plateau. The results demonstrated
that even with significant pruning, the ensemble accuracy remained
above 90%, validating the architecture’s efficiency in maintaining high
accuracy while reducing computational complexity. This experiment
underscores the system’s ability to effectively utilize limited edge
resources, making it suitable for low-latency Al applications in dynamic
edge environments. Thus, we selected three pruned VGG16 models for
the subsequent case study.

6.2. Ensemble of shallow ResNets

6.2.1. Implementation of ResNets with different layers

This case study utilizes an open-source PyTorch code for ResNet
[33]. Each ResNet in this part is trained using all the images in the
training set. As stated in Ref. [7], the weight decay and momentum

Table 5

Performance and complexity of ensemble of multiple ResNets. # 1 is the ensemble of
ResNet-20, ResNet-32 and ResNet-56. # 2 is the ensemble of ResNet-20, ResNet-44
and ResNet-56. # 3 is the ensemble of ResNet-32, ResNet-44 and ResNet-56. # 4 is
the ensemble of three ResNet-56s.

Index Ensemble scheme Complexity Accuracy Diversity
#1 20 + 32 + 56 23.7 93.22% 6.35%
#2 20 + 44 + 56 26.5 93.5% 6.23%
#3 32 + 44 + 56 29.4 93.5% 6.45%
# 4 56 * 3 37.98 93.49% 6.18%

values are assigned as 0.0001 and 0.9, respectively. The initial learning
rate is set at 0.1 and is then reduced by a factor of 10 at the 32,000
and 48,000 iteration marks.

Table 4 presents the values for the volume of parameters, computa-
tion complexity, and classification accuracy on CIFAR-10 for ResNets
with varying numbers of layers, given the specified conditions. The
complexity is quantified by the number of floating point multiplications
over all convolution layers and fully connected layers. According to
Table 4, the ResNet-20 model has an accuracy of 90.27%, which
increases when additional layers are added to the ResNet models. The
ResNet-110 model reaches an accuracy of 91.96%. Furthermore, the
magnitude of parameters and computational complexity have a roughly
linear relationship with the number of layers.

6.2.2. Performance of model diversity for ResNets

If the model segmentation approach is applied for edge intelligence
with ResNets, ResNet-110 will be selected to be segmented. In our case,
different ensembles can be constructed based on the ResNets with fewer
layers. Table 5 displays the complexity and accuracy of four ensemble
strategies. The first three schemes use ResNets with varying layers as
foundational models, while the fourth strategy serves as a benchmark
system, using three ResNet-56 models with independently randomized
weights.

From Table 5, it is evident that all the ensemble frameworks outper-
form ResNet-110 in terms of accuracy. The performance enhancement
achieved by the ensemble approach is confirmed using two distinct
methods. The total complexity of the first three schemes is similar to
that of ResNet-110, indicating that the heterogeneity of the models
effectively enhances task performance without increasing complexity.

Furthermore, the accuracy of the first three strategies is comparable
to or greater than the combined accuracy of three ResNet-56 models.
This demonstrates that the variation across dissimilar models may
contribute to sustaining classification accuracy while reducing overall
complexity.

To provide proof for the second conclusion, diversity analysis is
performed on each of the ensemble schemes according to Eq. (1), and
the results are listed in the last column of Table 5. As we can see,
the diversity for the first three schemes is higher than that for the last
scheme.

6.2.3. Effect of data differences for ResNets

To examine the impact of data discrepancies on heterogeneous base
models, we perform additional experiments to assess the level of variety
they bring. Specifically, the data exchange strategy suggested in [33]
is used to modify the overlap ratio within the training data set for each
base model. The classification accuracy for each ensemble scheme with
varying sizes of the training data set is shown in Fig. 7. It illustrates
the classification accuracy of different ensemble schemes under varying
training dataset sizes. The results demonstrate the impact of resource
allocation strategies on system performance, particularly in terms of
maintaining classification accuracy across different dataset conditions.
This improvement is shown even in the case of the final scheme, which
combines three ResNet-56 models.

The performance of an ensemble system depends on two factors:
the diversity among base models and the performance of each model.
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Greater diversity ensures that models contribute complementary pre-
dictions, enhancing the ensemble’s overall accuracy. At the same time,
high-performing base models ensure that the ensemble’s baseline per-
formance remains strong. Balancing these two factors is critical to
optimizing the ensemble’s effectiveness. Fig. 8 illustrates the trade-
off between diversity and accuracy in ensemble systems as the size of
training sets increases. Smaller training sets lead to greater diversity
among base models due to higher variations in the data, but this also
results in lower accuracy for each model. However, this leads to a fall
in the accuracy of each base model. In this scenario, the decline in
the accuracy of the base models has a more significant impact on the
overall performance of the ensemble compared to the advantage gained
by increased variety.

6.3. Ensemble of pruned VGGNets

6.3.1. Implementation of VGGNets with different pruning rates

This case study utilizes the VGG16 architecture, which consists of
13 convolution layers and 3 fully connected layers. The construction
of the model is done using an open-source PyTorch code specifically
designed for the CIFAR-10 dataset [34]. In this assessment, the weight
decay and momentum values are set to 0.0001 and 0.9, respectively.
The initial learning rate is set to 0.1 and is reduced by a factor of 10
at iterations 30, 60, and 90. The training process concludes after 100
iterations.

In this part, we use the widely used magnitude-based pruning
technique introduced in [35] to create a pruned network. The pruning
procedure comprises four sequential steps: (1) Perform training on the
CIFAR-10 dataset using the original VGG16 model. (2) Arrange all the
weights based on their magnitude; (3) Eliminate the specified fraction
of the weights; (4) Adjust the weights of the remaining connections
to optimize their performance. The performance of the compressed
networks with various pruning rates is shown in Table 6, according to
this technique. The last row displays the volume of leftover weights for
various pruning rates, which is directly related to the computational
complexity. As anticipated, the network that undergoes a larger prun-
ing rate exhibits a decrease in accuracy. However, the decline is very
insignificant, even when 70% of the weights are pruned.

Table 6

Accuracy of VGG16 with different pruning rates.
Pruning rate 0 0.5 0.6 0.7 0.8
Base network VGG-16 VGG-50 VGG-40 VGG-30 VGG-20
Ace. (%) 87.68 87.64 87.12 87.03 86.27
Weights (M) 3s 19 15.2 11.4 7.6

Table 7

Performance of ensembles of pruned VGG16.
Index #1 #2 #3 #4
Ensemble 20430+ 40 20+ 30+ 50 40 %3 50 %3
Accuracy 90.41% 90.59% 90.37% 90.5%
Diversity 9.96% 9.79% 9.26% 9.27%
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Fig. 9. Accuracy of ensemble schemes with different sizes of training sets.

6.3.2. Performance of model diversity for VGGNets

This section evaluates four different ensemble strategies. The first
two approaches use pruned VGG16 models with varying rates of prun-
ing, while the latter two serve as reference models that utilize base
models with identical pruning rates (with independently randomized
weights for training).

The accuracy of the four different ensemble schemes is shown in
Table 7. Similar to the first case study, the ensemble of heterogeneous
networks (# 1 or # 2) achieves better performance than that of homo-
geneous networks (# 3 or # 4) with much lower overall complexity.
This could be explained by the diversity measures shown in the last
row of Table 7. As we can see, the diversity measures for scheme # 1
or # 2 are higher than that for scheme # 3 or # 4 which proves that
the diversity in the ensemble system compensates for the performance
loss of individual base models, so that the classification accuracy can
be maintained with less overall complexity.

6.3.3. Effect of data differences for VGGNets

The accuracy and diversity of each ensemble method are evaluated
using varying sizes of the training set. The corresponding outcomes are
shown in Figs. 9 and 10, respectively. It is evident that as the size of the
training data set rises, the accuracy of the ensemble system improves,
but the diversity between the base networks diminishes. This research
demonstrates once again that the enhancement in accuracy of the base
models has a greater impact on the overall performance of the ensemble
than the added variation resulting from changes in the data.

6.4. Fault tolerance capability

With the proposed ensemble based architecture, when one of the
edge servers fails, other servers can still provide the Al service coop-
eratively. In this case, the reliability is measured by the accuracy of
the ensemble of remaining base models. Specifically, for each ensemble
scheme in Tables 5 and 7, each based model is excluded from the
ensemble respectively, and the average accuracy of the ensemble of the
remaining base models is measured. Taking the ensemble scheme #1
(ResNet-20, ResNet-32, and ResNet-56) as an example, we average the
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Fig. 12. Reliability for an ensemble of pruned VGGNets.

ensemble accuracy of (ResNet-20, ResNet-32), (ResNet-20, ResNet-56)
and (ResNet-32, ResNet-56) as the reliability metric for this scheme.

The results for ensemble of diverse ResNets are shown in Fig. 11.
As we can see, the performance with one base model excluded is still
higher than that of ResNet-110 (91.96% in Table 4). This means that
the proposed ensemble scheme can still provide high quality service
when one edge server fails. In addition, we can see that the scheme
with higher complexity (the order of complexity is #4>#3 >#2>#1 as
shown in Table 5) also provides higher accuracy. This is because the
diversity between stronger base models is smaller than that between
weaker base models (as shown in Fig. 8), so excluding one base
model from the ensemble of strong ones introduce smaller performance
degradation.

The results for ensemble of pruned VGGS are shown in Fig. 12.
We can see that the ensemble accuracy with one edge server failure
is also higher than the accuracy of the original VGG-16 (87.68% in
Table 6). This confirms that the proposed ensemble based distributed
architecture can effectively improve the reliability of the Al service.

7. Conclusions and future work

In this paper, a cloud-edge-end integrated platform is proposed
for efficient and reliable edge Al based on the ensemble learning

approach, where the three procedures in ensemble learning are as-
signed to the cloud, edge, and the user, respectively, according to their
characteristics: the strong capability of the cloud is used for training
heterogeneous base models; the edge run base models independently
to provide instant responses to user input; the user obtains the final
result by combining the edge responses. A diversity-based deployment
scheme is proposed for a user-centric edge Al network and the principle
for the generation of base models is discussed.

The results of the experiment from two case studies yield sev-
eral significant findings: (1) A collection of weak base models can
outperform a powerful model with the same overall complexity. (2)
An ensemble of diverse models can achieve comparable performance
to that of uniform models but with significantly reduced complexity.
(3) The failure of an individual base model has minimal impact on
overall performance. (4) In enhancing ensemble performance, model
heterogeneity is more effective than variations in the data. The first
evidence demonstrates that the suggested strategy effectively resolves
the conflict between complexity and performance in the compression-
based solution for edge Al The second demonstrates that the inclusion
of diverse heterogeneous models is crucial for enhancing performance.
The last two demonstrate the benefits of the suggested scheme com-
pared to the model segmentation solution and the ensemble solution,
respectively, in terms of reliability and system performance based
on data differences. The cloud-edge-end integrated scheme is highly
adaptable to various edge Al applications in varied settings, and its
effectiveness is enhanced by the progress of edge computing and mobile
wireless networks.

While this study demonstrates the effectiveness of the proposed
method using CIFAR-10, further research is needed to explore its gen-
eralizability to other datasets, such as ImageNet, and different model
combinations. The method’s flexibility suggests that it could be adapted
to handle more complex data distributions and a variety of model
architectures. Future work will focus on applying the method to these
diverse scenarios to validate its broader applicability and significance
in different contexts.

CRediT authorship contribution statement

Zhen Gao: Writing - review & editing, Data curation, Conceptual-
ization. Daning Su: Writing — review & editing. Shuang Liu: Writing
- original draft, Methodology, Formal analysis, Data curation. Yuqi
Zhang: Writing — original draft, Methodology, Investigation, Formal
analysis. Chenyang Wang: Writing - original draft, Methodology,
Formal analysis, Conceptualization. Cheng Zhang: Writing — review
& editing, Validation, Methodology. Xiaofei Wang: Writing — review
& editing, Investigation, Conceptualization. Tarik Taleb: Writing —
review & editing, Methodology, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Part of this work was presented at the IEEE/CIC International
Conference on Communications in China, 11-13 August 2022, Fos-
han City, China, which is ted as Ref. [25]. This work was supported
by the National Natural Science Foundation of China (grant number
62171313).

Data availability

No data was used for the research described in the article.



Z. Gao et al

References

(1]

[2]

(3]

[4]
[5]
[6]
[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Parvaiz, M.A. Khalid, et al, Vision Transformers in medical computer
vision—A contemplative retrospection, Eng. Appl. Artif. Intell. 122 (2023)
106126.

R. Collobert, J. Weston, et al., Natural language processing (almost) from scratch,
J. Mach. Learn. Res. 12 (ARTICLE) (2011) 2493-2537.

J. Jeon, S. Lee, H. Choe, Beyond ChatGPT: A conceptual framework and
systematic review of speech-recognition chatbots for language learning, Comput.
Edue. (2023) 104898.

W. He, Y. Chen, Z. Yin, Adaptive neural network control of an uncertain robot
with full-state constraints, IEEE Trans. Cybern. 46 (3) (2015) 620-629.

K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, 2014, arXiv preprint arXiv:1409.1556.

C. Szegedy, et al., Going deeper with convolutions, in: Proceedings of the IEEE
CVPR, 2015, pp. 1-9.

K. He, X. Zhang, et al, Deep residual learning for image recognition, in:
Proceedings of the IEEE CVPR, 2016, pp. 770-778.

M. Ravinder, G. Saluja, S. Allabun, M.S. Algahtani, M. Abbas, M. Othman, B.O.
Soufiene, Enhanced brain tumor classification using graph convolutional neural
network architecture, Sci. Rep. 13 (1) (2023) 14938.

H. Khelifi, S. Luo, et al., Bringing deep learning at the edge of information-centric
internet of things, IEEE Commun. Lett. 23 (1) (2018) 52-55.

X. Wang, C. Wang, X. Li, V.C. Leung, T. Taleb, Federated deep reinforcement
learning for Internet of Things with decentralized cooperative edge caching, IEEE
Internet Things J. 7 (10) (2020) 9441-9455.

Y. Chen, Y. Sun, C. Wang, T. Taleb, Dynamic task allocation and service
migration in edge-cloud iot system based on deep reinforcement learning, IEEE
Internet Things J. 9 (18) (2022) 16742-16757.

C. Wang, H. Yu, X. Li, F. Ma, X. Wang, T. Taleb, V.C. Leung, Dependency-aware
microservice deployment for edge computing: a deep reinforcement learning
approach with network representation, IEEE Transactions on Mobile Computing
(2024).

X. Wang, Y. Han, V.C. Leung, D. Niyato, X. Yan, X. Chen, Convergence of edge
computing and deep learning: A comprehensive survey, IEEE Commun. Surv.
Tutor. 22 (2) (2020) 869-904.

S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, J. Du, On-demand deep model compression
for mobile devices: A usage-driven model selection framework, in: Proceedings
of the 16th Annual International Conference on Mobile Systems, Applications,
and Services, 2018, pp. 389-400.

Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, L. Tang,
Neurosurgeon: Collaborative intelligence between the cloud and mobile edge,
ACM SIGARCH Comput. Archit. News 45 (1) (2017) 615-629.

Z. Zhao, et al., ECRT: an edge computing system for real-time image-based object
tracking, in: Proceedings of the 16th ACM Conference on Embedded Networked
Sensor Systems, 2018, pp. 394-395.

S. Teerapittayanon, B. McDanel, H.-T. Kung, Branchynet: Fast inference via early
exiting from deep neural networks, in: 2016 23rd International Conference on
Pattern Recognition, ICPR, IEEE, 2016, pp. 2464-2469.

Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms, Chapman and
Hall/CRC, 2019.

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
[31]
[32]

[33]

[34]

[35]

K. Sirinukunwattana, et al, Locality sensitive deep learning for detection and
classification of nuclei in routine colon cancer histology images, IEEE Trans.
Med. Imaging 35 (5) (2016) 1196-1206.

P. Sahu, D. Yu, M. Dasari, F. Hou, H. Qin, A lightweight multi-section CNN
for lung nodule classification and malignancy estimation, IEEE J. Biomed. Heal.
Inform. 23 (3) (2018) 960-968.

P. Pandey, A. Deepthi, B. Mandal, N.B. Puhan, FoodNet: Recognizing foods using
ensemble of deep networks, IEEE Signal Process. Lett. 24 (12) (2017) 1758-1762.
M. Duan, K. Li, K. Li, An ensemble CNN2ELM for age estimation, IEEE Trans.
Inf. Forensics Secur. 13 (3) (2017) 758-772.

C. Ding, D. Tao, Robust face recognition via multimodal deep face representation,
IEEE Trans. Multimed. 17 (11) (2015) 2049-2058.

G. Pons, D. Masip, Supervised committee of convolutional neural networks in
automated facial expression analysis, IEEE Trans. Affect. Comput. 9 (3) (2017)
343-350.

Z. Gao, Y. Zhang, W. Sun, Artificial intelligence service by satellite networks
based on ensemble learning with cloud-edge-end integration, in: 2022 IEEE/CIC
International Conference on Communications in China, ICCC Workshops, IEEE,
2022, pp. 158-163.

Y. Chang, X. Huang, Z. Shao, Y. Yang, An efficient distributed deep learning
framework for fog-based IoT systems, in: 2019 IEEE Global Communications
Conference, GLOBECOM, IEEE, 2019, pp. 1-6.

Y. Wang, T. Nakachi, Secure face recognition in edge and cloud networks: From
the ensemble learning perspective, in: ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP, IEEE, 2020,
pp. 2393-2397.

W. Chen, Y. Yu, et al.,, Time-efficient ensemble learning with sample exchange
for edge computing, ACM Trans. Internet Technol. (TOIT) 21 (3) (2021) 1-17.
Y. Qin, D. Wu, Z. Xu, J. Tian, Y. Zhang, Adaptive in-network collaborative
caching for enhanced ensemble deep learning at edge, 2020, arXiv preprint
arXiv:2010.12899,

T.S. Rappaport, et al., Wireless Communications: Principles and Practice, vol. 2,
prentice hall PTR, New Jersey, 1996.

Y.C. Hu, M. Patel, et al., Mobile edge computing—A key technology towards 5G,
ETSI White Pap. 11 (11) (2015) 1-16.

H.R. Chi, A. Radwan, An overview of on-demand deployment optimization of
small cells, IEEE Netw. (2020).

Y. Idelbayev, Proper ResNet Implementation for CIFAR10/CIFAR100 in PyTorch
that matches description of the original paper, available on Github at https:
//github.com/akamaster,/pytorch_resnet_cifar10.

L. Wang, G. Ding, Neural network pruning PyTorch implementation, available
on Github at https://github.com/wanglouis49/pytorch-weights_pruning.

S. Han, J. Pool, et al., Learning both weights and connections for efficient neural
networks, 2015, arXiv preprint ar¥Xiv:1506.02626.



