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Abstract—To support flexibility and scalability, SG networks
have embraced microservice-based architectures, which re-
quire secure and efficient inter-service communication. This
is managed by the service mesh layer, which is now a growing
target for cyberattacks. While existing platforms like Istio and
NGINX use mutual TLS (mTLS) to secure communications,
mTLS imposes considerable resource overhead, undermining
the goals of scalability and lightweight operation. To over-
come this challenge, we propose an Encryption as a Service
(EaaS) framework for Kubernetes that mitigates common at-
tacks such as man-in-the-middle, distributed denial-of-service
(DDoS), and eavesdropping. Experimental analysis shows
that EaaS significantly improves response time and reduces
adversary success compared to traditional microservice-side
cryptographic handling, with gains varying across different
scenarios and cryptographic/deception configurations. While
higher EaaS replication slightly increases CPU and memory
usage, it leads to better security outcomes and faster service
performance. The successful real-world implementation and
deployment of the EaaS framework further corroborated these
findings.

Index Terms—Kubernetes, Service Mesh, Encryption as a
Service (EaaS), Security.

I. INTRODUCTION

To enhance the scalability and modularity of 5G net-
works, services are decomposed into microservices [1]. This
microservice architecture enables independent deployment
and flexible resource allocation. However, enabling secure
and efficient communication among microservices remains
a challenge. Modifying the microservices directly to sup-
port communication is inefficient, as it requires extensive
changes to existing codebases. To address this, a service
mesh layer is introduced [2, 3, 4], where communication
tasks are offloaded to proxies (sidecars) attached to each
microservice. These sidecars intercept both outgoing and
incoming traffic, apply the required transformations, and
forward the data accordingly [5, 6].

While the sidecar model is common, alternative service
mesh architectures, such as library-based and node-based
designs, also exist [7, 8, 9], although their operational

concepts are largely similar. A critical component of secure
microservice communication is Mutual Transport Layer
Security (mTLS), where proxies authenticate endpoints and
encrypt data using shared keys. Service mesh platforms like
Istio [10] and NGINX [11] widely implement this protocol
[12, 13, 14, 15].

Despite its security benefits, mTLS introduces signifi-
cant resource overhead, especially on resource-constrained
pods within Kubernetes. This overhead may contradict the
lightweight nature of microservices and hinder scalability.

To overcome these limitations, we propose an Encryp-
tion as a Service (EaaS) framework that secures service
mesh communications in Kubernetes and mitigates three
common attack vectors. The high-level architecture of the
proposed framework is depicted in Figure 1. The main
contributions of this paper are:

o We analyze three attack scenarios targeting service
mesh environments: Man-in-the-Middle (MitM), Dis-
tributed Denial of Service (DDoS), and eavesdropping,
and explain their impact on the confidentiality of
microservice communication.

« We propose specific countermeasures for each at-
tack and develop a unified mitigation strategy based
on secure message structures and encryption control
mechanisms.

o We design and implement the EaaS framework that
integrates these protections into Kubernetes-based de-
ployments.

In Section II, we examine three potential attack scenarios
targeting service mesh. Section III introduces the proposed
EaaS framework, and in Section IV, we evaluate its security
effectiveness. Section V gives a case study, and Section VI
summarizes the key findings.

II. ATTACKS AND PROPOSED SOLUTIONS

In this section, we discuss three main attack scenarios
against the confidentiality and availability of service mesh
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Fig. 1: A brief architecture of Securing Service Mesh in
Kubernetes

and the proposed solutions for each of them.

Scenario 1 (Man in the Middle attack). In this attack
scenario, the adversary changes the IP address of their
pods, to one of the pods that are involved in the service
chain. This may occur because the source microservice
sends its data to the malicious pod instead of the intended
destination pod. In this condition, the data is revealed to
the adversary. It is worth noting that Kubernetes does not
handle IP address conflicts, and as a result, this attack poses
a valid threat against Kubernetes.

Solution 1 (Man in the Middle attack). In the proposed
solution, data transmitted within the service mesh is en-
crypted, allowing only the intended microservice to decrypt
and access it. A trusted third-party component manages
this process by generating and distributing secret keys
exclusively to authorized microservices.

Scenario 2 ((Distributed) Denial of Service attack). In
this attack, the adversary floods a pod/microservice with
many requests. When the target pod receives them, it has to
decrypt them, which results in a huge resource consumption.
When the pod runs out of resources, the microservice cannot
handle legitimate requests either, resulting in a denial-of-
service attack.

Solution 2 ((Distributed) Denial of Service attack). Uti-
lizing the concept of EaaS can help us effectively use
the resources. In other words, if we consider third-party
components to perform the cryptographic processes, a mi-
croservice outsources a significant portion of its processing
load. In the case of facing flooded requests, it is only
responsible for checking a few bits to determine whether
the request is legitimate.

Scenario 3 (Eavesdropping attack). When a microservice
sends its raw data to the EaaS components to encrypt it,
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Fig. 2: The structure of the defined messages in the pro-
posed solution

during this transmission, there is also the possibility of
being eavesdropped on by the adversary. In other words,
similar to the man-in-the-middle attack, the adversary may
be located between the microservices and the EaaS compo-
nents, allowing them to read the confidential data.

Solving the trade-off between security and its cost is
always challenging. However, we can make the attacks more
costly to the adversaries. To waste the adversary’s resources
in Scenario 3, we have proposed the following solution.

Solution 3 (Eavesdropping attack). To increase the cost
of eavesdropping, fake messages are exchanged between
microservices and EaaS components. Only one message per
batch is genuine, identified by a secret token. This forces the
adversary to process all messages without knowing which
is real.

By combining the three proposed solutions, we present
a unified security approach that utilizes a third-party EaaS
framework structured as microservices. EaaS components
handle cryptographic operations for non-EaaS microser-
vices. EaaS first encrypt outgoing traffic before reaching
the next service, while incoming traffic is decrypted before
delivery. The message structure between EaaS and non-
EaaS components is shown in Figure 2. Two message types
are defined: one for encryption requests (a) and another
for decryption (b). Each begins with s bits for the sub-
scriber IDidentifying the service providerand r bits for the
requester ID, representing the non-EaaS microservice. The
next n bits form a sequence number, incremented with each
request. Together, these fields form the request identifier. A
1-bit field indicates the request type: O for encryption, 1
for decryption. The p-bit pair field specifies the other party
in the communication (source or destination), and like the
requester ID, uses 7 bits. Encryption requests also include a
token for authentication. Hence, in ¢ bits are considered for
the token, which is not considered by the other message
type. Finally, the last field of both messages is the input
data, which is the raw data in encryption requests and the
encrypted data in decryption requests. The number of bits
in this field depends on the block sizes of the considered
cryptographic algorithms.
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Fig. 4: The registration workflow in the proposed EaaS
framework.

Now, we give an example of how the messages are
constructed. Assume that the service provider owning the
sample service in Figure 3 has an identifier of 54, with
s = 8 and r = 5, and a token equal to 01, which means
t = 2. When its first microservice wants to send data, say
01101000100010, to the second microservice, and it is its
ninth request with n = 12, four messages as shown in
Figure 3 are generated.

III. PROPOSED FRAMEWORK

The proposed EaaS framework is composed of four
core components: Coordinator, Registrar, Key Manager,
and Cryptor. The Coordinator oversees request handling
and orchestrates interactions among the other components.
The Registrar assigns cryptographic services to providers
based on their specified requirements and desired level
of deception. The registration workflow is illustrated in
Figure 4.

A service provider registers by sending its identifier
(S_ID) and the desired deception factor (D_Factor) to the
registrar. The registrar generates a token accordingly and
forwards it, along with the subscriber’s ID, to a coordinator,
which then assigns resources and returns its own ID (C_ID).
The registrar relays the coordinator’s ID and token back to
the subscriber, who can then share this information with its
microservices.

Broadcast response Generate token

Store/check info Registrar

Coordinator

Fig. 5: The service request workflow in the proposed EaaS
framework.

The key manager generates cryptographic keys and as-
signs them to specific pairs of microservices. The cryptor
simply performs the encryption and decryption processes.

The workflow for requesting a cryptographic service is
shown in Figure 5.

In the first step, a microservice (the requester in our
framework) sends an identifier (ID) comprising its sub-
scriber ID, microservice ID, and request sequence number
along with the request type (Type), the target communi-
cation pair (Pair), and input data (Inp) to the coordinator
assigned to its subscriber (Step 1). For encryption requests,
a token is also included. The coordinator validates the token;
if it does not match the one assigned to the subscriber, the
request is discarded. Otherwise, the coordinator forwards
the ID and Pair to the Key Manager (Step 2). The Key
Manager either generates or retrieves the corresponding
key (Key) and returns it to the coordinator (Step 3). Upon
receiving the key, the coordinator packages it with the ID,
request type, and input data, then sends it to a Cryptor
(Step 4). The Cryptor performs encryption or decryption
and returns the output (Out) to the coordinator (Step 5),
which then forwards it to the original requester (Step 6).
For decryption requests, the token is also returned to the
requester.

The coordinator maintains two databases: one for sub-
scriber information and another for requests. Upon receiving
a packet, it extracts the source and payload, then performs
actions depending on the source component. If the source is
a registrar, the coordinator extracts the subscriber identifier
and token from the payload, stores them in the subscribers’
database, finds an appropriate coordinator for the subscriber,
and sends the coordinator information back to the registrar.
If the source is a key manager, the coordinator extracts
the request identifier and key from the payload, retrieves
request details from the requests database, selects a cryptor,
and forwards the request information and key to it. If the
source is a cryptor, the coordinator extracts the request
identifier and output, then retrieves associated subscriber



and request information. For encryption requests, the output
is sent directly to the requester. Otherwise, to protect
privacy, the coordinator sends multiple messages, including
fake data based on the subscriber’s token length. If the
source is a subscriber, indicating a request from one of its
microservices, the coordinator extracts request details and
verifies the token if the request is of encryption type. If
the token is invalid, the packet is ignored. Otherwise, the
request is stored, and the relevant key manager is notified
with the request information. If the packet originates from
an unknown source, an error message is sent back.

IV. SECURITY AND OVERHEAD ANALYSIS

To deploy our proposed solution in a Kubernetes en-
vironment, we developed a Python-based proxy using the
scapy module. This proxy captures network packets and
forwards them to the appropriate EaaS component. When
microservices run on Kubernetes pods, the proxy is de-
ployed alongside them on the corresponding pods.

To evaluate the security effectiveness of our framework,
we implemented a distributed database service in which
microservices exchange passwords to access the database.
We simulated an attack by compromising one of the pods
and allowing the adversary a limited time to retrieve the
password and access the database. An attack is considered
successful if the adversary manages to read at least one
database.

To evaluate the proposed framework, we implemented
and compared various symmetric cryptographic algorithms,
including DES, AES, and Blowfish. Three deployment
scenarios were considered based on the number of EaaS
component replicas. In scenario «, each component has a
single replica. Scenario (3 includes one coordinator and two
replicas each for the Key Manager and Cryptor. Scenario A
scales the system with five replicas of each component. In
all scenarios, if no available component is found to process a
request, the request is dropped and the raw data is forwarded
to the next microservice.

For baseline comparison, we also implemented two addi-
tional setups: one with no encryption and another with lo-
cal encryption, where microservices perform cryptographic
operations themselves. In the latter case, if a microservice
lacks sufficient resources, it transmits the data in plain form.

The impact of different deception factor values on the
adversary’s success rate is illustrated in Figure 6a.

The first point about this chart is its descending nature.
As the value of the deception factor increases, the number of
successful attacks decreases. This is because the adversary
must process and verify the links for a longer period, as
the number of fake requests increases when the deception
factor is high. The average values of the reported results
show that our framework reduces the adversary’s success
rate by about 61% and 45% compared to the case that no

encryption method and only local encryption are utilized,
respectively. The reason that the baselines related to No
Encryption and Local Encryption are horizontal is that the
changes in deception factors do not affect them. Moreover,
the adversary’s success rate in Local Encryption scenarios
is not 100% because some of the data can find available
resources and are encrypted. Finally, we can see that the
security approach in scenario A outperforms scenario o and
B by about 24%. This is because the EaaS load is distributed
among more replicas in this scenario and almost all the
transferred data can be encrypted in this case.

To evaluate the overhead of our proposed EaaS frame-
work, we have compared the response times of non-EaaS
services in Figure 6b. We can see that the service response
time when our framework implements DES is higher than
when it implements AES. The response time for both of
these cases is also higher than the case of Blowfish as
the cryptography algorithm served by our framework. The
other point about this graph is that the response time when
scenario A is applied is lower than that of scenarios v and
(. This is because the load is distributed among a higher
number of replicas in scenario .

To complement the security analysis, we examined how
increasing the number of EaaS component replicas (c, 3,
A) affects system resource usage. As shown in Figure 6c¢,
higher replication improves security and performance but
significantly raises both CPU and memory consumption.
For example, CPU usage increases from 62% in scenario
a to 88% in scenario A. This highlights a clear trade-off,
and the number of replicas should be chosen based on both
security needs and available resources.

To clearly visualize the trade-offs between security,
performance, and resource usage in our proposed EaaS
framework, Figure 7 illustrates a stacked area chart based
on realistic values extracted from our experiments (see
Figures 10-12). The three plotted metrics include:

o Security Improvement: Derived by inverting the ad-
versary’s success rate under scenario A. As the de-
ception factor increases, the number of fake messages
confuses the attacker, reducing successful interception
and resulting in higher normalized security levels.

« Response Time Reduction: Based on the normalized
and inverted response time values when using Blow-
fish in scenario A (lowest among tested algorithms).
Offloading cryptographic operations to multiple EaaS
replicas significantly reduces latency as the load is
distributed.

« Resource Usage: Calculated using the normalized
CPU consumption of non-EaaS microservices in sce-
nario \. Increasing the number of fake or legitimate
encryption/decryption operations naturally increases
CPU load.

As shown in the figure, increasing the deception factor re-
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Fig. 7: Trade-off between security improvement, response
time, and resource usage.

sults in improved security and reduced response time, but at
the cost of higher resource consumption. This visual trade-
off helps determine an optimal operating point depending
on the system’s security requirements and infrastructure
constraints.

V. CASE STUDY: EAAS INTEGRATION WITH IOTSCP

In addition to the mobile IoT sensor use case, we further
evaluated the practicality and scalability of the EaaS frame-
work within an IoT-based Smart City Platform (IoTSCP).
To demonstrate the practical effectiveness and flexibility of
the proposed Encryption as a Service (EaaS) framework, we
implemented a real-world deployment centered on a rooted
Android phone functioning as a programmable IoT sensor
node within a cloud-native microservice environment. The
mobile device was prepared by installing Ubuntu 22, which
enabled low-level system access and the development of a
custom API interface for sensor data collection and remote

for different crypto- (c) Average CPU and memory usage for

non-EaaS microservices.

Y Bl PR

A il ik il
i

W

1l ‘.\VW “‘”‘f Il
.«fn MENE ‘\‘\

I
11

i ,!1 ,’,\M'y

‘\
i

(b) Encrypted Client-Server Communica-

tion
Fig. 8: Live deployment and monitoring of the EaaS
framework. (a) Real-time monitoring of environmental and
network metrics from a rooted Android phone as an IoT
sensor. (b) Secure, end-to-end encrypted data exchange
between the IoT device and the cloud.

control. Through this API, the phone exposes various real-
time system and network metrics, including temperature,
humidity, latency, and bandwidth, to the monitoring plat-
form. A Python-based passive Quality of Service (QoS)
monitoring agent was developed to capture latency, jitter,
and bandwidth metrics in real time. Latency is measured
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using TCP handshake timings, jitter is calculated as the vari-
ation in latency, and bandwidth (uplink/downlink) is pas-
sively recorded via operating system counters. This passive
approach avoids generating any synthetic network load, en-
suring that monitoring does not interfere with normal device
or service operation. All metrics collected from the phone
are formatted into timestamped payloads and transmitted
securely to the cloud using the EaaS API. The EaaS server
handles all cryptographic operations, performing encryption
and decryption transparently for each submitted sample.
Encryption algorithms and parameters can be reconfigured
on the fly by simply updating the API request, enabling
rapid adaptation to new security requirements or compliance
needs. Figure 8 shows the deployment: panel (a) features the
mobile sensor’s live monitoring dashboard, and panel (b)
presents real-time encrypted client-server communication
and performance metrics. The EaaS framework improved
response times, reduced adversary success rates, and low-
ered resource overhead compared to traditional methods.

VI. CONCLUSION

Service mesh enables communication among microser-
vices but is vulnerable to attacks such as man-in-the-middle,
(distributed) denial-of-service, and eavesdropping. This pa-
per proposes an EaaS component providing cryptographic
services to non-EaaS microservices. To thwart eavesdrop-
pers, fake requests are also sent. We define the mes-
sage structure between EaaS and non-EaaS microservices
and present a Kubernetes-based framework with detailed
algorithms. The reported results show that our platform
can reduce the adversary’s success rate by at least 45%
compared to the scenario of implementing a cryptographic
process by the non-EaaS microservices themselves. We plan
to improve the results by providing multiple cryptography
algorithms simultaneously and utilizing a machine learning
model that can determine the optimal algorithm in each
situation.
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