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Abstract—With the increasing demand of network slices in ver-
tical industries, slice resource provisioning in transport networks
has encountered two challenges, one is efficient slice resource
provisioning in the presence of traffic uncertainty of slices,
and another is flexible slice resource isolation for customizable
isolation needs. In this paper, we propose an innovative flexible
hybrid isolation model to support any customized resource iso-
lation from complete isolation to full sharing, and solve the slice
resource provisioning problem named Hybrid Slicing Minimum
Bandwidth (HSMB) by considering traffic prediction error to
mitigate the negative impact of traffic uncertainty in the proposed
model. After analyzing the HSMB problem, 1) we first try to
solve the problem in steps and decompose the HSMB problem
into grouping sub-problem and adjusting sub-problem, 2) we
then propose a low-complexity dynamic programming grouping
algorithm and a fast iterative adjustment algorithm for the two
sub-problems based on probabilistic feature-based analysis, 3)
we combine the algorithms of the two sub-problems and further
propose a linking algorithm for the potential insufficient resource
dilemma and high computational complexity dilemma to improve
the efficiency of the solution. The numerical results show that the
proposed flexible hybrid isolation model with different factors
can facilitate flexible slice isolation with customized isolation
demands, while the proposed algorithm can realize efficient
slice resource provisioning with a probabilistic guarantee. The
comparison result shows the proposed algorithms outperform
the other benchmark algorithms.

Index Terms—Network slicing, resource provisioning, predic-
tion error, vertical industrial.

I. INTRODUCTION

NETWORK slicing has played an essential role in network
resource mapping in various scenarios such as internet

of things [1], vertical networks [2], virtual reality [3], etc.
Recently, 5G has been developing rapidly to support vertical
industries, and the vertical network slices in the 6G [4] are
supposed to be more customized [5], intelligent [8], hetero-
geneous [9]. The slices are generated not only for different
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kinds of services but also for different tenants [10] running in
parallel in the networks [11]. Compared with the conventional
scenario, the demand for slicing in the vertical industry is
more diversified and customized [6]. Taking smart grid [7]
as an example, different tenant networks are featured with
diverse service level agreements (SLAs), such as load control,
distribution automation, sensor meter, inspection, operation,
etc. For each tenant network, there will be multiple network
slices (NS) belonging to different management roles to realize
similar services, a large number of network resources will be
consumed if these network slices are completely isolated. In
fact, for some services such as inspection and operation, their
traffic is elastic and the strict resource isolation between the
slices is not necessary, the basic functions can be achieved with
a certain amount of dedicated resources guaranteed, and the
advanced functions can also be realized with more resources.
In this case, customized slice isolation is necessary.

Therefore, two challenges are brought into the resource
provisioning in vertical industrial slicing, the first one is the
complex logical relation between slices makes simple isolation
strategy complex in dealing with the flexible and customizable
isolation requirements. The other one is, it is hard to make
efficient dynamic network resource provisioning for massive
slices along with traffic uncertainty with customized resource
isolation.

There are limited researches that appropriately address
resource isolation in the transport network [12], while the
transport networks (e.g. backhaul, core network, etc.) realize
isolation through different transmission channels, wavelengths,
or time slots (e.g. slots of FlexE technology) which is referred
as to physical isolation (hard isolation) [13], or inherits tradi-
tional virtual network scheme to achieve soft isolation based
on logical channels (e.g. MPLS, VPN, VLAN or custom data
fields) [14]. These two isolation schemes can guarantee dif-
ferent network isolation levels, but few researchers investigate
flexible isolation based on these two isolation schemes.

Due to the dynamic traffic of network slices, slice resource
provisioning in the transport networks needs to not only
avoid over-provisioning but also ensure that the demands
for slicing resources within one scheduling time period are
met. It is feasible to realize some shared resources between
slices to avoid under-provisioning. Some researchers have also
proposed methods of resource sharing under the condition of
resource isolation to realize the slice resource provisioning
[15]. However, it is far from meeting the customizable re-
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quirements of tenants for flexible slice resource isolation. In
this paper, we propose a novel flexible hybrid isolation model
supporting the customized resource isolation level, which not
only supports the general resource isolation strategies but also
flexibly sets the isolation strategies from complete isolation
to full sharing. Moreover, to avoid the negative impact of
resource sharing that network slices may affect each other due
to resource competition, a customizable grouping mechanism
is introduced to reduce the impact caused by unexpected
prediction deviation.

Meanwhile, researchers have widely adopted a prediction-
based approach to dynamically adjusting network slicing re-
sources to fit real-time changing traffic. Lots of predictive tools
such as machine learning [16], deep neural network [17], naive
benchmark, holt-winters, etc. [18] are proposed to realize the
implementation of proactive dynamic network slicing based
on prediction [19], [20].

However, prediction error always exists regardless of the
prediction method, which leads to two potential consequences,
over-provisioning or under-provisioning, which may cause
resource waste or service degradation. In response to this prob-
lem, more accurate prediction methods are generally adopted.
However, an accurate prediction method can only reduce the
risk associated with uncertainty, but can not eliminate it. When
adopting a proactive dynamic network slicing strategy, the
existence of prediction errors should be taken into account
while allocating network resources [11]. In this paper, we for-
mulate a probabilistic-assured resource provisioning problem
by considering the prediction error as the normal distribution
based on our proposed model.

Furthermore, when dealing with the slicing resource pro-
visioning problem to periodically allocate network resources
with traffic uncertainty, one faces the potential resource
dilemma, which means the actual allocatable resources can
not meet the resource provisioning requirements of the slices.
Moreover, when dealing with a large number of sliced re-
sources, once probabilistic models are used, the multivariate
distribution is necessarily introduced, which will greatly in-
crease the computational complexity, and cause the potential
computational dilemma. The handling of these dilemmas can
greatly affect the feasibility of the slicing resource provision-
ing strategy. In this paper, based on our proposed model,
corresponding strategies and algorithms are proposed for the
existing dilemmas.

In this paper, we focus on the potential massive vertical
industries slicing in the tenant network and propose a flexi-
ble hybrid isolation model (FHIM) for slice resources flexi-
ble and customizable isolation with hybrid slicing minimum
bandwidth (HSMB) problem, to make an assured theoretical
probability in resource provisioning based on the uncertainty
of the predicted traffic. The main contributions of this paper
are as follows.

1) Flexible Hybrid isolation model: We propose a novel
flexible hybrid isolation model, that supports the customiz-
able and flexible slice resource isolation for the tenants, and
restricts the negative impact area between slices by grouping
mechanism.

2) Efficient slice resource provisioning: We model the
resource provisioning problem in FHIM named hybrid slicing
minimum bandwidth (HSMB) with considering traffic predic-
tion error to make assurance on the theoretical probability
for resource provisioning with minimum allocated resource,
in which the prediction error is modeled as the normal
distribution.

3) Probabilistic-based Algorithm optimization: We divide
the HSMB problem into two sub-problems: the grouping
subproblem and the adjustment subproblem, and solve them
efficiently based on probabilistic analysis. Moreover, we pro-
pose a linking algorithm (HSMB-L) to handle the potential
insufficient resource dilemma and high computational com-
plexity dilemma based on the combination of the two sub-
algorithms.

The rest of the paper is structured as follows, Section II
analyzes the related work. We proposed the hybrid isolation
model and the HSMB problem in Section III. Section IV
analyzes the HSMB problem and illustrates the solutions.
Section V shows the simulation and the numerical results.
Finally, Section VI concludes the paper.

II. RELATED WORK

As mentioned in Section I, the optimization in network
slicing is mainly oriented toward service uncertainty and
resource isolation. Some related research on the uncertainty
of traffic and resource isolation is analyzed as follows.

A. Uncertainty of the traffic in NS

Traffic uncertainty has been an impediment to the on-
demand allocation of slicing resources. [18] compares different
prediction methods and demonstrates that a better prediction
result can reduce the uncertainty of the traffic. [21] is in-
terested in improving prediction accuracy by predicting for
each individual slice to facilitate slice resource allocation. In
[22], further improvement of prediction accuracy is achieved
by deep reinforcement learning to improve resource utility,
[23] and [25] also propose a prediction method to guide the
resource allocation. They all successfully reduce the uncer-
tainty of prediction results in different scenarios and increase
the profit of network resource allocation.

To better eliminate the impact of traffic uncertainty, ap-
propriate over-provision is usually adopted. [19] divide the
resources into multiple parts according to the fixed bandwidth
and allocate one more part of the bandwidth to achieve
redundancy according to the prediction results, this approach
obviously lacks flexibility and does not handle enough fluctu-
ations for some large bandwidth slices, while some resources
are wasted for small bandwidth slices. Similar with [19], the
authors in [24] also consider the over-provision for WDM
optical network in RAN slicing based on prediction. In [11],
the authors model the traffic as normal distribution and use a
probabilistic model to set up network resources for potential
service demand to maximize the operator’s maximum revenue.
[11] mainly uses weighted graphs to model the relation of
the resource between different roles (user, mobile network
operator, mobile network virtual operator). Moreover, the
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authors in [28] propose an optimal slice recovery mechanism
for deterministic traffic demands and use it for evaluating the
proposed robust network slicing algorithms, to ensure that it
can provide adjustable tolerance of traffic uncertainty. The
above papers all propose different algorithms to improve the
ability of resource allocation to cope with traffic uncertainty.
Furthermore, [27] adopt Wolverton–Wagner estimator [35] to
model the service and use intra-slice resource pooling to sup-
port the unexpected traffic and maximize the isolation of the
unpooled resources. It mainly focuses on RAN slicing while
adopting statistical multiplexing in transport networks, and the
optimized target is only to maximize the isolation, which is not
suited for the case in transport networks. In [29], the authors
proposed an algorithm to supply auxiliary resources based
on prediction, and the methods for allocation of auxiliary
resources. These researches all focus on the resource over-
provision but ignore the resource isolation between slices.
Nevertheless, these papers inspire us a lot in the design of
resource over-provision.

B. Isolation of the resources in NS

In the state of the art, the most isolation strategies of NSs are
completely isolated or fully shared in the transport network.
In [36], the authors describe the various technologies for
5G transport network slicing and the methods for achieving
resource isolation at different levels. In [30], the authors pro-
posed two types of network slicing which are fixed allocation
and fully dynamic sharing for spectrum intercell, this is a good
attempt at isolation but limited to the radio resources. In [31],
the authors mainly create a model to satisfy the end-to-end
latency as well as isolation. However, [31] mainly focuses
on the function isolation in RAN slicing and CN slicing, but
merely mentions the isolation in the transport network. In
[32], the authors mentioned the function isolation and transport
isolation, and the slices are required for full or partial isolation
from each other. [32] adopts separated wavelengths or physical
links to achieve RAN slicing. All the researches mentioned
above provide different understandings of resource isolation
and apply them to RAN slicing, they have inspired us in
designing of the hybrid isolation model in transport networks.

Compare to RAN, fewer isolation schemes have been pro-
posed in transport networks. In [13], the authors describe
the FlexE technology to realize the physical isolation with
showcases for different Quality of Service (QoS) requirements,
which enables the flexible hard isolation. The authors in [14]
present an end-to-end architecture to provide transport network
slices deployed over multi-layer IP over DWDM networks, and
several degrees of isolation (from hard to soft) are required and
implemented in the requested transport network slice. Based
on this research, we have explored a more flexible customized
hybrid isolation scheme.

In summary, the related works have driven progress in
dealing with service uncertainty and resource isolation in
network slicing, which gives us great inspiration. Based on
the related research, we further study the problem of traffic
uncertainty and resource isolation, and propose the flexible
hybrid isolation model.

TABLE I
TABLE OF NOTATIONS

Symbol Description
G Tenant network graph,G = (V ,E)
V Set of tenant network service endpoints, V =

{vi, ∀i ∈ [1,M ]}
E Set of tenant network links, E = {eij , i, j ∈ V }
B Set of available bandwidth of tenant network, B =

{Be, e ∈ E}
Bδ Minimum granularity unit of the bandwidth resource

for leasing.
S Set of slices in tenant network, S = {si, ∀i ∈ [1, N ]}
⋆ (t) The data of ⋆ at time period ∆t
Xi Predicted traffic of si
Ai Actual traffic of si
Di Predicted error of si
T Historical data length of predicted error used for

estimating µi and σi

τ Defined hybrid isolation sensitivity of the NSs tenant
network, τ = 1/T

µi Unbias estimate of the statistical mean of Dt
i with last

T data
σi Unbias estimate of the standard deviation of Dt

i with
last T data

pi Normal distribution model of si
G Set of slice group in the tenant network, G =

{Gk, ∀k ∈ [1,K]}
Bd Total required bandwidth on one link
Bk

d The required bandwidth of Gk on one link
fij The indicator variable which equals 1 while the i-th

slice is assigned to the j-th slice group
bi Dedicated bandwidth for si
bks Shared bandwidth for Gk

li Isolation level of si, a parameter in hybrid isolation
scheme

hk Hybrid degree of Gk , a parameter in hybrid isolation
scheme

NGk
The actual number of slices in Gk

P (⋆) The probability of event ⋆ happens

III. HYBRID ISOLATION MODEL AND RESOURCE
PROVISIONING PROBLEM

In this section, we first introduce our flexible hybrid iso-
lation model (FHIM), and then propose the hybrid slicing
minimum bandwidth (HSMB) problem. Here we mainly focus
on the bandwidth resources, other slicing resources such
as computing resources can be computed similarly by the
algorithm proposed in this paper. Table I summarizes all the
notations used in FHIM.

A. Flexible hybrid isolation model

As shown in Fig. 1, suppose that the network operator owns
the network infrastructure for vertical industries, and there are
multiple tenants in the transport networks. Each tenant leases
network resources from the network operator based on the
requirements of the NSs it serves. As the resource scheduling,
management, and internal traffic within a tenant network
cannot affect other tenant networks, The network resources
between different tenants must be hard isolated. Meanwhile,
from the perspective of the tenants, there are multiple NSs
in one tenant network with the same or different SLAs, the
tenant provides the best-effort service or guaranteed service to
the subscribed slice users, satisfies the isolation requirement
of slices, and reduces the total rented resources as much as
possible. Before each time period, the tenant requests the
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Fig. 1. The relation between NSs and network resource in hybrid isolation.

allocatable resources from the network operator, then makes
traffic prediction of served slices, and requests the bandwidth
resources based on the result of the prediction. Finally, the
tenants lease the resources from the network operator to serve
the slices.

The hybrid isolation policy is, that the slices of the tenant
network are divided into groups, and the resources between
the groups are hard isolated, while the resources between the
slices in the same group can be either soft isolation or hard
isolation to realize the customized isolation. Regarding the
implementation of hybrid isolation policies, taking the IP over
WDM network as an example, according to the characteristics
of optical and IP networks, a hard isolation strategy can
be implemented in optical networks, such as WDM, FlexE,
etc. And soft isolation strategy can be implemented in the
IP network, such as IP, MPLS, etc. Even if the hardware
is capable enough, it is possible to achieve hybrid isolation
using different layers of identification fields in the IP network,
such as hard isolation through identification at the MAC layer
and soft isolation through identification at the IP layer, thus
achieving a hybrid isolation implementation in a pure IP
network.

Assuming the predictable traffic of multiple types of slices,
the proposed hybrid isolation model mainly copes with the
tenant network, and the tenant can apply the hybrid isolation
and set the different SLA-related parameters to different slices.
For one tenant network, it can be described as a graph G =
(V ,E), where V : {vi,∀i ∈ [1,M ]} and E : {eij ,∀i, j ∈ V }
represent the set of service endpoints and the set of links
respectively. The bandwidth of the links is represented as
B : {Be,∀e ∈ E}. For the NSs, let S : {si, i ∈ [1, N ]}
represent the set of NSs in the tenant network. The traffic of si
is dynamic, and we assume an appropriate prediction method
has been employed to predict the traffic of si. Since network
resources have a minimum allocation unit in a transport
network, we let Bδ be the minimum granularity, which means
the bandwidth of the tenant network is an integer multiple of
Bδ .

In time period ∆t, let X (t) : {Xi (t) ,∀i ∈ [1, N ]} rep-
resent the set of predicted traffic of the NSs, Y (t) :
{Yi (t) ,∀i ∈ [1, N ]} represent the actual traffic of the NSs.

2x

( 2)
n
x n >

Blocked 
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d

Time
1tD 2tD 3tD 4tD

Fig. 2. The traffic and the bandwidth allocation of NSs in one slice group.

D (t) : {Di (t) ,∀i ∈ [1, N ]} represents the absolute error of
the NSs between the predicted traffic and actual traffic at ∆t.
The relation between them is shown in Eq.(1).

Y (t) = D (t) +X (t) (1)

Besides, as previously mentioned, to perform flexible and
customizable network resource isolation, all the NSs in the
same tenant network are divided into G groups by SLA or
service type, and the slices in the same group have the same
SLA. Let Gk, ∀k ∈ [1,K] represent the k-th group. For better
modeling, let F , which element is fij , be the indicator variable
matrix, which equals 1 while the i-th slice is assigned to the
j-th group, otherwise is 0. The relation between slices and
groups is shown in Eq. (2).

S · F = G (2)

Meanwhile, there is a constraint that the NSs in Gk have
the same source endpoint and destination endpoint, and we
assume they take the same transport path.

Hence, the bandwidth Bk
d will be allocated to the k-th slice

group Gk in the tenant network. With considering the resource
independence of network slices and the utilization of the
network, we split the bandwidth (Bk

d ) into two parts: dedicated
bandwidth b : {bi,∀i ∈ [1, NGk

]} and sharing bandwidth bks ,
in which NGk

is the number of the NSs in Gk, bi means the
bandwidth only used to support i-th slice, and bks is used as the
sharing resource for all NSs in Gk. Then the total distributed
bandwidth of group Gk can be calculated using Eq. (3).

Bk
d =

∑
si∈Gk

bi + bks (3)

Fig. 2 shows an example of the relation of bi and bks in
group Gk (to simplify the representation, the superscript k has
been removed from the figure). The left part shows n slices
si,∀i ∈ [1, n] with actual traffic Xi in one group, while the
right part shows their resource allocation and actual occupation
based on our model. Each dedicated resource bi is allocated for
si, bs is the shared resources of the group. For each slice si,
the resource occupancy priority of bi is higher than that of bs.
Before time period ∆t1, the traffic of each slice is lower than
their dedicated resource and used their dedicated resource to
transport the traffic. In time period ∆t1, X2 is greater than b2,
and begins to occupy the resources in bs. In time period ∆t2,
X1 turns to be greater than b1, and begin to use bs together with
X2, and the resource is enough due to X1+X2 ≤ b1+b2+bs.
In time period ∆t3, the service degradation happens in both
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s1 and s2, because X1+X2 > b1+ b2+ bs, but si,∀i ∈ [3, n]
are not affected because Xi < bi,∀i ∈ [3, n] and they do not
occupy bs, this shows if the actual traffic of some slices is
quite different from the prediction result, they may cause the
slices in the same group degraded whose actual traffic larger
than their dedicated bandwidth. Time period ∆t4 is similar to
time period ∆t2, and the time periods after ∆t4 are similar
to the time periods before ∆t1, no more analysis of service
degrades here.

What we are mainly concerned with is whether the predic-
tion errors obey normal distribution. Here the distribution of
prediction errors can be either expected based on the prediction
method and the traffic model, or adopt the normality test
methods (Kolmogorov Smirnov test [33], Anderson-Darling
test [34], etc.) to evaluate whether the forecast errors satisfy
a normal distribution. Our model is applicable to the case
where the prediction errors obey normal distribution. This is
a necessary condition for our research.

As mentioned in section I, the prediction error exists no
matter what prediction method is used. Thus the historical
errors (last T time periods) of the predicted traffic can be
seen as normally distributed, which is shown in Eq.(4).

Di (t) ∼ N
(
µi (t), σi

2 (t)
)

(4)

in which µi (t) and σi (t) represent the unbiased estimate
of the mean and standard error of the predicted error of si
respectively at the time period ∆t, and they can be calculated
by hypothesis testing based on the last T time periods. We
use the data of the last T time periods instead of the whole
historical data, it is because if all historical data are used,
new data at time period ∆(t− 1) will have little impact in
calculating µi (t) and σi (t), which cause the model insensitive
to the feature of traffic changes.

As mentioned above, each slice si is assigned to a ded-
icated bandwidth bi (similar to the guaranteed bit rate in
IP networks). Meanwhile, the shared bandwidth bks has been
allocated in Gk for each slice in it, which means that si can
use the bandwidth bi first, if the actual traffic Xi exceed bi,
they can occupy bks temporary to avoid the slices in Gk being
degraded.

The hard isolation (resource between tenant networks and
between different slice groups) and soft isolation (resource
of the slice in the same slice group) are applied in the
tenant network simultaneously, to support flexible resource
provisioning for NSs.

For better configuration in the proposed FHIM, we define
some parameters to support customizable resource isolation.

1) Hybrid isolation sensitivity τ : Let τ be the hybrid
isolation sensitivity of the tenant network, which is related
to T as τ = 1/T .

According to the definition of τ , τ affects the rate of change
of the mean and variance of the prediction error statistics,
as shown in Eq. (5) and Eq. (6). Meanwhile, the iterative
equations of µi (t) and σi (t) are shown in Eq. (7) and Eq.
(8).

µi (t) = τ
∑t

x=t− 1
τ

Di (x) (5)

σi
2 (t) =

τ

1− τ

∑t

x=t− 1
τ

(Di (x)− µi (t))
2 (6)

µi (t)− µi(t− 1) = τ

(
Di (t)−Di

(
t− 1− 1

τ

))
(7)

σi
2 (t)− σi

2 (t− 1) = τ

(
Di

2 (t)−D2
i

(
t− 1− 1

τ

))
−2

(
Di (t)−Di

(
t− 1− 1

τ

))
µ̂

(8)

µ̂ =
τ

1− τ

t−1∑
x=t− 1

τ

Di (x) (9)

where µ̂ is the mean value of Di from time period ∆(t− 1/τ)
to ∆(t− 1), as shown in Eq. (9).

In general, the value of τ takes a relatively small value
for enough historical data to be statistically significant, for
example, if τ = 0.02, it means the number of historical data
is T = 50 for estimating µt

i and σt
i .

At the beginning of ∆t, let P : {pi, i ∈ [1, N ]} represent
the distribution of the traffic with different slices at ∆t. Based
on the assumptions, pi (t) belongs to normal distribution, and
it is shown in Eq. (10).

pi (t) ∼ N
(
Xi (t− 1) + µi (t− 1), σ2

i (t− 1)
)

(10)

2) Slice resource provisioning level ak: Let ak ∈ (0, 1) be
the slice resource provisioning level of Gk, which indicates the
theoretical probability that the provided resource of the slices
in Gk can meet the requirement of traffic in them.

3) Isolation level li: Let li ∈ [0%, 100%] represent the
isolation level of si, which indicates the theoretical guaranteed
availability of si. It represents the assurance probability that
the slices used the dedicated bandwidth bi. It can be learned
that it is the lower limit of ak. In other words, li ensures
the lower limit of allocated resources for supporting si, the
relation of li and bi is shown in Eq. (11).

li ≤ P (Xi (t) ≤ bi) (11)

4) Hybrid degree hk: Let an integer hk be the hybrid
degree of Gk, it is the upper limit of the number of the network
slices in Gk, hk limits the impact of the unexpected bursts
of traffic, as network slices are potentially affected by other
slices using the same shared bandwidth bGk

s , especially the
predicted traffic has a large error that is lower than actual
traffic. hk limits the scale of the negative impact of the
abnormal prediction. So the actual number of slices NGk

in
Gk is constrained as Eq. (12).

NGk
=

∑
i∈[1,N ]

fik ≤ hk,∀k ∈ [1,K] (12)

According to the parameters, when li,∀si ∈ Gk is set to
100%, it means that the slices in Gk are hard isolated, and the
resources between slices will not be shared. When li,∀si ∈ Gk
is set to 0%, it means that the slices in Gk adopt statistical
multiplexing, and the resources between slices are fully shared.
If li is set to different values, customizable resource isolation
in Gk is realized.
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B. Hybrid slicing minimum bandwidth problem

In this section, we analyze the slice provisioning problem in
time period ∆t. To simplify the representation, we will omit
the time period stamp on the symbol.

Suppose A is a subset of Gk, we use E1A to indicate the
case that the traffic Xi of each slice si ∈ A is lower than
their dedicated bandwidth, as Eq. (13) shows. In slice set A,
Eq. (11) can be expressed as Eq. (14). E2A represents the
event that each traffic of the slices in A larger than their
dedicated bandwidth, and the total traffic of all the slices in A
is smaller than their total bandwidth which equals the sum of
their dedicated bandwidth bi and the total shared bandwidth
bs, the relation is shown in Eq. (15). Meanwhile, let Ē1A and
Ē2A represent the complementary set of E1A and E2A.

E1A : Xi ≤ bi,∀si ∈ A (13)

P
(
E1A

)
≥ li,∀si ∈ A (14)

E2A : Xn > bn,
∑
n∈A

Xn ≤
∑
n∈A

bn + bs,∀n ∈ A (15)

With the assumption that the traffic of network slices is
independent of each other, E1A and E2A can be derived from
the univariate and multivariate normal distribution cumulative
distribution function (CDF). Let ĒbA,∀A ⊆ Gk represent the
event that there is any slice in A has degraded due to the
inadequate resource. In other words, when ĒbGk

happens, the
slices in A,∀A ⊆ Gk, in which the traffic exceeds the
dedicated bandwidth on the link will be blocked. Meanwhile,
we let EbA be the complement of ĒbA (Eq. (16)), which means
the slices set A is normal and no slices are blocked. Based on
our model, the probability that one group is not blocked can
be calculated (shown in Eq. (17)), as well as the unblocked
probability of the i-th slice P

(
Ebi

)
(shown in Eq. (18)).

P
(
EbA

)
= 1− P

(
ĒbA

)
,∀A ⊆ Gk (16)

P
(
EbGk

)
=

∑
A⊆Gk

P
{
E1A

}
P
{
E2Gk−A

}
(17)

P
(
Ebi

)
= P

(
E1i

)
+

∑
A⊂Gk

P
(
E1A

)
P
(
E2(Gk−A)∪i

)
(18)

Meanwhile, according to the definition, we can derive the
relative of P

(
Ebi

)
and P

(
EbS

)
, shown in Eq. (19):

P
(
Ebi

)
− P

(
EbGk

)
= P

(
E1i

)
P
(
ĒbGk−i

)
≥ 0 (19)

in which, the right part of the equal sign in Eq. (19) means
the probability of that si uses its dedicated bandwidth and
the other slices in Gk have blocked. According to Eq. (19),
P
(
Ebi

)
,∀si ∈ Gk is always not smaller than P

(
EbGk

)
.

Once we allocate resources based on ak for each slice, while
a portion of the resources of the slices is used for sharing
in bs, due to the benefits of statistical multiplexing, ak will
be improved, which means we can save bandwidth to reach
the original ak requirement. We set our object to minimize

the allocated bandwidth, and the problem can be formulated
as nonlinear programming named Hybrid Slicing Minimum
Bandwidth (HSMB) problem, shown as follows:

o.b. min
∑

Gk∈G
⌈Bk

d/Bδ⌉ ∗Bδ (OP1)

s.t. P
(
Ebi

)
≥ ai ,∀i ∈ Gk (20)

Bk
d ≤ Be ,∀k ∈ [1,K] ,∀e ∈ Re

(21)∑
k∈[1,K]

fik ≤ 1,∀i ∈ [1, N ] (22)

bi ≥ 0, bjs ≥ 0 ,∀i ∈ [1, N ] ,∀j ∈ [1,G]
(23)

Eq.(3), (12), (14).

in which, Eq. (20) represents that all the blocking prob-
ability of the slices must meet the requirement of ak. Eq.
(21) indicates the total used bandwidth can not exceed the
bandwidth of the link. Eq. (14) is denoted the isolation
requirement of the slices. Eq. (12) meets the requirement of
the number limitation of the slices in each group. Eq. (22)
ensures each slice only can be assigned into one group.

The HSMB problem is a mixed integer nonlinear pro-
gramming (MINLP) problem, it is NP-Hard, as it can be
categorized as a special set partition problem. The problem
can be described as: find a serials subsets G of slices set S,
each subset Gk can derive the required minimum bandwidth
Bk

d under the non-linear programming requirements of each
slice si ∈ Gk, to minimize the total bandwidth.

Besides, Eq. (20) is nonlinear, and it is calculated by the
cumulative distribution probability of multivariate normal dis-
tribution. Although it can be evaluated using the more mature
algorithm [37], it still has high computational complexity. If
we use a typical algorithm to solve the OP1 (such as heuristic
algorithms, etc.), the computational complexity is very high,
especially if the number of slices is large. Therefore, we do a
deep analysis of the HSMB and propose a series of algorithms
to solve OP1.

IV. HSMB-L ALGORITHM FOR HSMB PROBLEM

As HSMB can be seen as a set partition problem, we divide
it into two steps, we first analyze the grouping condition
that meets the requirements of minimum bandwidth, and
group them with HSMB grouping (HSMB-G) algorithm based
on the condition, and then proposed the HSMB adjustment
algorithm (HSMB-A) to make bandwidth adjusting in each
group based on probabilistic analysis. Moreover, we proposed
HSMB linking (HSMB-L) algorithm to deal with the po-
tential insufficient resource dilemma and high computational
complexity dilemma, with the combination of HSMB-G and
HSMB-A, to form the whole solution of HSMB.

A. Grouping

In this subsection, we mainly analyze the slices in one group
and find the characteristics of the slices within the group in
the best grouping scheme, in which the required resource is
the least for the same degraded probability. For simplicity,
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the indication of the group in the symbol is omitted in this
subsection, for example, we use Bd to represent Bk

d .
According to Eq. (19), the probability of si not be degraded

is the sum of the CDF of multivariate normal distribution,
and P

(
Ebi

)
is bigger than P

(
EbGk

)
. Here we are mainly

concerned with the increasing P
(
EbGk

)
for the minimum

guarantee of resource provisioning. Based on the property of
normal distribution, we can get the following conclusions.

Theorem 1: In HSMB, given a fixed Bd. P
(
EbGj

)
is

decreasing function of bk,∀sk ∈ Gj , where bk is the dedicated
bandwidth of the k-th slice in Gj , while bi, ∀si ∈ Gj −sk are
fixed.

Proof 1: Suppose there are K slices in Gj , express as
Gj = {sk, k ∈ [1,K]}, in which the predicted traffic of them
obey the normal distribution as N (Xk + µk, σk) respectively.
So the blocking probability of Gj can be expressed by Eq.
(17). Let Φ1

A (b⋆) = P
(
E1A

)
, Φ2

A (b⋆) = P
{
E2A

}
, in which

b⋆ is the standardized form of [bi, bs], and their probability
density are ϕ1

A (b⋆) and ϕ2
A (b⋆) respectively. Meanwhile,

let fA (b) = Φ1
A (b⋆) Φ2

Gj−A (b⋆) = P
(
E1A

)
P
(
E2Gj−A

)
.

As assumption, bi (i ∈ Gj − i) and Bd are fixed,
hence d (bs) = −d (bk). It can be derived that
∂fA(b)
∂(bk)

=

{
ΓA−k,k +∆A,k(b

⋆), k ∈ A
−ΓA,k, k ∈ Gj −A

, in which

ΓA,k = ϕ1
k (b

⋆
k) Φ

1
A (b⋆) Φ2

Gj−k−A (b⋆) + ΦA (b⋆)

and ∆A,k (b
⋆) = Φ1

A (b⋆) ∂Φ2
Gj−A (b⋆)/∂bk < 0.

Meanwhile,P
(
EbGj

)
=

∑
A⊂Gj

fA (b). Observe that
ΓA−k, k ∈ A and ΓA, k ∈ Gj − A are same if go
through A ⊆ Gj , and ∂f (b)/∂bk = ∆A (b⋆) < 0, so
∂P

(
EbGj

)
/∂bk < 0, proven.

As described in Theorem. 1, P
(
EbGk

)
increases as bi de-

creases. As the universality of si, P
(
EbGk

)
can get the max-

imum value when all bi get the minimum value. Meanwhile,
if P

(
EbGk

)
exceeds ak, Bd can be reduced to make P

(
EbGk

)
down close to ak by a very small number δ. Following this
strategy, the optimal Bd can be achieved when bi,∀si ∈ Gj is
as small as possible. Hence, the constraint shown in Eq. (14)
can be reduced to the constraint shown in Eq. (24).

li = P
(
E1i

)
,∀i ∈ [1,G] (24)

Then we focus on the grouping strategy of the slices in Gj .
Suppose each si ∈ Gk has a contribution on bs, and we define
the contribution degree bsi is shown as Eq. (25).

bsi = bs
σi∑

sj∈Gk
σj

(25)

Lemma 1: P
(
EbGk

)
is decreasing function of the variance

σi,∀si ∈ Gk while

bi + bsi ≥ µi,∀si ∈ Gk (26)

Based on Lemma. 1, we take account into a special
case, that li = 0,∀si ∈ Gk. Then the slices in Gk can
be regarded as complete statistical multiplexing, so the to-
tal traffic of si,∀si ∈ Gk obeys the normal distribution
N

(∑
µi, ∥σj∥2

)
,∀i ∈ Gk, in which ∥σk∥2 means the 2-th

norm of σk. The conclusion can be extended to our hybrid
isolation model because their trends are similar.

Then the unblocked probability P
(
EbGi

)
of slices in Gk

is Φ ((
∑

bi + bs −
∑

µi) /∥σk∥2 ). Based on Theorem. 1,
(bi − µi) /σi ,∀i ∈ Gi equals to li, which is a constant
parameter here, P

(
EbGk

)
can be derived as Eq. (27) shows.

P
(
EbGk

)
= Φ

(∑
li ∗ σi /∥σk∥2

)
(27)

As Eq. (27) shows, P
(
ĒbGj

)
is a non-linear increasing func-

tion of
∑

σi /∥σi∥2 . We can find
∑

σi /∥σk∥2 ∈
[
1,
√
2
]
,

and ai always set to near 1 (Satisfy the condition of Theorem.
(1) in actual application). The gradient here is already small,
so we reduce P

(
EbGk

)
to a linear mapping of

∑
σi /∥σk∥2

for approximation.
Based on the approximation, some conclusions can be

derived.
Theorem 2: In HSMB, to maximize the unblocked prob-

ability P
(
EbGk

)
of Gk, The condition that maximizes the∑

σi /∥σi∥2 ,∀si ∈ Gk should be met.
Corollary 1: In HSMB, with the same condition of the

theorem. 2, the best grouping method is to divide the slices
adjacent to the standard deviation into one group.

Proof 2: We focus on the monotonicity of f =∑
σi /∥σi∥2 , and take the derivative of σi first, as Eq. (28)

shows, it can be derived that f can get the maximum value
while σi = σj ,∀i, j ∈ Gk, and the value gradually decreases as
the gap becomes larger. If the standard deviation of the slices
in one group is not adjacent, f can be larger if the standard
deviation of the slices adjacent to the standard deviation of the
slices in the group is exchanged with the standard deviation of
the slices at the edge in the group. Therefore, the best grouping
scheme is to put the slices adjacent to the standard deviation
into a group. proven.

∂f

∂σi
=

∑
j∈Gj

σj (σj − σi)

∥σk∥32
,∀si ∈ Gk (28)

Based on the theory of statistical multiplexing, we can get
Lemma. 2.

Lemma 2: In HSMB, if Bk
d =

∑
si∈Gk

(bi + bsi), then

P
(
EbGi

)
≤ P

(
EbGj

)
while Gi ⊆ Gj .

Theorem 3: In HSMB, given the fixed Bk
d , li and ak, as the

solution of HSMB, the number of groups NS , and the number
of slices in k-th groups NGk

should satify the equations shown
in Eq. (29) and Eq. (30).

NS = ⌈N/hk⌉ (29)

NG ∈ [NS − ((hk ∗NS −N) mod NS) , hk] (30)

in which ⌈⋆⌉ means round ⋆ up to an integer.
Based on the above properties, we propose a dynamic pro-

gramming algorithm to realize the grouping strategy, shown in
Algorithm 1, in which some auxiliary variables are introduced.
In Line 1, the algorithm is initialized, where Imin and Imax

are arrays with length N , and their i-th element represents
the upper and lower limits of the slice index when the first i
slices complete grouping, they indicate the zone of next index
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which si need to participate in grouping calculation under the
constraints of Theorem. 3. Line 2 calculates the NS and NGk

,
and Line 3 sorts the slices according to the standard deviation
to ensure the effectiveness of Corollary. 1 when grouping. Line
4 to Line 10 are used to deal with the grouping directly when
N is an integer multiple of hk. We take it separately because
the grouping is relatively simple in this case, which is just
taking hk values from ŝ in sequence as a group. Otherwise, the
pseudo-code between Line 11 to Line 34 shows the dynamic
programming algorithm of grouping. TL is an array that stores
the best grouping strategy. Each element of TL is an NS set.
The i-th element represents the best grouping strategy of the
first i slices in ŝ. In the dynamic programming algorithm,
while i ∈ [min(NGk

), hk], TL [i] is the set of the first i slices
in ŝ, shown in Line 12 to Line 16, otherwise, let TLtmp be
an array that store all possible grouping schemes for the first
i slices, and T1 used to store each grouping temporarily. We
can get the recurrence formula as Eq. (31), shown from Line
18 to Line 24. Then the pseudo-code shown from Line 25 to
Line 30 shows that we select the best grouping from TLtmp

through the adjustment function (shown in Eq. (32)) based on
Theorem. 2, so the last element of TL is the best grouping
scheme (shown in Line 35). Line 31 deals with the case that
the first i slices cannot be grouped under the constraint of
Theorem. 3.

T1=TL [j]
⋃

i⋃
k=j+1

sk

,∀i ≥ hk, j ∈ [0, i− 1] (31)

Func (T ) =
⋃

T1∈T

{ ∑
Z∈T1

∑
G∈Z

∑
i∈G σi

∥σG∥2

}
(32)

In order to better understand Algorithm 1, here is an
example. Suppose that a set Ŝ = {ŝ0, ŝ1, · · · , ŝ9} with 10
sorted slices, grouped by hk = 4, we can get NS = 3 and
NG = [2, 4]. Then the value of TL,Imin,Imax in each iteration
of the dynamic programming is shown in Table II, in which
the BEST {⋆} means the optimal scheme of ⋆ calculated by
Lines 26 and Line 27 in Algorithm 1, and the best grouping
scheme is the last element of LT (in this example is LT [9]).

B. Adjusting

After grouping, we can get different sets of slices. Ac-
cording to the hybrid isolation strategy mentioned in the last
subsection, hard isolation is used between different groups. So
we will discuss the adjusting method to optimize P

(
EbGk

)
and

P
(
Ebi

)
,∀si ∈ Gk in a single group.

In adjusting, we set bs to be a dynamic variable and the main
target is to find a better value of bs. For the convenience of
description, in this step, we describe P

(
EbGk

)
as P

(
EbGk

, xb

)
and treat it as a function of xb, in which xb represents
the dynamically sharing bandwidth. The value of P

(
EbG , xb

)
represents the value of P

(
EbG

)
in Eq. (17) when xb is equal

to bs.
Based on the properties of normal distribution, P

(
E1Gk−i

)
and P

(
E2Gk−i

)
take the maximum value while σi =

max(σk), si ∈ Gk. In our model, P
(
E1i

)
is defined by li,

Algorithm 1: Dynamic Programming Algorithm for
Grouping in HSMB (HSMB-G).
Data: si ∈ S, hk

Result: The grouping list AG of S
1 Initialization:si ∈ S,Be,nl, temporary variable

Imin = ∅, Imax = ∅, TL = [∅] ∗N,TLtmp, L, T1 and
AG = ∅ ;

2 Calculate NS ,NG with Eq. (29) and Eq. (30) ;
3 Sorted si into ŝi according to the value of σi ;
4 if min (NG) equals hk then
5 for slice index i = 0 to NS − 1 do
6 Set j ← i ∗ hk ;
7 Set AG .add ({ŝj , ŝj+1, · · · , ŝj+hk−1})
8 end
9 return AG

10 end
11 for Index i = 0 to N − 1 do
12 if min (NGk

) ≤ i+ 1 ≤ hk then
13 TL [i] .add ({ŝ0, ŝ1, · · · , ŝi}) ;
14 Imin [i]← hk +min (NG) ;
15 Imax [i]← hk + i+ 1 ;
16 else
17 Set TLtmp = ∅ ;
18 for j = 0 to i− 1 do
19 if Imin [j] ≤ i+ 1 ≤ Imax [j] then
20 T1 ← (TL (j)) ;
21 T1.add ({ŝj+1, ŝj+2, · · · , ŝi}) ;
22 TLtmp.add (T1) ;
23 end
24 end
25 if length(TLtmp) not equals 0 then
26 m← Index (max (Func (TLtmp))) ;
27 TL [i] = TLtmp [m] ;
28 Imin [i]← min (NG) + hk ∗ ⌈(i+ 1)/hk⌉ ;
29 Imax [i]← hk + i+ 1 ;
30 else
31 Set TL [i] , Imin [i] , Imax [i] to None
32 end
33 end
34 end
35 AG = TL [N − 1] ;
36 return AG

which is given by the network tenant, and P
(
Ebi

)
is fixed.

Based on Eq. (19), in order to make P
(
Ebi

)
≥ ai, the

required value of P
(
EbGk

, xb

)
can be got, and we mark it as

P ′ (EbGk
, xb

)
, which should satisfy the equation shown in Eq.

(33).

P ′ (EbGk
, xb

)
= min

xb

P
(
EbGk

, xb

)
= min

xb

{
max
si∈Gk

{
P
(
Ebi

)
− P

(
E1i

)
P
(
ĒbGk−i, xb

)}}
= min

xb

{
max
si∈Gk

{
ak − lliP

(
ĒbGk−i, xb

)}}
,∀si ∈ Gk

(33)
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TABLE II
EXAMPLE OF RECURRENCE IN DYNAMIC PROGRAMMING

ALGORITHM FOR GROUPING IN HSMB-G

i Imin [i] Imax [i] TL [i]
0 ∅ ∅ {∅}
1 6 6 {{ŝ0, ŝ1}}
2 6 7 {{ŝ0, ŝ1, ŝ2}}
3 6 8 {{ŝ0, ŝ1, ŝ2, ŝ3}}
4 ∅ ∅ {∅}

5 10 10 BEST

 {TL [1] , {ŝ2, ŝ3, ŝ4, ŝ5}}
{TL [2] , {ŝ3, ŝ4, ŝ5}}
{TL [3] , {ŝ4, ŝ5}}


6 10 11 BEST

{
{TL [2] , {ŝ3, ŝ4, ŝ5, ŝ6}}
{TL [3] , {ŝ4, ŝ5, ŝ6}}

}
7 10 12 {LT [3] , {ŝ4, ŝ5, ŝ6, ŝ7}}
8 ∅ ∅ {∅}

*9 14 14 BEST

 {TL [5] , {ŝ6, ŝ7, ŝ8, ŝ9}}
{TL [6] , {ŝ7, ŝ8, ŝ9}}
{TL [7] , {ŝ8, ŝ9}}



Meanwhile, the initial value of bs of each group is the
difference between the total resource allocated to each slice in
the group according to ak and the total resource allocated to
each slice according to li, shown in Eq. (34).

bs =
∑

si∈Gk

Φ−1 (ak)∗σi+µi−
∑

si∈Gk

Φ−1 (li)∗σi+µi (34)

According to Eq. (17) and Eq. (18), P
(
EbGk

)
is a complex

nonlinear concave function of bs while bi + bsi ≥ µi. So we
design an iterative method to gradually optimize the value of
P
(
EbGk

)
and P

(
Ebi

)
. Based on the properties of the concave

function, we have the relationship shown in Eq. (35).

P
(
EbGk

, xm
b

)
− P

(
EbGk

, x′
b

)
P
(
EbGk

, xn
b

)
− P

(
EbGk

, x′
b

) ≥ xm
b

xn
b

,

∀x′
b ≥

∑
ui + bs, x

m
b ∈ [xb, x

n
b ] , x

n
b > 0

(35)

It is easy to conclude that when xb is less than the optimal
value x∗

b and as large as possible, the iteration can approach
the optimal solution faster.

Let x′
b be the middle variable for iteration of xb, our method

is to adjust x′
b to get a sufficiently small P

(
EbGk

)
. Suppose

P
(
EbGk

, xm
b

)
is the result of P

(
EbGk

, xb

)
after m-th iterations.

At first, we initial the x0
b = bs (bs calculated by Eq. (34)), so

P
(
EbGk

, x0
b

)
= P

(
EbGk

, bs
)
, then we begin iteration according

to Eq. (36), in which xm
b means the value of x′

b after m times
iteration.

xm
b =

(
xm−1
b − x̂b

)
∗
P ′ (EbGk

, xm−1
b

)
− P

(
EbGk

, x̂b

)
P
(
EbGk

, xm−1
b

)
− P

(
EbGk

, x̂b

) + x̂b

(36)
Here is an example to illustrate the iteration. Assume that x∗

b

is the ideal solution. And Fig. 3 shows a geometric illustration
of an example iterative process. The value of each iteration is
moving closer to the optimal value.

Considering that the CDF of multivariate normal variables
needs to be calculated for each loop, in order to further
reduce the number of loops, we, therefore, combined the above

(a) Iterative process
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Fig. 3. An example of the iteration.

iterative algorithm with the Bisection algorithm [11]. Let x̂b be
a middle variable for the upper boundary of xb in the Bisection
algorithm, it can be calculated from the condition shown in
Eq. (37).

x̂b = max
(
Φ−1 (ak) ∗ ∥σk∥2 +

∑
µi −

∑
bi, 0

)
(37)

Algorithm 2 shows the steps of the proposed iterative
algorithm for Adjusting. Line 3 to Line 27 shows the pseudo-
code of the iterative method . For more details, the termination
condition of iteration is that either the number of iterations
exceeds the preset value (In) or the probability error is
less than the predetermined value (Em). We define several
temporary variables, which x̄b stores the value of xb in the
Bisection algorithm, ẋb indicates the value of xb in the last
loop, x′

b here is used to store the iterative value calculated by
Eq. (36), Cs is used to indicates whether the iterative gap is
less than Bδ , and Cs equals 1 indicates that the condition is
satisfied (shown in Line. 12 to Line. 14), and the algorithm
will set the iterative gap as Bδ while Cs equals 1 (shown
in Line. 10). In each loop, while Cs equals 0, xb will get
the smaller one between x̄b and x′

b (shown in Line .8). As
analyzed above, if xb gets the value of x′

b, P
(
Ebi , xb

)
will

always be higher than ak. if P
(
Ebi , xb

)
is smaller than ak,

there are 2 possible reasons: the first one is xb gets the value
of x̄b, and in this case, we handle the current value of xb to
be the start point of the optimization area with updating x̂b,
to make our optimization area narrower (shown in Line. 19).
The second one is the fluctuations in calculating P

(
Ebi , xb

)
.

Since the value of P
(
Ebi , xb

)
is not strictly exact, we define

a very small bias ϵ, and add it to P
(
Ebi , xb

)
(shown in Line.

17). After each iteration, let ẋb save the value of xb and then
start the next loop. Finally, the result is saved in the list Lbs .

Moreover, Eq. (38) ensures the total required resources of
each group is the integer multiple of Bδ .

xb = ⌈
(∑

si∈G
bid + x̂b

)
/Bδ⌉ ∗Bδ (38)

As mentioned, the final required minimum value of bs of
each group can be calculated. Together with bi of each slice,
we can get the total minimum resources Bk

d which need to
allocate to Gk.

C. Linking
According to the previous analysis, after acquiring the

prediction result of the slices, the tenant first groups them
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Algorithm 2: Cyclic Iterative Algorithm for Adjusting
in HSMB (HSMB-A).

Data: The grouping list AG of S and si ∈ S
Result: The list Lbs of value of bs for each G ∈ S and

PGk

1 foreach G ∈ G do
2 Initialization: i = 0,Lbs = {0} ∗K, xb = bs, x̂b,

ẋb = bs,Cs = 0, x′
b = 0, x̄b = 0, P ′ (EbG , xb

)
with

Eq. (33), P
(
Ebi , xb

)
; Input In, Em ;

3 while i ≤ In or minP
(
Ebi , xb

)
− ak ≥ Em do

4 i← i+ 1 ;
5 if Cs equals 0 then
6 Update x′

b using Eq. (36);
7 Update x̄b = 1/2 ∗ (xb + x̂b) ;
8 xb ← min (x′

b, x̄b)
9 else

10 xb = xb −Bδ

11 end
12 if ẋb − xb < Bδ then
13 Cs ← 1 ;
14 Update xb using Eq. (38) ;
15 end
16 Calculate P

(
Ebi , xb

)
using Eq. (19);

17 if minP
(
Ebi , xb

)
< ak − ϵ then

18 if xb == x̄b then
19 Set x̂b ← xb, xb ← ẋb

20 end
21 if Cs == 1 then
22 Break;
23 end
24 else
25 ẋb ← xb

26 end
27 end
28 if minP

(
Ebi , xb

)
< ak then

29 xb ← xb +Bδ

30 end
31 Update xb using Eq. (38) ;
32 Lbs .add (xb) ;
33 end
34 return PGi , Lbs

according to Algorithm 1. The proposed grouping algorithm
makes the constraints of Eq. (3), Eq. (12), and (22) hold, and
then calculates bs by Algorithm 2 to realize the constraints of
Eq. (14), (20), and (23). However, there are two problems still
on top of solving OP1, The first problem is that Algorithm 2
still has more integral operations and requires more computa-
tion time, which we call the computational dilemma. And the
second problem which we call the resource dilemma, which
caused by the constraint in Eq. (21). We address these two
dilemmas in this subsection and proposed Algorithm 3 to link
the grouping algorithm and adjustment algorithm together to
form the final solution of HSMB.

1) Resource Dilemma: Since the relation between Bk
d and

input parameters is nonlinear, it is difficult to decide how many

NSs should be refused when the total required bandwidth
is more than what can be provided. Assume that the excess
required bandwidth is ∆B. First, we choose the lowest priority
grouping Ĝ to check if the total resource B̂d is larger than the
∆B, and adjust the G as Eq. (39) shows.

G =

{
G B̂d > ∆B,

G − Ĝ else.
(39)

The iteration runs through Eq. (39) until the number of
groups stops decreasing. And then we check the slices in the
new Ĝ. The strategy within the group is more flexible, it can
be determined by the SLA of the slices, either by traditional
methods (best-effort, DiffServ, etc.), or simply rejecting some
of the slices. If the latter is used, Eq. (40) can be used to get
the set of refused slices, in which Gf represent the subset of
refused slices in G.∑

si∈Gf

(bi + bsi) ≥ ∆B (40)

The pseudo-code in Line 27 to Line 33 of Algorithm 3
shows the operation of dealing with resource dilemma.

2) Computational Dilemma: Although we reduce the com-
putational complexity greatly by HSMB-G and HSMB-A, the
computational complexity of Algorithm 2 is still relatively
high if the number of slices within one group is large.
Here we explore further methods to reduce the computational
complexity.

In the proposed FHIM, it can be found that the value of
bi is related to the li, while the value of bs is only related
to the prediction error σk, and the computational complexity
is mainly contributed by calculating bs. As mentioned in
Section III, the value of τ is generally taken to be relatively
small, which also means that the mean and variance of the
predicted NSs change more slowly, this also means that
the results of the grouping rarely change in a short period.
Meanwhile, the presence of Bδ allows us to have some
bandwidth margin to accept small changes in the predicted
error on the traffic of the slice. Therefore, at time period
∆t, we can calculate the required bandwidth based on the
calculated result in time period ∆(t− 1). Therefore, we first
calculate the change of dedicated bandwidth ∆Bd

t, shown in
Eq. (41). Then we calculated the P

(
EbGk

, xb

)
by Eq. (19) with

xb = ⌈
(
Bk

d (t− 1) + ∆Bd
t
)
/Bδ⌉∗Bδ . Finally, we iteratively

adjust xb in step Bδ to calculate the bandwidth Bk
d (t).

Algorithm. 3 shows the final linking algorithm (HSMB-L).
We use Id to indicate whether the resource dilemma happens,
which Id equals 1 means the resource dilemma does not
happen and otherwise 0. So we set Id to 0 to calculate the
required resources first. After grouping, if one group exists
in the last period, we start our algorithm for dealing with
computational dilemma (from Line. 6 to Line. 25), that we
adjust bks (t) based on bks (t− 1), and adjust them with the
gap Bδ (form Line. 11 to Line. 19). If a new group exists,
then startup our proposed Algorithm. 2 to calculate the new
bs (Line. 5). After obtaining the whole resource requirement
of resources, Line. 27 to Line. 33 deal with resource dilemma
if resource dilemma happens, otherwise set Id to 1 and break
the while-loop. And return the final resource configuration.
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Algorithm 3: Linking Algorithm for Linking in HSMB
(HSMB-L).

Data: The grouping list AG(t− 1), si ∈ S, G, Em,
PGk

(t− 1), Lbs(t− 1), Pt, D, ak, hk, Bδ and
Id = 0

Result: Slice set G and list of bks ,Gk ∈ G
1 while Id equals 0 do
2 Grouping with Algorithm 1 ;
3 foreach Gk ∈ AG(t) do
4 if Gk /∈ AG(t− 1) then
5 Calculate PGk

and Lbs with Algorithm 2;
6 else
7 Calculate ∆Bd (t) with Eq. (41) ;
8 xb ← bks (t− 1) ;
9 Calculate P

(
Ebi , xb

)
using Eq. (19);

10 Pt ← minP
(
Ebi , xb

)
;

11 while Both Pt and minP
(
Ebi , xb

)
larger

or smaller than ak + Em do
12 if Pt − ak ≤ Em then
13 xb ← xb +Bδ

14 end
15 if Pt − ak ≥ Em then
16 xb ← xb −Bδ

17 end
18 Calculate P

(
Ebi , xb

)
using Eq. (19);

19 end
20 if

Pt−ak ≤ Em&minP
(
Ebi , xb

)
−ak ≥ Em

then
21 Lbs .add (xb) ;
22 else
23 Lbs .add (xb +Bδ) ;
24 end
25 end
26 end
27 if

∑
Gk∈G Bk

d > Be then
28 Iterate Eq. (39) until |G| stop decreasing ;
29 Solve the Gf with the constrain Eq. (40) ;
30 S =

⋃
G − Gf ;

31 else
32 Id ← 1
33 end
34 end
35 return G, Lbs

∆Bd (t) =
∑

si∈Gk

(bi (t)− bi (t− 1)) (41)

V. NUMERICAL RESULTS

In this section, we conduct numerical simulations to esti-
mate the performance of the proposed algorithms. We first
evaluate the performance of the algorithm under different
influencing factors and then compare the performance with
benchmark algorithms. Table III summarizes the parameters
we defined in the evaluation, and Table IV shows the value
of the parameters of FHIM we used in each evaluation. The

TABLE III
DEFINITION OF METRICS IN EVALUATION

Symbol Description
er Historical prediction relative absolute error of the

slices, in which er (t) means the er on time ∆t.
η Network resource utilization, as the ratio of actual

traffic Y to allocated bandwidth Bd

ηb Network resource utilization of bs.
γk The reduce ratio of the total distributed bandwidth with

different li to the case li = 100%.
rd The ratio that the same group in adjacent time-

separated groupings and the total number of groupings

TABLE IV
TABLE OF PARAMETERS IN SIMULATION

Evaluation types Parameters Value

Generals

ak 99%
Bδ 100Mbps
In 20
Em 0.001

Prediction Error er

τ 0.02
li 10% - 90% step by 10%
hk 15
sk 15

Isolation level li
τ 0.02
li 10% - 90% step by 10%
hk 10
sk 10

Hybrid degree hk

τ 0.02
li 60%
hk 5-10 step by 1
sk 50

Hybrid isolation
sensitivity τ

τ 1
T

,T :10-90 step by 10
li 10% - 90% step by 10%
hk 10
sk 10

Comparative analysis
τ 0.02
li 50%
hk 7
sk 50

Comprehensive
analysis

τ 0.02
li 20% to 80% step by 20%
hk 4,6,8,10
sk 50

traffic data and prediction model for evaluation adopt our
previous traffic prediction research [19]. In addition, we use
the Scipy module in Python3.10 to calculate the CDF of
normal distribution in Algorithm 2, which does not affect the
performance of our proposed algorithms.

A. Algorithm evaluation

We analyze our algorithm in five aspects, which are: pre-
diction error er, isolation level li, hybrid degree hk, hybrid
isolation sensitivity τ and a comprehensive analysis based on
li and hk.

As defined, η indicates the matching between allocated
resources and the actually used resources, if η exceeds 1, it
indicates that there are some slices that have been degraded.
Meanwhile, ηb represents the resource utilization of bs.

1) Prediction error er: To understand the performance of
the algorithm with different er, we adopt our proposed neural
network prediction method [19] with different parameters to
do prediction to general different prediction errors on the same
slices. Let eri represent the predicted error of si, it can be easily
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Fig. 4. The indicators in different times and isolation levels (li).

found that the larger eri , the larger σi, so eri r and σi in our
model are positively correlated. With different er, we use the
algorithm proposed in this paper to compare the performance.
The simulation results are got by averaging the results for 5
consecutive periods.

Fig. 4(a) illustrates the sum of dedicated bandwidth∑
si∈Gk

bi and the shared bandwidth bs with er = 8.09%,
6.54% and 5.52% respectively. According to Fig. 4(a), the sum
of dedicated bandwidth has no obvious trends with different
er, while bs is influenced by the change of er, which is more
er, more bs. This emphasizes our previous analysis that bs is
related to er, which also illustrates the fact that the accuracy
of the prediction is still very important, and the higher the
accuracy of the prediction, the better the results can be derived
under our proposed algorithm.

Fig. 4(b) illustrates the η and ηb with different li, it shows
that η is similar to li, while ηb also does not have obvious
regularity, this is because ηb is influenced by predicting traffic
and actual traffic together, and er is the absolute error, the
actual traffic of slices may be higher or lower than the
predicted traffic.

In addition, let γk represent the ratio of saving bandwidth in
Gk while adopt different li compared to the case li = 100%.
Fig. 4(c) illustrates γk with the 3 corresponding prediction
errors, it shows that our algorithm can perform a better
auxiliary reference when the prediction error is not well. This
also shows that our algorithm cannot exist independently of

the prediction algorithm, and it can well correct the mismatch
in resource provisioning due to prediction errors.

2) Isolation level li: According to Table IV, all 10 slices are
in the same group because the isolation level only affects the
resource provisioning within the group. We randomly select
a time interval for traffic prediction and bandwidth allocation
and set li from 0% to 100%. The simulation results are shown
in Fig. 4(d) Fig. 4(e) and Fig. 4(f).

Based on the results shown in Fig. 4(d), we can conclude
that, as li increases, the dedicated bandwidth for slices grad-
ually increases, bs gradually decreases, and the total allocated
bandwidth is gradually increasing. One thing to note is that the
predicted and actual bandwidth of slices keep changing with
li changes, but bs changes minimally, and it is only when
li approaches 0% that the shared bandwidth at different time
periods changes significantly. This can also justify the feasible
of the policy for the computational dilemma in Algorithm 3, at
adjacent time duration ∆t, there only needs to be reallocated
bandwidth for the corresponding dedicated bandwidth with
little iterative adjustment of bs in most times.

Fig. 4(e) illustrates the η and ηb. It should be noted that if
ηb reaches 100%, it means that there are already some slices
being blocked in the group. Overall, as li increases, the η
gradually decreases. It is important to note that in practice
the case of utilization greater than 100% does not exist, but
in Fig. 4(e) we use the ratio of actual bandwidth to allocated
bandwidth to show utilization, such that when utilization is
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Fig. 5. The indicators in different times ∆t or historical data length T .

greater than 100%, higher utilization indicates the level of
network congestion. At time periods t1 − t4, no congestion
occurs within the group, and at period t5, congestion event
occurs. ηb is none while li is 100% because bs is 0 while
li = 100%. If no congestion occurs, η gradually decreases
as li increases, which is because

∑
bi turns large and more

probability that resources will waste, and Bd increase as the li
increases, causing η gradually decrease. And when congestion
occurs, the actual traffic of some slices is much larger than the
distributed bandwidth. with the increasing li, the reduction of
bs reduces the capacity of the overflowing traffic of these slices
and increases congestion. However, it is important to note
that a lower li can lead to congestion in other slices within
the group whose actual traffic is greater than the allocated
dedicated bandwidth. For example, at moments t5, the overall
congestion gradually improves as the li increases, but the prob-
ability that other slices will be affected is reduced. Therefore,
when congestion does not occur, a smaller li can effectively
improve the resource utilization, and when congestion occurs,
a smaller li can alleviate the congestion, but it will bring the
risk of congestion spreading (slice degraded in one slice make
other slices in the group degraded).

As shown in Fig. 4(f), γk decreases as li increases. The γk
can even reach 40.19% (t1) and 28.24% (t5) while li = 10%.
Therefore, γk can take values between 0% and these values at
different lis, so a right li can ensure isolation while effectively
reducing allocated bandwidth.

Hence, in the efficiency-first slice type, li can be set lower,
and in the availability-first slice type, a lower li will bring
greater instability to the availability, so it is necessary to make
careful trade-offs and set the appropriate li according to the
slice requirements when setting this indicator.

3) Hybrid degree hk: In this part. we generate 50 NSs.
and set hk from 5 to 10 respectively. According to the
previous analysis, we can derive that when hk = 1, it is also
equivalent to no shared bandwidth bs between the NSs, and
a hard isolation policy is completely used between them. As
hk increases, more and more slices in the group use shared
bandwidth, which is similar to reducing li. In this part, we
used a fixed value of isolation level (set li = 60%), and mainly
focused on the allocated bandwidth and bandwidth utilization
with different hk and the continuous ∆t.

For better illustration, we have drawn only the values while

hk = 5, 7 and 9, and the results of simulation are shown in
Fig. 5(a) and Fig. 5(b). As mentioned above, along with the
increase of hk, the total resource Bd, sharing bandwidth

∑
bs

are decreasing, and η,ηb are increasing.
Furthermore, according to Fig. 5(a), it can be seen that the

total bs is relatively stable, which means that the change of bs
values in adjacent time periods is not significant, and our pro-
posed Algorithm. 3 is more meaningful in the computational
dilemma.

4) Hybrid isolation sensitivity τ : As mentioned above, τ
determines the rate of change of the statistical value of the
prediction error and therefore affects the grouping in adjacent
time periods. Since τ = 1

T , we get different τ by changing T ,
and set T from 10 to 90 step by 10. We track 20 consecutive
time periods, the statistical results are shown in Fig. 5(c) and
Fig. 5(d), in which the lines show the mean values of the
indicators, while the error distribution lines (vertical lines)
show the maximum and minimum values of the indicators at
different T .

In Fig. 5(c), the changes of both the mean of Bd and mean
of bs are stable, because we use the same slices with different
T , which cause a small difference between the overall error of
the slices. However, it can be seen by the error range that there
is no obvious pattern in the fluctuation range of Bd, but the
fluctuation range of bs decreases as T increases, this is because
the scope of the changes on σs of the NSs used to participate
in the resource calculation is slowly decreasing as T increases.
In Fig. 5(d), the changes in the mean of η are stable, while the
changes in the mean of ηb decrease as T increases. In terms
of the fluctuation range, ηb has a larger fluctuation range than
η. Both Fig. 5(c) and Fig. 5(d) show that at the very beginning
when T increases, all indicators become better, but when T
reaches a threshold, the trend of indicators getting better slows
down or starts to fluctuate. It can be concluded that as T
increases, the historical data works well as a guide at first,
but when T becomes larger, too much historical data reduces
the information sensitivity to the new data, which leads to the
indicators starting to fluctuate. Therefore, the value of T needs
to be calculated with comprehensive consideration.

Meanwhile, let rd denote the ratio that the number of the
same group in the adjacent time-separated grouping sets and
the total number of grouping sets. It can be imagined that with
the increases in T , rd will show an increasing trend. Table.
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TABLE V
rd WITH DIFFERENT T

T 0 10 20 30 40

rd - 0.53% 1.58% 3.68% 3.16%

T 50 60 70 80 90

rd 3.68% 5.79% 5.79% 7.37% 4.74%

V shows the values of rd with different T in our simulation.
Despite some fluctuations of rd, the overall trend of rd is
increasing with T .

5) Comprehensive analysis: We focus on how our proposed
model inflects the number of degraded slices, with the param-
eters in Table IV. The results are illustrated in Fig. 6(a).

As analyzed above, a higher li means a larger bi and Bd,
but smaller bs. Along with the increase in li, the number
of blocked slices increases first and then decreases, and the
turning point occurs at different locations with different hk,
which represents different traffic prediction accuracy of slices.
While li gets a smaller value, there are a larger bs and suit for
slices with small prediction error, while li is larger, a smaller
bs is suited for unstable prediction error, which limits the error
slice to occupy much more bs to lead to degrading on other
slices.

Meanwhile, different hk causes different numbers of de-
graded slices, that a higher hk means an abnormal slice can
affect more slices, but also can be allocated larger bs. Although
a larger hk can use a smaller Bd, it is important to make
confirmation that the accuracy of the prediction will not output
large deviations.

Based on the different prediction results, the best value of li
and hk is related to the slices, So they can be set for better Bd

as well as the number of blocked slices based on experience.
Based on the analysis above, our proposed algorithm can be

adapted to different scenarios by different parameter settings
among the slice resource provisioning problems, and make our
proposed FHIM model more flexible and customizable.

In the applications of vertical industrial, different network
slices can be assigned different hybrid model parameters based
on the SLA of the services in the slices, thus achieving a
balance of resource utilization and sliced QoS. Taking the

smart grid mentioned in Section I as an example again, higher
li and smaller hk can be selected when dealing with important
small traffic services such as load control and distribution,
while lower li and larger hk can be selected when dealing
with the services such as inspection and operation.

B. Comparative analysis

In this section, we compare our proposed algorithm with
other benchmarks. Since we first proposed the solution to the
HSMB problem for hybrid isolation based on our best survey,
we refer to some of the previous studies that have solved
the same sub-problem of HSMB. Therefore, we evaluate our
proposed algorithm based on the solutions to the sub-problems.

1) Grouping: For the grouping problem in HSMB, in
order to verify the performance of our grouping algorithm,
we choose two benchmarks: randomly generated grouping
(Random-G) and genetic algorithm-based grouping (GA-G)
(the initialized populations we set is 30, and the number of
iterations is 30). We use the proposed adjusting algorithm and
linking algorithm for all benchmarks to calculate the final
provisioned resources. To better evaluate the differences in
the algorithms, we selected the same slice samples and the
same time period ∆t. According to Theorem. 3, we have
obtained the optimal grouping size (the number of slices in
one slicing group) NGk

, the benchmarks use the same group
size as HSMB-G, as well as both HSMB-A and HSMB-
L for subsequent processing. The numerical simulation is
used to prove that our proposed HBSM-G algorithm is the
optimal solution for grouping. We simulate 10 consecutive
time periods, and the results are illustrated in Fig. 6(b) and
Fig. 6(c).

Fig. 6(b) illustrates the total bs of the algorithms, we only
focus on bs because the same slices and parameters used in
these algorithms, and the result of total dedicated bandwidth
are the same. We can find that the HSMB-G algorithm can
get the lowest bs, while GA-G and Random-G are not very
different, It shows that for the overall HSMB solution the
grouped results have more local optimization solutions, thus
making it difficult for the general heuristic algorithm to obtain
the optimal grouping results. Also, it can be seen that our
proposed HSMB-G algorithm can achieve a better grouping
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result. Fig. 6(c) illustrates the utility of the tenant network in
different grouping algorithms, the ηs of HSMB-G outperforms
the other algorithms for most of the time periods, while the
two benchmarks, GA-G and Random-G, mutual highs and
lows at different time periods. To clarify indicating the results,
Table VI shows the ηs obtained by the three algorithms at time
periods 1,7, and 9 (the results are overlaid in these periods).

TABLE VI
ηs WITH DIFFERENT ALGORITHMS AT DIFFERENT TIME PERIODS

Algorithms HSMB-G GA-G Random-G

∆t = 1 11.59% 11.48% 11.31%

∆t = 7 21.60% 20.00% 21.37%

∆t = 9 23.28% 21.29% 22.95%

Overall, using different algorithms, ηs has the same trend
and they have similar results, but HSMB-G always outper-
forms the comparison algorithm. The numerical simulation
results shown in Fig. 6(c) prove that our proposed HSMB-
G algorithm provides the optimal grouping results.

2) Adjustment: The same sub-problem was encountered in
the [11] in solving a similar problem and they proposed to
use the bisection search method for optimization, therefore,
here we use the Bisection algorithm as a benchmark algorithm
for evaluation. And we evaluate the two algorithms in terms
of their convergence speed. We use the HSMB-G algorithm
for grouping, and compare the HSMB-A algorithm with the
Bisection algorithm, the results are shown in Fig. 6(d).

The mean number of iterations of our proposed HSMB-A
algorithm is 5.81 while the Bisection algorithm is 6.41, and
the iteration times of HSMB-A are lower than Bisection in
every time period. Fig. 6(d) illustrates the superiority of our
proposed HSMB-A to the Bisection algorithm.

VI. CONCLUSION

This paper solves the probabilistic assured resource pro-
visioning problem with customized resource isolation for
vertical industrial slices. The proposed FHIM model realizes
flexible and customized resource isolation through a series
of network parameters. Meanwhile, we formulate the HSMB
as a nonlinear programming problem for efficient resource
provisioning in FHIM.

We divide the HSMB problem into two sub-problems: the
HSMB-G algorithm to perform grouping by probabilistic-
based analysis, the HSMB-A algorithm for a faster iteration
than the general method. Furthermore, facing the potential
resource dilemma and computational dilemma, the solution
(HSMB-L) of the HSMB is proposed to get the minimum re-
sources with ensuring the resource provisioning in a theoretical
probabilistic way.

The simulation results prove the flexibility and customiz-
ability in resource isolation of FHIM under probabilistic-
assured resource provisioning. Since the resource provisioning
problem with FHIM is first proposed, we compare sub-
algorithms by genetic algorithms grouping, random grouping,
and Bisection algorithm, respectively. The results show that
our proposed algorithm derives the minimum resource con-
sumption.
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[12] S. Kukliński, L. Tomaszewski, R. Kołakowski and P. Chemouil, ”6G-
LEGO: A framework for 6G network slices,” in Journal of Commu-
nications and Networks, vol. 23, no. 6, pp. 442-453, Dec. 2021, doi:
10.23919/JCN.2021.000025.

[13] N. Huin et al., ”Hard-isolation for Network Slicing,” IEEE INFO-
COM 2019 - IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS), 2019, pp. 955-956, doi: 10.1109/INF-
COMW.2019.8845282.
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