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Summary

In this paper, we propose a signature-based hierarchical email worm detection (SHEWD) system to detect e-mail
worms in large-scale networks. The proposed system detects novel worms and instantly generates their signatures.
This feature helps to check the spread of any kind of worm—known or unknown.

We envision a two-layer hierarchical architecture comprising local security managers (LSMs), metropolitan
security managers (MSM), and a global security manager (GSM). Local managers collect suspicious flows and
hand them to metropolitan managers. Metropolitan managers then use cluster analysis to sort worms from the
suspicious flows. The sorted worms are used to generate the worm signature which is relayed to the global manager
and then to all the collaborating networks. A separate scheme is proposed to automatically select suitable values
of the system parameters. This parameter selection procedure takes into account the current network state and the
threat level of the ongoing attack. The performance of the whole system is investigated using real network traffic
with traces of worms. Experimental results demonstrate that the proposed scheme is capable to accurately detect
email worms during the early phase of their propagations. Copyright © 2008 John Wiley & Sons, Ltd.
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1. Introduction

Internet worms have caused serious damage to network
resources in recent years [1]. Worms such as Code
Red, Slammer, Nimda, Witty, Beagle, NetSky, and
MyDoom have infected millions of computers and
have resulted in the loss of billions of dollars [2–5].
Worms can delete, steal, or modify files that belong
to the infected hosts. They can also launch distributed
denial of service (DDoS) attacks to specific targets.
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Aoba-ku, Sendai, Miyagi, Japan 980-8579.
†E-mail: taleb@aiet.ecei.tohoku.ac.jp
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Once they infect a host, they search for other vulnerable
targets by scanning, passive monitoring, and hit-listing
[5–7]. Along with the growing popularity of e-mails,
recent years have seen a significant rise in the number
of email worms. Protection of networks against e-mail
worms forms the focus of the research work outlined
in this paper.

Current intrusion detection systems (IDSs) are based
on approaches such as honeypot-based analysis, taint
analysis, traffic analysis, and signature matching.
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Signature matching remains is one of the most
popular techniques on account of its scalability,
accuracy, and cost-effectiveness. However, signature-
based approaches are applicable to only known
worms. Furthermore, they involve cumbersome work
and require significant time until an effective
and accurate signature is generated. An effective
worm control is possible only when the detection
and signature generation processes are carried out
automatically.

In this paper, we present a signature-based hierar-
chical e-mail worm detection (SHEWD) scheme to
detect and defend against e-mail worms. The proposed
system, which is an extension of works presented in
References [8,9], automatically detects novel worms
through an anomaly analysis-based module. The newly
detected worms are used to automatically generate the
signature for the propagating worm. The generated
signature is then added to a signature database to check
the spread of the worm through a cost-effective and
accurate signature matching mechanism.

In the proposed SHEWD system, the network
topology is divided into a number of metropoli-
tan areas. Each metropolitan area consists of a
metropolitan security manager (MSM) and a number
of local networks. Local networks are managed by
their respective local security managers (LSMs). A
global security manager (GSM) controls the whole
network topology and directly communicates with
MSMs. LSMs search for any worm-like or suspicious
e-mails propagating in their networks, and report
such e-mails to their corresponding metropolitan
managers. A MSM uses cluster analysis to sort
worms out of the suspicious contents transmitted
by its local managers. The MSM then automatically
generates signature from the sorted worms by using a
differentiation-based approach presented in Reference
[10]. It then sends the generated signature to the GSM.
Upon receiving signatures from MSMs, the GSM
relays the generated signature to all local networks
via MSMs.

The proposed system dynamically moderates also
the overall security of the whole network. High-
hierarchy components define the level of threat
posed by worms in their networks. Based on this
information, local managers change the security level
in their networks by adjusting three performance
metrics, namely false negative avoidance (FNA),
false positive avoidance (FPA), and performance
overhead (PO). LSMs define the minimum levels
of FPA and FNA, and the maximum level of PO

they can tolerate under the corresponding threat
level. They then search for the optimum parameter
values that can satisfy the defined performance
requirements. This enables SHEWD to automatically
detect novel worms and to instantly generate their
signatures.

The remainder of this paper is organized as follows.
Section 2 surveys some previous research work
related to worm detection. Section 3 portrays the
envisioned architecture under which the proposed
scheme is deployed. It also presents a detailed
description of the suspicious or worm-like flow
collection algorithm, the hierarchical agglomerative-
clustering method for sorting worms, and the automatic
signature generation process. Section 4 presents an
approach to automatically select optimum values
for the system parameters. The performance of the
proposed scheme is evaluated in Section 5. Section 6
concludes the paper.

2. Background and Related Work

Detection of Internet worms is a hot topic in recent
literature. Worm detection techniques are classified as
either misuse-based or anomaly based. In a misuse
detection system, properties of a known worm are
studied and the corresponding signature is generated.
IDSs match pre-defined worm signatures with the
network traffic to check if any worm content is present
in it. Misuse-based detection schemes are highly
accurate in detecting already known worms. However,
their inability to detect novel worms urges current
IDSs to consider alternative approaches. Anomaly
detection techniques are considered powerful as they
can detect novel worms too. However, they are
more error-prone and require significant resources
compared to misuse-based approaches. An effective
worm detection is possible with the integration of
signature-based and anomaly based schemes in a
single worm detection system [11]. We adopt a similar
concept in the proposed SHEWD system whereby a
cost-effective signature-based module detects known
worms and an anomaly based module detects novel
worms.

Anomaly based worm detection is possible through
several approaches, such as honeypot-based detection
[12,13], data mining [14], protocol framing, traffic
pattern analysis, taint analysis [15–17], and content
analysis [18–21]. HoneyStat [12] and honeycomb
[13] use honeypots to detect worms. Honeypots are
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capable of checking the presence of worms in real
traffic. Depending on the nature of the propagating
worm, honeypots require a long period of time until
they can detect the worm. Furthermore, there is a
significant risk in using highly interactive honeypots
as they leave their operating systems entirely exposed
to attacks. Worms can exploit this weakness to attack
other targets. Data mining is another worm detection
technique [14]. One major drawback of data mining
technique is the high cost they incur. Several worm
detectors use taint analysis to detect worms that initiate
buffer overflow attacks on their host computers [15–
17]. These systems retrieve inputs from unreliable
sources and track the data affected by such inputs.
Throttling is also a possible approach to delay worm
propagation [22]. This method limits the rate of the
number of messages a computer can send to different
destinations. This approach, however, incurs some
delay to communication and needs to be deployed
across all networks to be effective. The research
work presented in Reference [24] matches inbound
and outbound network packets destined to the same
port to check if any worm packet is propagating
from the network. This system is based on the
fact that a specific worm tries to exploit a specific
vulnerability and is thus more likely to communicate
to a certain port. Malicious e-mail tracking system
(MET) [25] filters worm attachments from e-mails.
It computes MD5 hash for every binary attachment
and checks if the same attachment is propagated in the
network traffic. This system is, however, inefficient in
case of polymorphic worms. In Reference [26], Zou
et al. present an architecture design of a feedback
e-mail worm defense system to protect e-mail users
in enterprise networks. In this system, suspicious
e-mails are stopped and sent to a server where their
behaviors are statistically investigated. If an attachment
is not cleared as innocuous, it is sent to a honeypot.
The honeypot then verifies whether the attachment is
contaminated.

A high traffic volume with identical contents is a
strong indication of a worm propagation. This fact is
used by several content-based worm detectors [18–
20]. In Reference [18], Akritidis et al. present a
scheme which generates Rabin fingerprints of packet
payloads and tests if same content is carried by several
flows. Autograph [19] and EarlyBird [20] also search
for repetitive contents in worm payloads to generate
worm signature by using Rabin fingerprints. These
systems generate single substring signatures. However,
single substring signatures are not effective in detecting

polymorphic worms. Polygraph [21] addresses this
problem by using multiple substrings as signature.
In Reference [10], the authors also generate multiple
substring signature by differentiating normal flows
from worm flows.

Most of the above-mentioned techniques are
deployable only at local networks. Information sharing
amongst various IDSs is necessary in order to
effectively control a worm spread at the early stage of its
propagation. Vigilante [23] is an end-to-end approach
to contain worms automatically. In this system, local
hosts run a software to detect worms and broadcast
self-certifying alerts to other hosts. In Reference [27],
Chen and Tang suggest collecting Internet control
message protocol (ICMP) host unreachable packets
from edge routers of Internet service providers (ISPs)
to detect scans. By blocking scans, scanning worms are
prevented from penetrating into their target networks.
Reference [28] proposes an approach where scan data
are collected from several networks to monitor the
global propagation of scanning worms. Distributed
overlay for monitoring Internet outbreaks (DOMINO)
[29] and intrusion detection and rapid action (INDRA)
[30] are two architectures designed to detect intrusions
in a distributed environment. INDRA is a peer-to-peer
(P2P)-based distributed IDS. Interested and trusted
peers share information about any intrusion attempts
directed to them. Thus, peers that are not yet attacked
have some time to equip themselves with appropriate
defense strategies. On the other hand, DOMINO is
a hybrid of hierarchical and P2P architecture. It
comprises also active sinknodes that search for packets
directed to unused IP addresses. Monitoring unused
IP addresses enables detection of random scanning
worms.

The proposed SHEWD system is hierarchy based.
The main rational beneath considering a hierarchical
system consists in the associated simplicity in
deploying security policy. Furthermore, the proposed
system uses payload-content analysis which adds a
constraint to co-operating entities for information
sharing. Hence, we opt for a hierarchical information
sharing approach among the IDSs of the same
enterprises instead of a P2P approach. Some recent
worms strategically bias their propagation strategy to
nearby networks for a better chance of propagation
[6]. With the growing use of mailing lists within the
same enterprises, e-mail worms may also show similar
tendency. It is envisioned that a hierarchical system is
a better choice over a P2P system to combat against
such worms.
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Fig. 1. The envisioned two-layer hierarchical worm detection architecture.

3. A Signature-based Hierarchical
E-mail Worm Detection (SHEWD)
System

3.1. Architecture

The overall worm detection architecture of the
proposed SHEWD scheme is illustrated in Figure 1.
The whole network topology is divided into a number
of metropolitan areas. Each metropolitan area consists
of a MSM and a number of local networks. Each
local network is monitored by a LSM. A GSM, which
lies on top of the topology, directly connects with
metropolitan managers. LSMs sniff the traffic at their
networks to check for any suspicious activity. When
a LSM senses any anomalous content in an inbound
e-mail, it reports the corresponding e-mail flow to its
corresponding MSM as a suspicious flow. A MSM sorts
worms from the pool of suspicious flows collected
from its corresponding LSMs. It then generates a
highly accurate signature for the propagating worm and
reports the signature to the GSM. The GSM further
refines the signature before relaying it to all local
networks via metropolitan managers.

The architecture of a typical local manager is
depicted in Figure 2. It consists of three units, namely
signature update unit (SUU), anomaly detection unit
(ADU), and multi-level automatic parameter selector
(MAPS). The SUU unit verifies if the incoming
network traffic contains any known worms or whether
any known normal traffic is present. The detected
worm is instantly blocked, and the SUU filtrate is

Fig. 2. Basic operations of worm detection procedure at local
security managers.

subject to anomalous analysis at the ADU unit. ADU
searches for flows that carry similar contents. Such
flows are considered suspicious and are reported to
high hierarchy metropolitan managers. The suspicious
flow collection algorithm is discussed in detail in
Section 3.3.

The MSM sorts worms from the reported suspicious
flows. It then generates worm signature for the
propagating worm. The SUU unit of local manager
receives the generated signature from the GSM and
the corresponding MSM. Further detection of the worm
becomes then possible at the SUU unit of LSM through
a simple signature matching. The proposed worm
sorting algorithm and signature generation procedures
are discussed in detail in Section 3.4 and Section 3.5,
respectively.
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The MAPS monitor selects optimum values for the
parameters used by the SUU and ADU units. It receives
from MSM the current level of threat posed by worms.
Threat level, whose value ranges from 1 to 5, reflects
the current worm activity in the network. Level 1
indicates that the network is under normal condition
and no imminent worm activity is anticipated. On the
other hand, level 5 suggests that the network is in
a grave danger of a worm intrusion. Based on this
information, the MAPS monitor adjusts the levels of
three performance metrics, namely FNA, FPA, and PO.
Under normal network conditions, the system gives
priority to increasing FPA level and lowering PO level
while maintaining a reasonable level of FNA. When
the threat level is high, the system bears higher PO
level in order to increase the FNA level. The parameters
that best satisfy the required performance metrics are
sent to the SUU and ADU units for deployment.
Depending on the network conditions, the parameter
value search is carried out in a dynamic way. The
security of the network is thus automatically adjusted.
Section 4 describes in detail the overall working
of MAPS.

3.2. Initial Filtering of Pre-defined Traffic

The SUU unit stores all the signatures. It is updated
with any new signature received from high hierarchy
entities. The network administrator can also directly
maintain the signature database. This unit discards
any traffic that contains the signature patterns that are
defined in the database. SUU can be also updated with
normal signatures so that the normal traffic can be
instantly forwarded to their destinations without having
to go through the anomaly check in the ADU unit. Such
an operation can considerably reduce false positives. In
our experiment, we omit the operation of the normal-
traffic definition to focus our investigation on the
detection accuracy of the ADU unit in a challenging
scenario where such assistance is not provided.

3.3. Collection of Suspicious Traffic

We next discuss the working of the ADU unit.
ADU analyzes the SUU filtrate and collects worm-
like or suspicious flows. It then sends the suspicious
flows to the corresponding high-hierarchy metropolitan
manager. The ADU unit exploits some intrinsic
characteristics of worms. The ADU unit is provided
also with a database of normal flows. These normal
flows are used as reference to not mistakenly label
normal activities as suspicious. When a worm is

actively propagating in the Internet, similar contents are
transmitted across various flows in the network traffic.
The ADU unit extracts sample character strings from
each flow in the SUU filtrate and uses them as analysis
features. These strings are of constant length (LS). A
maximum number NS of such strings are extracted
from each flow. Every time a string is extracted from
a flow, the ADU unit matches the extracted string with
normal flows. If the string is normal, it is dropped and
a new string is extracted to replace it. The ADU unit
stores these sample strings and takes account of their
occurrence frequencies in the traffic. Notations used in
this paper are listed in Table I.

Let A be the set of these sample strings stored by the
ADU unit at time t. If a sample string (s ∈ A) exists in a
flow Fj of the SUU filtrate, its occurrence frequency fs

is incremented by one. If only n (0 ≤ n < NS) sample
strings exist in Fj , (NS − n) sample strings are further
extracted from Fj and are added to A. String extraction
from a flow is stopped if the ADU unit fails to find
non-normal strings in it even after a certain number
of trials (NTR). Sample strings with high occurrence
frequencies are likely to be part of worms. Alerts
are thus generated for flows that carry strings whose
occurrence frequencies exceed a pre-defined repetitive
occurrence threshold (�TH). In order to save buffer
storage, relatively old sample strings are deleted from
A. Hence, only sample strings observed during a pre-
defined string caching time (�T ) remain throughout the
analysis. Alerted flows are considered suspicious and
are sent to high-hierarchy MSM managers for further
analysis.

3.4. Worm Sorting by Hierarchical
Agglomerative Clustering

When there is an active propagation of a worm, a
MSM is likely to receive similar reports from its
corresponding LSMs. However, this does not rule
out the possibility that LSMs may mistakenly report
innocuous flows as suspicious. Hence, it is necessary to
sort genuine worm flows in order to generate a highly
accurate signature. We use cluster analysis to sort a
reasonable number of worm flows from the pool of
suspicious flows. These sorted worms are later used
for signature generation.

We assume that there are N flows in the suspicious
flow pool. The ith flow is expressed as a point in a
256-dimensions feature space as:

xi = (xi,0, xi,1, . . . , xi,255) (1)
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Table I. Notations used in this paper.

Operation Notation Definition

Collection of suspicious flows at LSM LS Length of each sample string
NS Number of sample strings extracted per flow
NTR Maximum number of string-extraction trials
�T String caching time
�TH Repetitive occurrence threshold

Worm sorting at MSM N Total number of flows in the suspicious flow pool
cw Worm concentration of the suspicious flow pool

(ratio of total worms in the suspicious flow pool to N)
dij Euclid distance between flows i and j
α Final cluster factor
nn Number of worms collected in the worm cluster
nw Number of normal flows collected in the worm cluster

Signature generation at MSM SC Set of strings common to worm flows
SN The set of normal tokens
SS Signature (the set of signature substrings)

LMIN Minimum length of signature substrings
TSIG Signature generation time
SAL Minimum number of signature substrings that

should exist in a flow to generate an alarm
ATL Attack tolerance level

Automatic parameter selection (at MAPS) η False negative avoidance (FNA)
σ False positive avoidance (FPA)
θ Performance overhead (PO)

Eη,k Partial FNA gain for quadruple k
Eσ,k Partial FPA gain for quadruple k
Eθ,k Partial PO gain for quadruple k
Ek Total gain for quadruple k

where xi,k indicates the occurrence probability of the
ASCII code k in flow. Euclid distance is used to
evaluate the similarities between the suspicious flows.
The Euclid distance between flows i and j, denoted by
dij , can be obtained from the following equation:

d2
ij = |xi − xj|2 =

255∑

k=0

(xi,k − xj,k)2 (2)

We use agglomerative hierarchical clustering
technique to sort worms from the suspicious flow
pool. In this clustering method, each point is initially
considered as an individual cluster. The nearest clusters
are joined to form a larger cluster, consequently
reducing the number of clusters by one in each
clustering step. In the proposed scheme, the initial
N clusters are clustered until the number of clusters
reaches (αN), where α denotes the final cluster
factor. The largest cluster among the (αN) clusters is
considered to be the worm cluster, as illustrated in
Figure 3. The flows represented by the points in the
worm cluster are used further to generate signature for

the spreading worm. Three types of distances are used
to compare the similarity between clusters.

(1) Nearest neighbor distance (DN): The nearest
neighbor distance between clusters R and S is
defined as:

DN(R, S) = Min{drs} (r ∈ R, s ∈ S) (3)

(2) Farthest neighbor distance (DF): the farthest
neighbor distance between R and S is defined as:

DF(R,S) = Max{drs} (r ∈ R, s ∈ S) (4)

(3) Group average distance (DA): the group average
distance between R and S is defined as:

DA(R,S) = 1

nRnS

∑
drs (r ∈ R, s ∈ S) (5)

where nR and nS are the number of points in R and
S, respectively.
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Fig. 3. Identifying the worm cluster from the suspicious flow
pool: initial number of cluster (N = 26); final cluster factor

(α = 1/2); final number of clusters (αN = 13).

Our preliminary experimental results show that all
the aforementioned distances are practical for sorting
worms at (α ≥ 0.3). As for values of α smaller than
0.3, accurate results can be obtained by using DF.
This is attributable to the fact that clusters formed by
considering DF are more spherical than the other two.
Hence, we use DF in the proposed system.

The following two parameters are used to evaluate
the sorting algorithm:

(1) Sorting success rate (SSR): it reflects the
percentage of worms collected in the worm cluster
and is expressed as:

SSR = nw

cw × N
(6)

where nw denotes the number of worms in the
worm cluster and cw is the worm concentration
(ratio of the number of worm flows to the total
number of flows) in the whole suspicious flow pool.

(2) Sorting accuracy (SA): it defines the percentage of
worms flows in the worm cluster. It is expressed as:

SA = nw

nw + nn
(7)

where nn is the number of normal flows in the worm
cluster.

The final number of clusters is determined by α and
is equal to (αN). Setting α to an appropriate value is
vital. In order to generate appropriate worm signature,
MSM needs to sort a reasonable number of worms.
This is also governed by the worm concentration (cw)
in the suspicious flow pool. Here, we first investigate
the accuracy of the proposed worm sorting algorithm
with respect to α.

The sorting accuracy depends highly upon the worm
concentration (cw) in the suspicious flow pool. The
value of cw is directly governed by the accuracy of local
managers. The higher the accuracy of local managers
in collecting suspicious flows, the more concentrated
the suspicious flow pool collected at the metropolitan
manager becomes. Figure 4 depicts the SSR and the
SA of the proposed clustering method for different
values of α when (cw = 0.5) and (N = 30). Results
for four different worms—Beagle, NetSky, SWEN.A,
and MyDoom are plotted. It is clear that false positives
appear only for (α < 0.3). Similarly, a large proportion
of worms can be sorted for (α ≤ 0.5). Given that only
worms are to be used to generate the signature, we set
α to 0.5, a very safe value.

The proposed scheme identifies the biggest cluster
as the worm cluster. However, other clusters may also
be useful in correctly sorting worms. For instance,
when there are several worms spreading at the same
time, the clustering technique is likely to cluster
separate worms in separate clusters. Also, if the
number of worms sorted in the worm cluster is not
sufficient for signature generation, the administrator
can also search for other worm flows in other big
clusters.

3.5. Signature Generation and
Implementation

Having described the worm collection and sorting
processes, we now explain the signature generation
operation carried out by MSM. We also discuss how
the signature is utilized by LSMs.

Generating appropriate signature for a worm is a
challenging task. Most of the present worm detectors
use a single substring as signature. This renders them
inefficient against worms that exhibit polymorphism.
Polymorphic worms change parts of their payloads by
altering the byte sequence order or by adding dummy
contents into their payloads. They can easily deceive
signature-based detectors by modifying the signatured
portion of their payloads. We address this issue by
adopting multiple substrings as parts of the signature.
Furthermore, we use only parts of core-worm codes as
signature substrings.

Our signature generation approach is based on two
facts: (a) worms carry some invariable portions in
their payloads, and (b) normal payloads do not carry
worm strings. Accordingly, signature is generated in
two phases. In the first phase, the MSM extracts strings
that commonly exist in worms. Any of these strings that
are judged normal are excluded in the second phase.

Copyright © 2008 John Wiley & Sons, Ltd. Security Comm. Networks. (2008)

DOI: 10.1002/sec



K. SIMKHADA ET AL.

Fig. 4. Sorting success rate (SSR) and sorting accuracy (SA) as functions of the final cluster factor (α) for different worms
(cw = 0.5). (a) Beagle (b) MyDoom (c) NetSky (d) SWEN.A.

Since too short strings may generate false alarms, a
pre-defined minimum length threshold (LMIN) is fixed
to qualify these strings as parts of the signature.

LetNW andNN denote the number of worm payloads
used for signature generation and the number of normal
flows at a MSM, respectively. If Xi (1 ≤ i ≤ NW)
is the set of strings that exist in the ith worm flow,
the set of common strings among these worms is
expressed as:

SC = {t|t ∈ X1 ∩ X2 ∩ · · · ∩ XNW , len(t) ≥ LMIN}
(8)

where len(t) denotes the length of string t. Similarly, if
Yj (1 ≤ j ≤ NN) is the set of strings existing in the jth
normal flow, the set of normal strings is expressed as:

SN = {t|t ∈ Y1 ∪ Y2 ∪ · · · ∪ YNN , len(t) ≥ LMIN}
(9)

By excluding normal strings from the common strings,
we get the set of signature substrings as:

SS = SC − SN (10)

The generated signature thus contains |SS| substrings
each with a length longer than LMIN. The worm
signature is generated from the element substrings
of SS. Hence, only core-worm strings that remain
unchanged across several worms are used as signature
substrings. As worm flows undergo analyses at
two different levels, LSM and MSM, the generated

signature is expected to be highly accurate. The
signature accuracy can be further enhanced at the GSM
when the latter receives signatures generated by various
MSMs.

We now explain how the signature is implemented
for actual worm detection. As previously explained, the
SUU units of LSMs are relayed multiple substrings.
Several signatures can be formed out of these strings.
Weighting each substring, and combining some or all
of them can generate different signatures. However, in
a real network scenario, decisions regarding the use of
signature substrings should be made instantly. So, we
define a new parameter called attack tolerance level
(ATL). ATL is defined as:

ATL = SAL

|SS|
(11)

where SAL(0 < SAL ≤ |SC|) is the minimum number
of signature substrings that should be detected in
a flow in order to generate an alarm for the flow.
Use of multiple substrings in the signature and
adjustment of ATL makes the proposed approach
robust in detecting polymorphic worms which try to
hide core worm parts in between normal sequences.
Indeed, even if worms alter some portions of their
payloads, there still remain unaltered portions that
match some signature substrings. The ATL parameter
can be adjusted according to the level of threat posed by
worms to the network. If there is an active spread of a
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specific worm, the administrator or any high-hierarchy
entities such as MSM or the GSM can warn LSMs to
set their ATL to a lower value. In this context, it should
be recalled that high values of ATL guarantee low false
positive rates.

4. Automatic Parameter Selection

As previously discussed, the proposed system uses
several parameters during suspicious flow collection.
These parameters include length of sample strings
(LS), number of sample strings extracted per flow
(NS), repetitive occurrence threshold (�TH), and string
caching time (�T ). During the signature generation
process, the proposed system needs to fix the minimum
length of signature substrings (LMIN). During signature
implementation, the value of attack tolerance level
(ATL) should be also adjusted. Considering an online
implementation of the proposed scheme, values of
these parameters should be automatically set. In this
section, we discuss how these parameters can be
dynamically adjusted by the MAPS monitor to the
optimum values so as the performance suits the
prevailing network state.

4.1. IDS Performance Metrics

Various metrics can be used to evaluate the
performance of an IDS. In Reference [31], Fink et al.
point out some of these metrics, such as accuracy,
detection rate, flexibility, overhead, error reporting,
router interaction, timeliness, etc. Considering a worm
detection scenario, FPA rate, and PO rate need primary
follow-ups. Apart from these three metrics, we also
choose the signature generation time as another
performance metric when the signature generation
process is involved. We next discuss these metrics and
explain how they should be adjusted for an autonomic
security management of networks.

4.1.1. False negative avoidance (FNA)

The FNA indicates the detection rate of the IDS. For
each threat level L (1 ≤ L ≤ 5), critical FNA rate
(minimum detection rate) ηL (0 < η1 < · · · < η5 < 1)
is pre-defined by the administrator. A high FNA is
required when there is an active propagation of Internet
worms. During such adversaries, the IDS system may
have to sacrifice other two metrics to some extent.

4.1.2. False positive avoidance (FPA)

FPA indicates how fairly the IDS system allows normal
traffic to pass undisturbed. FPA is expressed in terms of
false positive rate (FPR) as, FPA = 1 − FPR. As there
is a tradeoff between FPA and FNA, FPA rate may
need relaxation if FNA rate is increased. The desired
minimum FPA rate of the system at each threat level
is also defined by the administrator as σL (1 > σ1 >

· · · > σ5 > 0).

4.1.3. Performance overhead (PO)

Cost is another prominent factor in determining the
performance of an IDS. It is thus necessary to design the
IDS in such a way that maximum security and accuracy
can be achieved with a nominal overhead. We define PO
rate as the percentage of available buffer size required
for analysis. Similarly to FNA and FPA, the critical PO
rate (maximum affordable PO rate) of an IDS at each
threat level (L) is defined by the administrator as θL

(0 < θ1 < · · · < θ5 < 1).
There is a trade-off between FNA, FPA, and PO

rates. It is always preferable to achieve high FNA and
FPA at the cost a low PO. However, during emergency
situations such as worm outbreaks, it is necessary to
sacrifice some FPA and PO in favor of FNA. In contrast,
during normal network states, FNA rate is slightly
reduced in order to achieve higher FPA and lower PO
rates.

4.1.4. Signature generation time

Signature generation time (TSIG) is a vital performance
metric for signature-based IDSs. During high threat
levels, IDSs can afford relatively short time for
signature generation. The value of TSIG for e-mail
worms such as Beagle, NetSky, and MyDoom can
be fairly long (a few minutes). However, for fast
spreading scanning worms such as Code Red, Blaster,
and Slammer, signatures are required within a limited
span of time. Signatures for scanning worms should
be generated within 60 s in order to effectively control
their propagation [5]. This indicates that an IDS
system has to automatically generate signature within
a significantly limited time after the worm has been
detected. Indeed, we first ensure that the signature is
generated within the defined TSIG. FNA, FPA, and PO
rates are then considered.
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Fig. 5. A typical deployment of the proposed system.

4.2. Optimum Parameter Value Selection
Algorithm

We next present the proposed multi-level security based
autonomic parameter selection (MAPS) algorithm. A
typical deployment of MAPS is illustrated in Figure 5.
The IDS implemented at the gate of the network
updates security events to a worm advisory system
(WAS). WAS accordingly defines the threat level of
the network. The MAPS monitor uses the defined threat
level to find suitable parameters to advise the IDS. Note
that MAPS does not propose a new worm detection
scheme but advises the implemented IDS with optimum
values of its parameters in order to efficiently defend
against the spreading worm. The operations of WAS
and MAPS are further explained below.

4.2.1. Worm advisory system (WAS)

The WAS defines the threat level of the network based
on the events reported by the IDS or other entities, such
as, firewalls, IDSs of other collaborating networks, and
high-hierarchy components. It analyzes the events in
timeslots. Threat level one corresponds to a normal
network state when no malicious activities are reported.
In contrast, threat level 5 implies that the system is
either under attack or is in a grave danger of a worm
propagation. The threat level of a given timeslot is
decided by considering

(1) the total number of events observed in the timeslot
with respect to a pre-defined event threshold, and

(2) the increasing or decreasing tendency of the
number of events with respect to previous
timeslots.

Given the fact that the WAS uses a simple statistical
data of events to define the threat level, it can be directly
handled also by the network administrator, if desired.

4.2.2. MAPS monitor

It is a common trend to investigate the performance
of an IDS with test data before implementing it
online. The MAPS monitor is provided with the
results obtained when the IDS system is initially
evaluated with such test data. Let Q be the set
of these results. Q stores each scenario k as a
quadruple Tk = {Pk, ηk, σk, θk}, where Pk is the set
of parameter values used and ηk, σk, and θk are the
corresponding values of the three metrics in the test
scenario k.

Figure 6 depicts the flow chart of the MAPS
algorithm. The current threat level of the network is
sent to MAPS by WAS. The critical rates of FNA, FPA,
and PO, denoted by ηc, σc, and θc, respectively, are
initialized to the critical values of the corresponding
threat level, ηL, σL, and θL, respectively. The proposed
algorithm takes a greedy approach in maximizing the
FNA and FPA rates and minimizing the PO rate. Hence,
the transitory critical values of these three metrics, are
initialized as η = 1, σ = 1, and θ = 0.

The optimum quadruple search is carried out in the
order of PO, FPA, and FNA. At first, MAPS searches
for quadruples in Q whose corresponding PO rates are
within the transitory critical PO rate (θ). Thus, the set
of quadruples (Q1), which fulfill the PO requirement,
can be expressed as:

Q1 = {Tk : Tk ∈ Q; θk ≤ θ} (12)

Q1 contains only the quadruples whose parameter can
perform within the overhead θ. Q1 = φ implies that
the IDS cannot function within the given transitory PO
rate (θ). Thus, the MAPS monitor increases θ by �θ.
If θ is within the critical PO rate (θc), it carries out
another search from Q. Otherwise, θc is incremented
to (θc + �θc) and the whole search is repeated, but with
a higher θc.

From the quadruples in Q1, MAPS then
searches for the quadruples whose accuracy is
more than the transitory critical FPA rate (σ).
Hence, the set of the selected quadruples (Q2),
which fulfill the PO and FPA requirements, is
expressed as:

Q2 = {Tk : Tk ∈ Q1; σk ≥ σ} (13)

In case Q2 = φ, the MAPS monitor decreases σ by a
fixed value. If this decrease does not affect the relation
(σ > σc), MAPS searches for appropriate quadruples
from Q1 again. Otherwise, σc is relaxed and θc is
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Fig. 6. MAPS algorithm.

increased. The whole search is repeated with a lower σc

and a higher θc. This process is repeated until (Q2 �= φ).
Similar adjustment is carried out for FNA. MAPS
searches for quadruples in Q2 that satisfy the FNA
transitory critical rate (η). The set of the quadruples
that are now chosen (Q3) is expressed as:

Q3 = {Tk : Tk ∈ Q2; ηk ≥ η} (14)

Similarly to the PO and FPA checks, MAPS confirms
whether transitory critical FNA rate is satisfied. If
Q3 = φ, MAPS relaxes η to η − �η. If the new
transitory critical FNA rate is more thanηc, it carries out
next search from Q2. Otherwise, ηc and σc are further
reduced while θc is increased to start the search from
the beginning. This is repeated until Q3 �= φ. MAPS
uses Q3 to select the quadruple that is optimum for the
current network state.

As Q3 may contain multiple quadruples, a separate
parameter needs to be defined to select the best

quadruple from Q3. We define partial gains of FNA,
FPA, and PO for the quadruple Tk, denoted by Eηk,
Eσk, and Eθk, respectively, as:

Eηk = ηk − ηL

Eσk = σk − σL

Eθk = θL − θk (15)

where ηL, σL, and θL are the critical FNA, FPA, and PO
rates, respectively, for the corresponding threat level L.
Using the partial gains of the three metrics, the total
gain of Tk is calculated as:

Ek = Eηk + Eσk + Eθk (16)

From Q3, the quadruple with the maximum value of
E is selected. The parameter values of the selected
quadruple are sent to the IDS for deployment.
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5. Performance Evaluation

We now move on to evaluate the performance of
the proposed scheme. We use real network data that
contains traces of worms to investigate the accuracy of
the proposed SHWD system to in collecting suspicious
flows, signature generation time and its accuracy, and
the efficiency of the automatic parameter selection
algorithm.

5.1. Suspicious Flow Collection

We first investigate the accuracy of ADU unit of LSM
in collecting suspicious flows. By setting LS, NS, and
�TH to different values, a number of scenarios can be
considered. An off-line real network traffic is used as
test data. The traffic is captured at a network which
consists of 85 computer hosts and 160 actively used
e-mail addresses. The test data consists of a total
of 3054 flows on port 25 directed to the monitored
network. Among these inbound flows, 34 flows are
contaminated with the Beagle worm.

The length of token-caching time (�T ) depends
upon the worm type. For a fast spreading worm such as
Slammer and Code Red, setting �T to a low value (in
the order of seconds or minutes) is sufficient to collect
enough worm flows. However, for e-mail worms such
as Beagle, a reasonably longer time is required to gather
worms. Hence, we fix �T to 60 min.

The ADU unit searches for flows propagating similar
contents. Thus, it is necessary to firmly study the nature
of each flow. A flow is better scrutinized if a large
number of sample strings are extracted from it. Hence,
a high detection rate is expected when NS is set to a
high value. However, setting NS to a high value also
increases the probability of selecting normal strings
as samples, thus increasing the risk of false positives.
This is depicted in Figure 7(a) where the number of
true positives increases as NS takes higher values. In
addition, increasing NS results also in a higher number
of false positives. We have shown in Section 3.4 that
the proposed clustering scheme carried out at MSM can
accurately sort worms even if the collaborating LSMs
generate a certain level of false positives. In order to
reduce the risk of false positives generated during a
high NS (in Figure 7(a)), increasing the value of the
repetitive occurrence threshold (�TH) is an option.
Considering the fact that the proposed method searches
suspicious flows from the inbound traffic where worms
are scarce compared to outbound traffic, an alternative
approach becomes necessary. Increasing LS is such

Fig. 7. Number of true positives and false positives
for different numbers of sample tokens extracted per
flow (�T = 60 min; number of worms = 34; number of
normal flows = 3024). (a) �TH = 4, LS = 10. (b) �TH = 6,

LS = 30.

an alternative approach. The probability of a string
pattern appearing in a text decreases with an increase
in its length. However, this rate of decrease is low for
worm strings in worm texts than that for normal strings
in normal texts. Although increasing LS may reduce
some true positives, we expect it to be advantageous
because it is effective in reducing false positives. This
is illustrated in Figure 7(b) which shows the numbers
of true positives and false positives obtained when �TH
and LS are increased from their previous values in
Figure 7(a). False positives are completely suppressed
while a reasonable number of true positives is
maintained.

Adjusting the repetitive occurrence threshold (�TH)
may be a possible solution when false positives need
to be oppressed. However, this approach also affects
the suspicious flow collection. Figure 8(a) depicts
such a case where false positives are completely
suppressed for high values of �TH. However, this has
also led to a nominal number of true positives. This

Copyright © 2008 John Wiley & Sons, Ltd. Security Comm. Networks. (2008)

DOI: 10.1002/sec



COMBATING AGAINST INTERNET WORMS

Fig. 8. Number of true positives and false positives for
different repetitive occurrence thresholds (�T = 60 min;
number of worms = 34; number of normal flows = 3024). (a)

LS = 30, NS = 5. (b) LS = 30, NS = 15.

problem can be overcome by increasing NS as shown
in Figure 8(b). Indeed, by increasing NS, the number
of true positives increases while false positives remain
suppressed.

Our experimental results for NetSky show that NS
and LS should be set to values close to those for Beagle.
Traces of NetSky and Beagle payloads are about 30–
40 kb long when encoded by base64. In addition,
both of these worms are mass-mailers and were in
fact involved in a fierce battle [32]. These similarities
account for the similar results obtained for these two
worms. However, how to tune these parameters to best
performing values during a novel-worm propagation
is still an issue. As discussed in Section 4.1, it is
necessary to loosen the PO and the false avoidance
requirements in order to collect enough worm samples
under such scenarios. After MSMs generate worm
signatures by using these collected suspicious samples,
these parameters can be switched to values that yield a
fewer number of false positives.

Fig. 9. Signature generation time (TSIG) for various numbers
of worms and normal flows used during signature generation.
(a) TSIG for various values of NW (NN = 100). (b) TSIG for

various values of NN (NW = 10).

5.2. Signature Generation

The signature generation is carried out at MSM. Worms
sorted from the suspicious flow pool are used for this
operation. The proposed signature generation scheme
first extracts common substrings from worms. It then
differentiates the set of these common substrings with
the set of substrings present in normal flows. Here, we
study the time required to generate worm signature.
The signature generation time (TSIG) depends more
on the payload length than on the worm type. We
use ten NetSky flows (with 30–40 kb payloads) for
common substring extraction and 3000 normal flows
for differentiation. Various scenarios are considered
by changing the minimum length of substrings
(LMIN).

Figure 9(a) depicts the signature generation time for
different numbers of worm flows when 100 normal
flows are used for differentiation (i.e., NN = 100).
Signature generation time (TSIG) increases with respect
to the number of worm flows. However, this increase
gradually becomes insignificant. This is because only
a few strings are common among a large number of
worm flows. Also, longer strings break into shorter
strings as more worms are considered. For example,
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let ‘aabbbcccc’ be a string common to worm flows
1–i. And let the (i + 1)th flow contain a portion
‘xbbbccdxer’. Hence, the string common to flows
1–(i + 1) is ‘bbbcc’, a relatively shorter string. With
an increase in LMIN, TSIG shows a distinctly decreasing
property. This is also attributable to the fact that fewer
strings are considered when LMIN is increased. This is
depicted in Figure 9(b) which plots TSIG for various
numbers of normal flows under different settings
of LMIN. The number of worms used for signature
generation is set to 10 (i.e., NW = 10). Figure 9(b)
illustrates that TSIG decreases by a significant margin
as LMIN is increased from 5 to 10. The signature
generation time when the number of normal flows is
zero is the common string extraction time. It is evident
that extraction of common strings takes most of the
signature generation time. From the experiment results
shown in Figure 9, it is clear that signature for NetSky,
a fairly long worm, can be generated within 2 min. For
a shorter worm, signature can be generated relatively
faster.

5.3. Detection Accuracy of the Generated
Signature

In order to evaluate the accuracy of the generated
signature, we used the signature generated for Beagle
worm. The test data contain a total of 45 193 e-mail
flows. Two hundred seventy-one of these e-mail flows
are Beagle. As discussed in Section 3.5, different
values of attack tolerance level (ATL) reflect different
scenarios. We study the detection accuracy of the
generated signature with respect to LMIN for two
scenarios. In Scenario 1, ATL = 0, a flow is considered
worm if the flow contains at least one signature
substring. We set ATL = 0.5 in Scenario 2, an alert
is generated only if a flow contains more than 50% of
the signature substrings.

Figure 10(a) depicts the numbers of true positives
and false positives for various values of LMIN in
Scenario 1. A 100% detection rate is achieved for
LMIN below 175 byte. The number of false positives
decreases as LMIN increases. There are two reasons
behind this phenomenon: (1) the probability of a
string’s occurrence probability in a text decreases
with respect to its length, (2) the number of
signature substrings decreases as LMIN becomes
longer. Figure 10(b) depicts the results for Scenario
2, where ATL = 0.5. Compared to the first scenario,
false positives have significantly decreased. This is
most clearly seen at (5 ≤ LMIN ≤ 15). This implies

Fig. 10. Number of true positives and false positives for
different values of minimum length of signature strings for
a real network data that contain 45,193 flows out of which
271 are worms. (a) Scenario 1: ATL = 0. (b) Scenario 2:

ATL = 0.5.

that the false positives generated when (LMIN ≤ 15)
in Scenario 1 were because of the short substrings.
The fact that signature substrings are parts of worm
codes, along with the requirement of half of signature
substrings in order to generate an alarm, are the factors
behind better results obtained in Scenario 2 than in
Scenario 1.

The e-mails for which false positives were generated
during 100 ≤ LMIN ≤ 175 were normal e-mails with
more than 2 MB of payloads. As they are significantly
long, they are more likely to contain signature
substrings. Besides, setting LMIN to a high value results
in discarding a large number of shorter worm substrings
from the signature. As a result, many normal substrings
which contained continuous . . . AA . . . sequences in
them were left in the signature. These substrings were
the main reasons for the false positives generated
against these normal e-mails. During low threat
levels when FPA requirements are high, manually
refining the signature files by deleting these obviously
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normal substrings can significantly improve the system
performance.

5.4. Automatic Parameter Selection

In Section 5.1, we demonstrated that the proposed
suspicious flow collection algorithm can successfully
collect worm-like flows. However, considering the
dynamics of the network state, different parameter sets
should be chosen for different network conditions.
We now investigate the MAPS monitor’s ability to
dynamically adjust parameter values according to the
prevailing network state. The results obtained for
various scenarios (under different values of NS, LS,
and �TH) in Section 5.1 are stored in a database. The
FNA rate is expressed as the ratio of detected worms
to the total number of detectable worms. Similarly, the
FPA rate is the ratio of the number of normal flows
that have been correctly judged as normal to the total
number of normal flows. The IDS is supposed to set
aside a maximum of 1000 Byte of buffer for each flow.
The overhead rate per each flow is thus

θ = LS × NS

1000
(17)

The critical FNA rates from level 1–5 are set
to {0.70, 0.80, 0.85, 0.90, 0.95} while the critical
FPA rates are fixed to {0.95, 0.90, 0.85, 0.80, 0.0}.
Similarly, the critical PO rates (maximum buffer
storage) are set to {0.2, 0.4, 0.5, 0.6, 1.0}.

Figure 11 depicts the FNA, FPA, and PO rates
for different threat levels. In a normal network state
(corresponding to a low threat level) the IDS has
to ensure minimal false positives and to incur low
cost. The FNA is, however, comparatively low. With
an increase in the threat level, FNA also increases.
Because there is a trade-off between these three
metrics, an increase in FNA is achieved at the
price of some additional overhead. However, the
sacrificed metrics are maintained within their critical
values.

We next consider a signature generation scenario.
The signature generation time (TSIG) basically depends
on the worm payload length. For a worm with a
short payload, a short span of time is sufficient to
generate signature. In this experiment, we consider
e-mail worms with about 30–40 kb of payloads.
Thus, a relatively long time is allocated for signature
generation. We set TSIG to 105, 90, 75, 60, and
45 s for threat levels 1–5, respectively. We investigate
the performance of the signatures generated within

Fig. 11. FNA, FPA, and PO rates for different threat levels.

these allocated lengths of TSIG using the data set
explained in Section 5.3. The FNA and FPA rates are
obtained directly from the experiment. We define PO
rate as the percentage of the worm payload used as
signature.

Table II depicts the performance of the optimum
signature generated for different threat levels. TSIG is
the primary metric that is first ensured. During a high
threat level state, the IDS can allocate only a limited
time for signature generation. In such state, the IDS
tolerates a slight relaxation in FNA rate. As indicated
by Table II, the FNA rate is slightly affected as TSIG
is lowered. Similarly, the PO rate also becomes larger
as the threat level increases. When TSIG is short, there
is less time to exclude normal tokens. This decreases
the density of worm substrings in the signature. This
causes FNA rate to get lower and PO rate to become
higher. However, figures in Table II indicate that MAPS
monitor is capable of selecting optimum parameter
values to fit the prevailing network condition.

5.5. Implementation Issues and Discussion

The main performance requirements of SHEWD are (i)
response time and (ii) accuracy of generated signatures.
The overall response time of SHEWD is equal to the

Table II. Performance of the worm signature generated during
different threat levels.

Threat level TG (s) FNA rate FPA rate PO rate

1 105 1.000 1.000 0.013
2 90 1.000 1.000 0.013
3 75 0.998 1.000 0.018
4 60 0.970 1.000 0.048
5 45 0.970 1.000 0.048
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total time that elapses since collecting suspicious flows
to matching signatures with network traffic at the SUU
unit. The time taken by ADU to collect suspicious
flows depends directly upon the aggressiveness of
the propagating worm. Details on the communication
delay between the various entities of SHEWD and
the signature updating procedure in SUU are also
outside the scope of this paper. So, we evaluate the
response of SHEWD by the time taken (i) to sort
worms, (ii) to generate worm signatures, and (iii) to
match the retrieved signatures with network traffic.
Our results show that the worm sorting time at MSM
is less than 5 s when the suspicious flow pool size
is 50. In Section 5.2, we showed that signature for
NetSky, a fairly fast-spreading worm, can be generated
within 2 min. In Reference [33], the authors present
the signature matching time for NetSky signature with
10 substrings. The results indicate that about 300 worm
flows can be detected in 3 s; a satisfactory performance.
From above, it is clear that the total response time
of SHEWD is about 2 min. Enhancing the signature
generation procedure is expected to improve the overall
system response. We leave this for future research
work.

The lack of a common worm database restricts us
from directly comparing the performance of various
analysis steps of SHEWD with those of existing worm
detectors. The worm detection of SHEWD is a three
step procedure—suspicious flow collection at ADU,
worm sorting and signature generation at MSM, and
signature matching at SUU. While enhancing the
suspicious flow collection accuracy at ADU and sorting
all worms at MSM are expected to ensure a high
performance, SHEWD does not require these to be
fulfilled. The main objective here is to sort worms (and
worms only) at MSM and generate a highly accurate
signature to ensure a high detection rate against the
same kind of worms that try to penetrate into the
network. Our results, illustrated in Reference [10] and
in Section 5.2 demonstrate that the accuracy of these
signatures for NetSky and Beagle traces used in our
experiments is over 99.5%.

While SHEWD is robust against both known and
novel worms, its scope is limited to fast spreading
e-mail worms. We next list some of its weaknesses and
discuss some possible ways to overcome them.

5.5.1. Detecting worms with constant
character variations

The ADU unit of SHEWD uses strings of length LS as
samples and checks if these sample strings are present

in other inbound e-mails. If a worm intentionally
embeds dummy characters in regular intervals of less
than LS, it would degrade the accuracy of the ADU in
detecting novel worms. In such cases, it is necessary
to adopt alternative approaches, such as, statistical
studies, behavior studies, and worm-dissection.

5.5.2. Detecting slow worms

SHEWD is designed to detect worms with a
fast propagation rate. Its effectiveness considerably
degrades in case of slow and stealthy worms, such
as trojan horses, which hide inside the inner network
for a certain period of time before propagating to
next target. Although the distributed architecture of
SHEWD makes it possible to detect such worms, it
would be necessary to increase the string caching time
�T and decrease the repetitive occurrence threshold
�TH. Increasing �T and reducing �TH results, in turn,
in higher PO with poor accuracy.

5.5.3. Detecting encrypted worms

Encrypted worm payloads have very little in common.
Only the parts which carry decryption keys would
be meaningful for SHEWD. This greatly limits the
number of sample strings NS ADU can extract from
each inbound e-mail. Furthermore, ADU has to rely
on the portion of payload with decryption keys. As
such portions do not necessarily carry core worm codes,
the system is likely to generate a high number of false
positives.

5.5.4. Defining normal files

The ADU analysis and the signature generation
processes require defining normal flows. However,
defining normal flows is a non-trivial task. While
too many normal flows consume a large amount of
resources and retard the analysis speed, too few normal
flows degrade the accuracy. Thus, the administrator
needs to decide on the priority of resource and response
versus accuracy. The false positive e-mails, however,
can be very useful in enhancing the performance of the
detecting system. By adding these false positive e-mails
to the normal-flow database, similar false alarms can be
suppressed. Also, the system can have better response
with less resource by deleting old and unused normal
flows and signatures from the signature, a method
supported by Li et al. [11]. This implementation on
SHEWD deserves further investigation and defines one
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direction for our future research work in this particular
area of research.

6. Concluding Remarks

In this paper, we proposed a signature-based worm
detection system. The overall network topology
consists of hierarchically placed LSMs, MSMs, and
a GSM. LSMs are constantly updated with worm
signatures. Known worms are detected by signature
matching. To detect any novel worms included in the
traffic, an anomaly based module searches for worm-
like or suspicious flows. At metropolitan managers,
suspicious flows from corresponding local managers
are collected. Cluster analysis is carried out to sort
worms from the pool of suspicious flows. The sorted
worms are used for signature generation. The worm
signature consists of multiple substrings. The signature
is relayed to all local managers from the global manager
and metropolitan managers. Local managers contain
also a module that automatically searches for ideal
values of parameters used in the analysis. We evaluated
the performance of the proposed system by using real
network traffic containing traces of real worms. The
experiment results elucidate that the proposed SHWD
scheme is capable of detecting worms in a nearly real-
time fashion with high detection rates and low false
positive rates.
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