
1

Heterogeneous Edge Caching based on Actor-Critic
Learning with Attention Mechanism Aiding

Chenyang Wang, Member, IEEE, Ruibin Li*, Student Member, IEEE, Xiaofei Wang, Tarik Taleb, Senior
Member, IEEE, Song Guo, Fellow, IEEE, Yuxia Sun, Member, IEEE, and Victor C. M. Leung Life Fellow, IEEE

Abstract—In recent years, the explosive growth of network
traffic has placed significant strain on backbone networks.
To alleviate the content access delay and reduce additional
network resource consumption resulting from large-scale re-
quests, edge caching has emerged as a promising technology.
Despite capturing substantial attention from both academia and
industry, most existing studies overlook the heterogeneity of the
environment and the spatial-temporal characteristics of content
popularity. As a result, the potential for edge caching remains
largely unexploited. To address these challenges, we propose a
neighborhood-aware caching (NAC) framework in this paper. The
framework leverages the perimeter information from neighboring
base stations (BSs) to model the edge caching problem in
heterogeneous scenarios as a Markov Decision Process (MDP).
To fully exploit the environmental information, we introduce
an improved actor-critic method that integrates an attention
mechanism into the neural network. The actor-network in our
framework is responsible for making caching decisions based on
local information, while the critic network evaluates and enhances

This work was supported in part by the National Science Foundation
of China under Grant No. 62072332, China NSFC (Youth) through grant
No. 62002260; the China Postdoctoral Science Foundation under Grant No.
2020M670654; the Haihe Lab of ITAI (Grant number 22HHXCJC00002); and
the Technical Project Funding of State Grid Corporation of China under Con-
tract No. 1400-202055132A-0-0-00; and the Chinese Government Scholarship
(NO. 202006250167) awarded by China Scholarship Council. This research
was also supported by fundings from the Key-Area Research and Development
Program of Guangdong Province (No. 2021B0101400003), the Guangdong
Basic and Applied Basic Research Foundation No. 2021A1515012297;
Hong Kong RGC Research Impact Fund (No. R5060-19), Areas of Excel-
lence Scheme (AoE/E-601/22-R), General Research Fund (No. 152203/20E,
152244/21E, 152169/22E), and Shenzhen Science and Technology Innova-
tion Commission (JCYJ20200109142008673). This research work was also
conducted in ICTFICIAL OY and is partially supported by the European
Union’s Horizon Europe program for Research and Innovation through the
aerOS project under Grant No. 101069732. It was also partially supported by
the Academy of Finland 6Genesis project under Grant No. 318927 and the
Academy of Finland IDEA-MILL project under Grant No. 352428.

This work was presented in part at the IEEE International Conference on
Communications (ICC), June 2021, Virtual / Montreal, Canada. (*Ruibin Li
is the corresponding author.)

C. Wang and X. Wang are the are with College of Intelligence and Com-
puting, Tianjin University, Tianjin, 300072 China (e-mail: {chenyangwang,
xiaofeiwang}@tju.edu.cn).

R. Li and S. Guo are with Department of Computing, The Hong Kong Poly-
technic University, Hong Kong, China (e-mail: ruibin.li@connect.polyu.hk,
song.guo@polyu.edu.hk)

Yuxia Sun is with the Department of Computer Science, Jinan University,
Guangzhou, China (e-mail: tyxsun@email.jnu.edu.cn).

T. Taleb is with the Information Technology and Electrical Engineering,
University of Oulu, Oulu, 90570 Finland, and the Department of Computer
and Information Security, Sejong University, Seoul, 05006 South Korea (e-
mail: tarik.taleb@oulu.fi)

V. C. M. Leung is with the College of Computer Science & Software
Engineering, Shenzhen University, Shenzhen, China 518060, and with the
Department of Electrical and Computer Engineering, The University of British
Columbia, Vancouver, BC, Canada V6T 1Z4 (e-mail: vleung@ieee.org).

the actor’s performance. The multi-head attention layer in the
critic network enables integration of environmental features into
the model, reducing the limitations associated with local investi-
gation. To facilitate comparison from an engineering perspective,
we also propose a heuristic algorithm, Neighbor-Influence-Least-
Frequently-Use (NILFU). Our extensive experiments demonstrate
that the proposed NAC framework outperforms other baseline
methods in terms of average delay, hit rate, and traffic offload
ratio in heterogeneous scenarios. This highlights the effectiveness
of the neighborhood-aware caching approach in enhancing the
performance of edge caching systems in such scenarios.

Index Terms—Edge Caching, Attention Mechanism, Actor-
Critic Learning, Multi-agent Caching

I. INTRODUCTION

Recently, the development momentum of network technol-
ogy is swift and skyrocketing, which leads to the deepening
of digital transformation in all walks of life. According to
Cisco’s forecast, global data traffic will increase three times
faster than it did four years ago [1]. The enormous data traffic
has become a severe challenge for mobile network operators
(MNOs), pushing the urgent revolutions of network architec-
ture and high-level communication technologies (e.g., 5G). As
a promising technology, mobile edge caching (MEC) is widely
considered to palliate the traffic stress of MNOs [2]. By storing
the diverse contents at edge nodes like base stations (BSs) or
local devices approximating users, the data transmission delay
can be reduced [3], thus improving the quality of the user
experiences (QoE) and the quality of service (QoS).

Fig. 1 exhibits the architecture of heterogeneous edge net-
works (HetENets), which are densely designated to the edge
joints (e.g., BSs, devices, and relays). The content cached
in different BSs is exceedingly varied because the network
operations at the locations are heterogeneous. For example,
the social intentions of users who move from school to the
hospital are completely different from those who are going to
the living areas. The MEC technique can efficiently handle the
high capacity demand for different species of node commu-
nications. Nevertheless, storing all the contents at HetENets
is impossible and impractical. As a result, it is critical to
envision and build a proper edge caching strategy to fully
utilize network infrastructures [4].

Conventional caching replacement methods, such as Least
Recently Used (LRU) and First Input First Output (FIFO),
are based on static precepts, ignoring the vibrant intercommu-
nication with context [5]. With the development of artificial
intelligence (AI), more and more researchers have begun to



2

Fig. 1. Heterogeneous Edge Caching Architecture

use adaptive AI models to make edge caching strategies that
can fully utilize the environmental awareness capacity of the
network system [4]. Based on the previous discussions, there
are several challenges that need to be considered as follows.

• Dynamic Environment is Changing: Existing studies
are hard to make adjustment decisions during the infor-
mation exchange of environmental interactions.

• Contextual Information is Ignored: Contextual infor-
mation from neighbor BSs is always ignored, leading to
low network performance when designing the caching
strategy in the heterogeneous environment.

The attention mechanism is widely used to fix this gap since
it is proficient in blending the elements according to their
degree of influence [6]. By using the attention mechanism,
the latent influences between the entities can be found. This
helps reach the goal of coordination and balance from different
points of view at the same time. Inspired by the MAAC
algorithm proposed in the work [7], which selects appropriate
information to estimate the execution effect of actors based on
a multi-agent system by attention mechanism, we propose a
multi-agent neighbor-aware actor-critic framework, nominated
NAC. In this method, we consider not only the knowledge of
the current area but also the global information of neighboring
nodes. The actor-network in our framework is responsible
for making caching decisions based on the local information,
while the critic network is responsible for evaluating and
correcting the actor’s performance. The introduced multi-head
attention layer in the critic network helps integrate the envi-
ronment features into the model and eliminate the limitations
caused by the local perspective. The main contributions of this
paper are listed as follows:

• To address the problems of a dynamic environment and
limited cache resources, we utilize a multi-head attention
technique to effectively capture system changes and the
status of neighbor BSs, therefore addressing the issue of
adaptation and cooperation.

• We model the heterogeneous edge caching issue as the
Markov Decision Process (MDP) and introduce the NAC
framework for neighbor-aware actor-critic collaborative
edge caching. In addition, we develop an engineering
solution based on information by enhancing the classic
Least-Frequently Used (LFU) algorithm for scenarios that
cannot be integrated by neural network capabilities.

• Simulation results indicate that, compared to current
baseline approaches, the proposed framework can effec-
tively enhance hit rate, and decrease average transmission
latency, and traffic offload ratio in a heterogeneous envi-
ronment.

The rest of this paper is organized by the following:
Section II introduces the related studies in the aspects of edge
caching optimization and attention mechanisms. We specifi-
cally describe the goals of the system model and algorithm in
Section III. The optimization of the edge caching strategy and
the two proposed methods are introduced in Section IV. The
simulation results and a case study are conducted in Section V.
Finally, Section VI summarizes the full work.

II. RELATED WORK

A. Edge Caching

Traditional caching replacement methods have made signif-
icant contributions in this field, such as Least-Recently-Used
(LRU), Least Frequently Used Dynamic Aging (LFUDA) [8]
and Greedy Dual Size Frequency (GDSF) [9]. Many studies
sharpened edge caching by combining popular methods with
probability. In [10], the authors envisaged proactive caching
systems and distributed caching replacement processes based
on the popularity of the content. However, this method ne-
glected the reality of user variability and the high diversity of
users’ interests to a certain extent.

Furthermore, with the continuous efforts of researchers,
artificial intelligent (AI) methods have been used to solve the
problem of caching replacement and have played a milestone
role. In deep learning (DL), the neural network was used to
investigate user inclinations precisely and predict the request
mode of BS [11]. Wang et al. paid attention to the design of
the distributed caching strategy in [12], considered the cache
capacity of the edge server layer, and proposed a distributed
caching replacement method according to the popularity of
the content to perform collaborative edge caching between
BSs, and finally, minimize the transmission cost. Besides, deep
reinforcement learning (DRL) was also a methodology that
has made some achievements in caching policy optimization.
It supported the network objects to learn and build knowledge
and interact with the environment. In [13], the authors built
an incentive mechanism, which was used for the distributed
caching system and optimized via Deep Q-learning (DQN).
In some studies, multi-agent learning centred on getting an
overall reward [14], which designed a centralized critic net-
work. However, a singular and particular aggregator leads to
an additional transmission cost, and adaptability is also one of
the challenges.



3

B. Attention Mechanism

In recent years, the attention mechanism was used for pre-
dicting the click-through rate (CTR) in e-commerce [15], [16]
by discerning the influential characteristics of other entities
to the current commodity or user. Especially in [17], Zhou et
al., authors investigated the distribution of influence, which
was captured from the historical operation on the present
products. Literatures of [18], [19] concentrated on finding the
state’s intrinsic composition and relationship in the complex
environment of the multi-agents system.

1
2

N…

…

Core 
Network

321 U-1 U
Cellular Link

BS-BS Link

Backhaul Link 

BS User

𝑪𝑪𝒊𝒊𝒊𝒊𝑩𝑩𝑩𝑩𝑪𝑪𝒓𝒓𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

𝑪𝑪𝑩𝑩𝑩𝑩𝑩𝑩

𝑪𝑪𝒖𝒖𝑩𝑩 1

2

3

𝑶𝑶,𝑨𝑨

Fig. 2. Heterogeneous caching model.

There were many variants of the attention mechanism, such
as hard attention [15], but this method did not pay attention
to all the input content, but only paid attention to a specific
aspect of information. Another variant was the multi-head
attention [20], which aimed to allow the model to obtain
more levels of information about the sentence from different
representation spaces and improved the feature expression
ability of the model. It has made contributions in the field
of sentiment analysis and machine translation [21], [22]. To
this end, we design the edge caching strategy by considering
the multi-head attention mechanism for better extracting the
underlying system information.

III. SYSTEM MODEL

In this section, we introduce the models of the proposed
framework, including the system architecture, user request
model, and communication model. Then the objective problem
is formulated.

A. System Overview

Fig. 2 shows the heterogeneous caching model consist-
ing of various users, BSs and a core network. Let B =
{B1, B2, ..., Bb} denote the BSs, and the users are randomly
distributed in the coverage area of the BS Bb, which can be
donated as Ub = {U1, U2, ..., Ub}, where Ub = {1, 2, · · · , u}.
The union of Cb is a set of cached contents under all BSs
denoted as C = {C1, C2, ..., Cb}, and N = {n1, n2, ..., nb} to
signify the storage capacity of BSs. The backhaul link is the
bridge between the core network and each BS. We consider a
content pool F = {f1, f2, ..., fF } in the core network, which
stores all of the contents. Let req(ub) express the requested
content sent by user u to BS Bb via the cellular links. We

only consider the cost that the request of adjoining BS is in
the last hop (i.e., a two-hop requested scenario). If the request
is not available in the neighbor BS Bb

1. The request will be
sent to the cloud centre through backhaul if the content cannot
be satisfied by its neighbor.

As mentioned in the above section, the network is strength-
ened by arranging BSs in buildings, such as shopping malls,
schools, hospitals, etc., or on outdoor facilities (e.g., parks and
traffic lights.) In real life, these scenes are close to each other
in various combinations, and the distribution of these BSs is
also close and intersects. In the proposed caching framework,
the communication from a BS to others is composed of the
observation value and action of each BS. To describe the
problem clearly in the modelling, we only consider the transfer
between neighbors of one hop in the part of communication
between BSs. Observation ob and action ab of BS Bb thereafter
are transferred between it and the one-hop neighboring BSs
of it.

B. User Request Model

As verified in [23], Mandelbrot-Zipf (MZipf) is usually used
to model the distribution of content popularity as a basis of
request sending and transmission in the caching process. In our
model, the generation of user request content is also derived
from MZipf distribution. Motivated by this, the probability that
the content f is requested by users in BS Bb is defined by:

ωfb =
(Rf + q)−α∑
i∈F (Ri + q)−α

, (1)

where Rf represents the popularity rank of content f in
descending order in local. Among the parameters, α is the
skewness factor and q donates the plateau factor.

C. Communication Model

The communication process mainly includes three pro-
cesses, as shown in Fig. 2. Process 1⃝ indicates the commu-
nication between the local BS and user which is established
by the cellular links. If the local BS Bi stores the requested
content f , it can provide the quick content access service
for user u, thus, the cost of this process is represented as
CBi

uf . However, it is impractical to put all the content in
the cache of the local BS Bi, the request will be sent to
another neighbor BS. This process is illustrated by 2⃝, and
the transmission cost CBSij between the current BS Bi and the
neighbor BS Bj is measured by the distance [24], expressed as
CBSij = νd(Bi, Bj), i, j ∈ {1, 2, ..., b}, where the non-negative
constant ν is the cost coefficient, and d(Bi, Bj) is the network
distance between the two BSs Bi and Bj .

If the neighbor BSs cannot provide the service for the
required content through the process 3⃝, i.e., the backhaul
link, the indicated request will be sent to the core network.
According to the experience of existing research [25], we use
a positive parameter µ to represent the unit transmission cost
in the backhaul link. Related to formula (1), the request of

1We consider the BSs are connected by fibres in the networks.



4

the user for content f is not available2 in BS Bb and the
probability of the request to the core network is:

ωfBh
= 1− ωfb. (2)

The transmission cost of backhaul is:

CBhBf = µωfBh
. (3)

The main costs incurred during the entire content request
process include not only transmission costs. It also includes
the caching replacement cost, which is closely related to the
size of the content [26]. The overhead incurred during the
caching replacement is defined as follows:

Ccacherc = δ(cr − cc), r, c ∈ {1, 2, ..., N}, (4)

where the content replacement factor δ > 0, cc and cr
respectively represent the size of two contents before and after
the replacement.

TABLE I
NOTATION VALUES

Notation Meaning
B Set of BSs

ni ∈ N Storage capacity of BS Bi

F Content pool
Ub User set under the coverage of BS Bb

Cb Cached content set of BS Bb

req(ub) requested content sent by user u to BS Bb

Sb State space of BS Bb

Ab Action space of BS Bb

ob Current observation state of BS Bb

ab Current action made by AC agent
ωfb Probability that the content f is requested
α, q skewness factor, plateau factor
CBi

uf Cost when user’s request satisfied by local BS Bi

CBS
ij Cost when fetch content from neighbor BS

CBh
Bf Cost when fetch content from Core network
rti Reward which used for training RL model
θi Actor’s network parameter
d Numbers of feature
e The embedding feature used for critic
Q Query embedding for different feature
kd,j Key value for calculating attention weight
ζd,j Calculated attention weight
vd,j Value that contain caching information
ψb Parameter of BS Bbś target critic network
γ Decay factor of RL model

D. Problem Formulation

In this part, we introduce the goals which are obtained based
on the details and limitations of the modeling described in the
past section. The objective of the proposed framework is to
keep the costs of the system as low as possible. The system
saved costs can be obtained as follows.

We use G to represent the revenue of the entire system:

G =
∑
Bi∈B

∑
u∈Ui

(xreq(u)iC
Bi

uf

+(1− xreq(u)i)∆).
(5)

2This may be caused by no content f cached in BS Bb or the link
congestion, etc.

The ∆ in the formula is expressed as the following:

∆ =



|B|∑
j ̸=i

(xreq(u)j(CBh
Bf−CBS

ij −Ccache
req(u)f ))

|B|∑
j ̸=i

xreq(u)j

,
|B|∑
j ̸=i

xreq(u)j ̸= 0

0,
|B|∑
j ̸=i

xreq(u)j = 0

.

(6)
The parameter req(u) means the content requested by the user
u, xreq(u)i represents whether the content requested by u is
stored in the BS Bi, and xreq(u)i = 1 means that the content f
has been cached, and there are no replacement actions required
in this case. If xreq(u)i = 0, the modified content needs to be
satisfied through other processes, e.g., directly from neighbor
BSs or the core network.

Maximizing the reduction of the transmission and caching
cost is the goal of our work:

max
∑
Bi∈B

∑
u∈Ui

(xreq(u)iC
Bi

uf (7)

+ (1− xreq(u)i)∆) (8)

s.t.
∑
cn∈Ci

cn ≤ ni, (8a)

xreq(u)i ∈ {0, 1}, (8b)
d(Bi, Bj) > 0, (8c)
ν, µ, δ ≥ 0. (8d)

The constraint shown in (8a) indicates that the sum of the size
of the cached content is limited by the storage capacity of the
BS. Furthermore, (8b) describes the parameter table of the
token replacement behavior, (8c) and (8d) ensure the positive
value of the distance between BSs, BS-BS cost coefficient,
backhaul unit transmission cost, and replacement factor.

IV. ATTENTION-BASED MULTI-AGENT CACHING
REPLACEMENT STRATEGY

Each BS has its own service area, in which users have differ-
ent preferences and relationships with others. Meanwhile, BSs
communicate with each other and cooperate. To achieve an
efficient caching strategy, we use the influence and information
between BSs to a greater extent. The actor-critic algorithm
is an effective combination of strategy-based and value-based
methods. We propose a multi-agent framework based on actor-
critic to solve the edge caching problem.

A. Multi-Agent Actor-Critic

In our architecture, each BS elaborates one actor-network
and one critic-network, where different users have their own
interests and preferences. Meanwhile, due to the difference
in geographic spaces and social functions as well as the
heterogeneous services, BSs may have diverse influences on
the neighbors. As shown in Fig. 3, for the BS B1 in the blue
area, the BS B2 in the dark orange area has more influence on
its caching decision compared with Bb in the light orange area.
Agents can also learn from other BSs which help make the
intelligent caching decision. In this way, we assume that the



5

...
...

Local Observation 1

Local Observation 2

Local Observation b

Environment     

Agent

Actor

Critic

B1 Bb

B2

...( , )
( )

( | )

2

Fig. 3. Illustration of actor-critic mechanism in each BS.

caching state can be passed among BSs for better information
(e.g., the size/type of cached content) interactions.

State Space: We use S = {S1, S2, ..., Sb} to describe the
state space. The state space of each agent is made up of the
cached list state and the information of the cached content, for
example, the size and the type of the cached content.

Action Space: Let A = {A1, A2, ...Ab} represent the action
space of all BSs, where Ai means the action space of Bi. The
size of the action space of each BS is equal to the amount of
content currently cached plus one as the agent can also choose
the action that does not replace existing content in the current
caching list.

Reward: Based on the definition system model, we design
the system reward as:

rti =

{
CBhBf − CBSij − Ccacherc

CBhBf
, (9)

where the above expression represents the reward of receiving
the requested content from adjacent nodes, and the other one
is the reward of receiving it from the current BS.

Observation: Let the o = {o1, o2, ..., ob} denote the obser-
vation, agents can obtain the local caching state and the user’s
requests under the coverage of its serving area. Besides, as
different BSs can establish communication links, agents can
also obtain some information about neighbor BSs as a result.
In the next subsection, we will introduce the specific temporal
and spatial factors involved in the observation.

Actor Network: Each local agent observes its serving area’s
local state and then makes the caching decision based on its
local state. In the actor-network, the optional actions include
all currently cached contents and choose action mainly based
on its local observation, the policy gradient therein is used
to update the parameter. We use θ to represent the content
replacement parameter:

ai = πθi(oi) , (10)

where oi means the local caching states of the BS Bi.

Critic Network: The decisions of caching actions are
selected by the actor-network deployed in each agent based
on local information. After the process of actions selection
in the actor-network, the critic-network evaluates the expected
reward of the policy according to the observation and actions
of all BSs through the value function. Furthermore, an atten-
tion mechanism is adopted to model the complicated impact
of other agents, and we describe our specific method in the
following sections.

B. Critic Network with Attention Mechanism

We use time and space factors as observations, and mine the
influence of BSs based on the critic network with the attention
mechanism. As an agent, each BS has its own critic network
and can observe the history caching status of its nearby BSs.
The whole process can be regarded as a combination of
distributed local training and centralized global learning. In
order for the critic to learn globally from the information of
neighboring BSs, as shown in Fig. 4, we set up three modules
of embedding layer, attention layer, and output layer in the
critic network.

𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓
𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝑩𝑩𝑩𝑩

𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

q k

Matmul

Softmax

Scale

Matmul

v

iζInfluence unit

…

…

cooperation unit  in each head

q k

Matmul

Softmax

Scale

Matmul

v

2ζInfluence unit

q k

Matmul

Softmax

Scale

Matmul

v

bζInfluence unit

MLP

( , )
b

Q o aψ

concatnate

eb e1 e2 ej

attention layer

output layer

embedding layer
MLP

Fig. 4. Design of the attention-based critic network.

Embedding Layer: The obtained numerical features will
be fed into the multilayer perceptron (MLP) in this layer.
Because different BSs provide users with a variety of services
in different scenarios, resulting in the uncertain number of
services provided by each BS. This results in the length of the
corresponding encoding vector list is not a fixed value.

As described in the previous subsection, we use one-hot or
multi-hot encoding operations to express the types. We know
that the one-hot feature is too sparse, and even the encoding
of the caching category with multi-hot encoding may be a
very sparse vector, which is not suitable for direct input into
the subsequent neural network for training. To this end, it is
necessary to convert this sparse one-hot vector into a denser
embedding vector by connecting it to the embedding layer.



6

The embedding vector ebi of i-th content cached in the BS
Bb is obtained through the embedding operation. Observation
of BS Bb can be embedded and transformed into embedding
vector eb, and ej is defined as the observation of the adjacent
BS Bj linked to the current BS via the BS-BS link. Due to the
different caching capabilities of BSs and the different sizes of
content, the amount of content in each BS may be different,
resulting in different lengths of feature vectors. However, a
fully connected network can only handle fixed-length input. To
solve this problem, the pooling method is generally adopted to
map the original features to a fixed-length vector and ensures
the immutability of features. In this way, we have the pooling
vector e = pooling(e1, ..., ej) of the neighboring BSs.

Attention Layer: The multi-head attention mechanism is
deployed in this layer, which uses multiple queries Q =
{q1, .., qd}, where d means the number of kinds of features,
to calculate in parallel to select multiple information from the
input information, and each attention focuses on a different
part of the input information. The different feature subspaces
are shown in Table. II. The cached content, request con-
tent, and BS feature in the table correspond to headcached,
headrequest, and headBS , respectively. The requested feature
is similar to the feature of the cached content and will not
be repeated. Our critic is not centralized, in each head the

TABLE II
FEATURE SUBSPACES CORRESPOND TO MULTI-HEADS.

feature subspaces feature data collection

cached content

content size numeric
content type one-hot

frequency
long-term numeric
mid-term numeric
short-term numeric

request feature

content size numeric
content type one-hot

frequency
long-term numeric
mid-term numeric
short-term numeric

BS features
storage capacity numeric
type of cached content multi-hot

query is a kind of character in the current BS. As described in
the previous subsection, the head includes the size, type, and
request frequency of the cached content, caching capacity, and
the users who are under the service of the local BSs. Key kd,j
and value vd,j are the information of the adjacent BS Bj on the
feature d. After completing the process of information input,
we get the attention to aspect d of adjacent node j, which is
named the influence unit ζd,j :

ζd,j =
qTd,jkd,j∑

k ̸=i
exp(qTd,jkd,k)

, (11)

where d is used to mark the features observed by the current
head.

After getting the influence unit ζd,j , we calculate coopera-
tion unit Attd,b through the weighted sum of attention weight
ζd,j and value vd,j . In this way, we can obtain the kd,j and
vd,j through different linear embedding layers where kd,j is

used to calculate weights and vd,j is used to capture features.
Attd,b is defined as:

Attd,b =
∑
j ̸=b

ζd,jvd,j . (12)

Output Layer: Based on the attention operation of the
previous layer, at this stage, we concatenate these weights
in columns, and then perform a linear transformation with
a new weight matrix W a to get the final attention output.
The concatenate function is used to aggregate the attention of
multi-heads:

Attb = concat(Att1,b, ...,Attd,b) . (13)

The critic network of each BS estimates the action-value
function by attention mechanism which can be expressed by:

Qψb
(o, a) = σb(eb,Attb) , (14)

where ψ is the parameter of the critic network, σb is an MLP
layer, and the ψb is the parameter of the target critic network
which is associated with the agent Bb.

C. The Algorithm process

Reinforcement learning (RL) is an iterative process. Each
iteration needs to be given a strategy evaluation function and
update the strategy according to the value function. There
are few studies on the convergence of actor-critic, the main
reason is that the update has a strong network and status
relevance. Therefore, in addition to the original ac network,
a target ac network is also established. The target network has
the same structure and initialization as the original network.
While training parameters of the networks, the target network
estimates future actions.

In the RL scheme, the objective is to find the optimal policy.
To this end, the Q-function is used to represent the expectation
of the total reward that the agent can obtain in the future after
taking action a in state s:

Qi(o, a) = Eπ[
+∞∑
t=0

γtrt+1|o0 = o, a0 = a] . (15)

To get the optimal Q-value, the input corresponding state and
all possible actions are required to be traversed and then find
the largest Q-value. We use equation (14) to approximate
equation (15).

The attentive critic network calculates the advantage func-
tion to get the advantage of the current action compared to
other actions [7], and the advantage function is applied to the
gradient update process of individual strategy as follows:

Aai (o, a) = Qψi(o, a)−
∑

ai′∈Ai

πθi(ai
′|oi)Qψi(o, (ai

′, ai)) .

(16)
This additional item is a baseline that considers an additional
benefit in a multi-environment interaction, and it does not
change the decision-making process of the agent. The cal-
culation of the updated gradient of our policy is shown as:

∇θiJ(πθi) = Eπθi
[∇θlog(πθi(ai|oi))Ai(o, a, ψi)] . (17)



7

The update of the critic network is based on the following
loss function:

L(ψi) = E[(yi −Qψi(o, a))
2]. (18)

In the above equation, the yi is defined as:

yi = ri + γEπθi
[Qψi (o

′, a′)− ρlog(πθ(a
′
i|o′i))], (19)

where γ is the decay factor, ψi and θi are the past parameters
before update, ρ determines the balance between maximizing
entry and rewards [27].

The parameter ψ̄ of critic network and θ̄ of actor-network
are updated after each iteration:

ψ̄ = ψ − lrc∇L(ψi) , (20)

θ̄ = θ − lra
∇θi

J(πθi
)

∇θi
, (21)

where lr is the learning rate, which is set in the experiment
according to the actual situation.

Note that the above two equations are used to increase
the randomness of our strategy which can decentralize the
probability of each action, in case the agent just chooses one
action. The whole process is as shown in Algorithm 1. Like in
[4], the time complexity of back-propagation is O(abN2), in
which a and b are the number of layers and unit, respectively.

Algorithm 1 The procedure for caching by NAC
1: Initialization:

Parameter of each actor network θi
Parameter of each critic network ψi
Reset the parallel environments with Bb agents

2: Tupdate←0
3: for t = 1, T do
4: each BS receives requests Rt={r1, r2, ..., rb}
5: obtain BSs’ observations ot = {o1, o2, ..., ob}
6: each BS selects by the policy πθb(ab|ob)
7: each BS sends action and state to adjacent BSs
8: Tupdate = Tupdate + 1
9: if Tupdate ≥ min steps per update then

10: calculate Qψi(o1...b, a1...b) for all BSs
11: calculate a′i = πθii (o′i) using target policies
12: calculate Qψi

(o′1...b, a
′
1...b) for all BSs

13: update critic using ∇LQ(ψi)
14: calculate ai = πθii (o′i) for all BSs
15: calculate Aab (o, a) for all BSs
16: update policies using ∇θiJ(πθi)
17: update the parameters for all BSs
18: update state of each BS
19: Tupdate ← 0
20: end if
21: end for

D. An Information-based Engineering Solution

Considering the deployment cost of neural networks embed-
ded in all scenarios, inspired by the core idea of the attention
mechanism, we abstract the information of the Neighbors’
Influence (NI) and design a heuristic method by improving
the traditional LFU, named NI-LFU, from the engineering
perspective.

Based on the temporal locality of traffic, each con-
tent that has been cached is assigned a value F(f, b) =
k∑
j=1

mk
f , j ∈ {1, 2, . . . , k}, where mk

f means if the current BS

meets the requested content f , and k is the number of requests
since the content f was cached. Taking into account the impact
of multi-granularity unit time and surrounding neighbor nodes,
we change the value as:

FNI(f, b) = 1
Bb

Bb∑
i=0

(Fm(f, i) + Fw(f, i) + Fd(f, i)) ,
(22)

where Fm(f, i),Fw(f, i),Fd(f, i)) indicates the request fre-
quency in the different three modes under the service range
of the BS Bi respectively. The long-term frequency of request
content f is defined as its requested times in a month Fm(f),
the mid-term frequency is its requested times in a week Fw(f),
and the short-term frequency is represented by the content
request frequency in a day Fd(f). Let FNI(f, b) denote the
elimination priority on which content will be replaced. The
workflow of the NI-LFU algorithm is shown in Fig.5.

start

upon receiving a request for 
document     dof

return the content to the 
user and update local 
and global parameters

fetch    from other 
node and return the 
content to the user 

f
Is f in cache of 

BS   ?b

update  parameter 
F𝐼𝐼𝐼𝐼(𝑓𝑓, 𝑏𝑏) based 

neighbor information

obtain elimination 
priority 𝑝𝑝 𝑓𝑓, 𝑏𝑏

replace the content 
with the least 𝑝𝑝 𝑓𝑓, 𝑏𝑏

yes

no

Fig. 5. The workflow of NI-LFU algorithm.

V. CASE STUDY AND EXPERIMENT

In this section, we design a small scratch for the adaptability
of heterogeneous environments and evaluate the performance
of the proposed framework based on the simulation results.

A. Simulation Configuration

In order to reflect the feasibility of the theory, we designed
a small-scale simulation experiment, and use the stochastic



8

Fig. 6. Simulation environment generated by stochastic geometry.

geometry [28] to model the potential correlation between BSs
and the service area of BSs in a multi-agents environment.
Stochastic geometry has proven to be a powerful tool for
evaluating wireless network performance. Fig. 6 simulates the
relationship between BSs, where the red triangles indicate BSs
and the blue stars are users.

The total number of contents is F = 10000, and different
contents have a normalized size of different values which range
between 1MB and 10MB. In order to conduct the case study
experiments, we set the total number of BSs as 4, and the
cache size of each BS is set to 100MB as default. Users
are distributed in the serving range of each BS randomly. In
addition, we use a parameterized network to solve the problem,
and we confirm some of the parameters (i.e., the learning rate
of actor-network lra, the learning rate of critic lrc) involved
in the experiment.

We compare our methods with the following state-of-the-art
baseline algorithms:

1) Actor-critic (AC): A TD method that has a separate
memory structure to explicitly represent the policy indepen-
dent of the value function [29].

2) Deep Q Networks (DQN): In addition to the difference
in network structure, the method differs from the proposed
framework in that it is based on local characteristics and does
not add influencing factors in the environment of neighbor
nodes. DQN and AC are mainly used to compare with NAC
to verify the stability of the NAC algorithm [30].

3) First-Input-First-Output (FIFO): FIFO is one of the
oldest caching methods. This algorithm always deletes the
content with the longest time [5].

4) Least-Frequently-Used (LFU): In the LFU algorithm,
the least frequently used content is knocked out [31].

5) Least-Recently-Used (LRU): LRU is a common caching
replacement algorithm that eliminates the most recently un-
used content [5].

6) Least-Frequently-Used-Dynamic-Aging (LFUDA):
LFUDA builds upon simple LFU by accommodating shifts
in the set of popular objects in the cache [31].

7) Greedy-Dual-Size-Frequency (GDSF): A strategy
based on the value relationship of all cache objects in the
cache node [9].

8) Neighbor-Influence-Least-Frequently-Used (NILFU):
From the perspective of information, NI-LFU is an engineering
solution formed by the idea of our approach. It combines the
request frequency in the current area and the neighbor envi-
ronment via multiple angles to make replacement decisions.

We take the following indicators to evaluate the performance
of different methods:

Hit Rate: it is the ratio of hits and total requests. Hit
means that the user can get the required data directly
through the cache. At the same time, the performance
index we use when conducting parameter selection exper-
iments is also a hit rate. Average Transmission Delay:
it is calculated based on the delay between the cloud data
centre and the BS, between BSs, and between the user
and BS. Traffic Offload Ratio: it means the rate of BS
offloaded traffic to the total traffic.

B. Case Study

A key challenge in highly heterogeneous services is making
full use of complex spatial and temporal characteristics [32].
We designed this caching replacement optimization strategy
with the attention mechanism and used artificial intelligence
technology to perceive the environment of neighbor BSs.

To prove the practicability of the proposed framework
in a heterogeneous environment, we design a small demo
to compare the algorithm’s performance in a heterogeneous
environment and a homogeneous environment.

Fig. 7. Distributions of Content popularity for 4 BSs.

In this case, as expressed in Fig. 6, we consider 4 BSs,
and the storage size of BSs is [300, 340, 380, 420]. The user
number of each BS is [10, 7, 5, 8], and the initial state of
the user is randomly generated. At the same time as agents,
their training parameters are also different, the experience pool
sizes of these agents are [2000, 2500, 1500, 2000], the episode
numbers of BSs are set as [200, 150, 250, 150], the batch sizes
are [128, 128, 256, 256].

We have the following two cases, i.e., heterogeneous and ho-
mogeneous cases. (1) For the heterogeneous case, we simulate
heterogeneity of different services by setting the MZipf factor
and plateau factors in equation (1), the popularity distributions
are shown as dotted lines in Fig. 7. (2) For the homogeneous
case, the content popularity follows the same MZipf, shown



9

(a) Hit rate (b) Average delay (c) Traffic offload ratio

Fig. 8. Performance demonstration of hit rate, average delay, and traffic offload ratio with heterogeneous services and homogeneous services

as the solid line in Fig.7, we set the value of q and α based
according to the reference [33] which originally proposed the
Mandelbrot–Zipf model for content popularity.

In the homogeneous environment, the agent can easily
obtain the network information while the spatial and tem-
poral characteristics in heterogeneous are dynamic and more
complex. As shown in Fig. 8(a) and Fig. 8(c), the hit rate
and traffic offload ratio of the two kinds of environments
is relatively close. It indicates that the proposed NAC can
achieve similar performance in terms of hit rate and traffic
offload ratio. This is mainly because the proposed framework
learns the information from the neighbor BSs which improves
the network performance. Besides, the curves interact several
times due to the dynamic environment changes. Especially in
Fig. 8(b), when the cache size is 180, the average delay reduces
by 2.1% at best in the heterogeneous situation compared
with the homogeneous one. This shows our method has a
great capacity for neighborhood awareness and adaptability
in heterogeneous scenarios.

C. Parameters Settings

Fig. 9. Performance of the hit rate under different learning rates of actor-
network.

Before the performance comparison simulation, we first
compare and select the experimental parameters of our
method. We use the training round as the abscissa to show the

effect of the different parameters, Fig.9 compares the perfor-
mance with different learning rates lra of the actor-network.
The comparative learning rate is lra = [0.01, 0.05, 0, 1]. To
maintain the algorithm’s stability and efficiency, we defined
the learning rate lra = 0.05 as an empirical value.

We demonstrate the network performance of the hit rate
in the following Fig.10. We compare the performance for hit
rate under different learning rates of critic network lrc =
[0.01, 0.05, 0.1]. We can see that if lrc = 0.05, the pro-
posed framework produces the best hitting effect. Therefore,
lrc = 0.05 is used as an algorithm parameter of the NAC in
our simulation.

Fig. 10. Performance of the hit rate under different learning rates of critic
network.

D. Comparison of Different Training Methods

We compared NAC, AC, DQN, FIFO, LFU, LRU, LFUDA,
GDSF, and NILFU under different BSs’ buffer sizes. The
corresponding simulation results are shown in Fig. 11-Fig. 13.

Fig. 11 shows the performance of the hit rate. The hit
rate of NACE is obviously the highest. Compared with sev-
eral commonly used traditional methods, it has increased
by 26.81% (FIFO), 26.14% (LFU), 29.04% (LRU), 22.62%
(LFUDA), 20.45% (GDSF), 11.23% (AC) and 27.43% (DQN)
under different parameters. Moreover, although the NILFU we
designed is not based on machine learning, after adding the
influence of neighboring cells, compared with other traditional



10

Fig. 11. Performance demonstration of hit rate with a different algorithm.

non-learning caching replacement algorithms, the advantage
hit rate of it is also obvious. Compared with AC, DQN, FIFO,
LFU, LRU, LFUDA, and GDSF, the hit rate increased by
1.26%, 16.00%, 15.44%, 14.83%, 17.47%, 11.31% and 9.65%,
respectively.

As shown in Fig. 12, compared with several traditional
replacement methods, NAC can effectively reduce the delay
by 0.030s (AC), 0.086s (FIFO), 0.190s (LFU), 0.086s (LRU),
0.072s (LFUDA), 0.072s (GDSF). Although NAC’s perfor-
mance in latency is slightly inferior to DQN, it is better in
terms of hit rate and traffic unloading. And from the figure, we
can see that compared to DQN, as the cache capacity increases,
the performance of NAC will improve. As an algorithm based
on a value function, DQN itself is not easy to find the greatest
Q-value among many values when facing a larger action space.
With the enhancement of the caching capacity, the action space
becomes larger. This shortcoming is also exposed, and on the
other hand, it also illustrates the advantages of NAC. And the
NILFU average delay performance is excellent. As shown in
Fig. 12, the average delay of NILFU is reduced by 0.050s,
0.154s, 0.053s, 0.037s, and 0.037s compared to FIFO, LFU,
LRU, LFUDA, and GDSF, evenly and respectively. When the
BS cache capacity is large to some degree, NILFU can be
equal to or even surpass the AC algorithm. This also fully
proves that NILFU not only uses neighborhood information
to improve accuracy but also can overcome some of the
disadvantages of complex algorithms.

At the same time, as depicted in Fig. 13, NAC and NILFU
also show good advantages in offload. From the figures, we can
see that with the enhancement of the cache capacity, the tra-
ditional AC does not have a higher performance improvement
than NAC. With the enhancement of caching capabilities, the
content cached by BSs has a higher diversity, only considering
local information, so AC cannot make a good global decision.
Agents do not consider the dependency of the surrounding
node cache, so its performance is relatively poor. It can be
seen from the resulting graph that the broken line of the
neighborhood-aware method will be more smooth and more
stable. But it will have relatively large fluctuations in the
traditional AC method. This shows to a certain extent that

Fig. 12. Performance demonstration of average delay with different algo-
rithms.

Fig. 13. Performance demonstration of traffic offload ratio with different
algorithms.

considering the characteristics and help of the surrounding area
can increase the stability of the entire model.

VI. CONCLUSION

In this paper, we have proposed an edge caching framework
called NAC by considering the neighborhood-aware informa-
tion, where the Actor-Critic method is employed to solve
the complicated edge caching problem. The AC agent can
make efficient caching decisions after gathering all the global
and local information, leading to excellent backhaul traffic
reduction and QoS/QoE improvement. Each AC agent contains
two networks: the actor-network chooses actions according
to the local information. The critic network evaluates the
impact of surrounding BSs. What is more, to integrate the
information transmitted between BSs, we have employed a
multi-head attention mechanism to quantify the impact of
neighboring BSs on the current node with each head capturing
the characteristics under a subspace. Besides, we also propose
a non-learning caching algorithm NILFU, which can achieve
considerable performance in some scenarios without the use of
AI services. In the section of experiments, the proposed NAC
algorithm shows the feasibility and effectiveness compared to



11

several existing caching algorithms. In the future, We will
continue to improve our algorithm and architecture based on
the actual situation.

REFERENCES

[1] G. M. D. T. Forecast, “Cisco visual networking index: global mobile
data traffic forecast update, 2017–2022,” vol. 2017, p. 2022, 2019.

[2] X. Wang, R. Li, C. Wang, X. Li, T. Taleb, and V. C. Leung, “Attention-
weighted federated deep reinforcement learning for device-to-device
assisted heterogeneous collaborative edge caching,” IEEE Journal on
Selected Areas in Communications, vol. 39, no. 1, pp. 154–169, 2020.

[3] Z. Cai and Q. Chen, “Latency-and-coverage aware data aggregation
scheduling for multihop battery-free wireless networks,” IEEE Trans-
actions on Wireless Communications, vol. 20, no. 3, pp. 1770–1784,
2021.

[4] X. Wang, C. Wang, X. Li, V. C. Leung, and T. Taleb, “Federated
deep reinforcement learning for internet of things with decentralized
cooperative edge caching,” IEEE IoT Journal, 2020.

[5] A. Dan and D. Towsley, “An approximate analysis of the lru and fifo
buffer replacement schemes,” in SIGMETRICS, 1990, pp. 143–152.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[7] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement
learning.” PMLR, 2019, pp. 2961–2970.

[8] B. Jia, R. Li, C. Wang, C. Qiu, and X. Wang, “Cluster-based content
caching driven by popularity prediction,” CCF Transactions on High
Performance Computing, pp. 1–10, 2022.

[9] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Evaluating
content management techniques for web proxy caches,” ACM SIGMET-
RICS Performance Evaluation Review, vol. 27, no. 4, pp. 3–11, 2000.

[10] S. Tuli, G. Casale, and N. R. Jennings, “Pregan: Preemptive migration
prediction network for proactive fault-tolerant edge computing,” in
IEEE INFOCOM 2022-IEEE Conference on Computer Communications.
IEEE, 2022, pp. 670–679.

[11] S. Shekhar, A. Singh, and A. K. Gupta, “A deep neural network (dnn)
approach for recommendation systems,” in Advances in Computational
Intelligence and Communication Technology. Springer, 2022, pp. 385–
396.

[12] H. Tian, X. Xu, T. Lin, Y. Cheng, C. Qian, L. Ren, and M. Bilal, “Dima:
Distributed cooperative microservice caching for internet of things in
edge computing by deep reinforcement learning,” World Wide Web,
vol. 25, no. 5, pp. 1769–1792, 2022.

[13] R. Zhang, F. R. Yu, J. Liu, T. Huang, and Y. Liu, “Deep reinforcement
learning (drl)-based device-to-device (d2d) caching with blockchain and
mobile edge computing,” IEEE TWC, 2020.

[14] C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep multi-agent re-
inforcement learning based cooperative edge caching in wireless net-
works,” in IEEE ICC, 2019, pp. 1–6.

[15] U. Ahmed, G. Srivastava, and J. C.-W. Lin, “Reliable customer analysis
using federated learning and exploring deep-attention edge intelligence,”
Future Generation Computer Systems, vol. 127, pp. 70–79, 2022.

[16] Y. Feng, F. Lv, W. Shen, M. Wang, F. Sun, Y. Zhu, and K. Yang, “Deep
session interest network for click-through rate prediction,” arXiv preprint
arXiv:1905.06482, 2019.

[17] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li,
and K. Gai, “Deep interest network for click-through rate prediction,”
in KDD, 2018, pp. 1059–1068.

[18] E. Barati and X. Chen, “An actor-critic-attention mechanism for deep
reinforcement learning in multi-view environments,” arXiv preprint
arXiv:1907.09466, 2019.

[19] X. Shen, C. Yin, and X. Hou, “Self-attention for deep reinforcement
learning,” in ICMAI, 2019, pp. 71–75.

[20] C. Tao, S. Gao, M. Shang, W. Wu, D. Zhao, and R. Yan, “Get the point
of my utterance! learning towards effective responses with multi-head
attention mechanism.” in IJCAI, 2018, pp. 4418–4424.

[21] C. Xi, G. Lu, and J. Yan, “Multimodal sentiment analysis based on
multi-head attention mechanism,” in Proceedings of the 4th International
Conference on Machine Learning and Soft Computing, 2020, pp. 34–39.

[22] Z. Sun, S. Huang, H.-R. Wei, X.-y. Dai, and J. Chen, “Generating diverse
translation by manipulating multi-head attention,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 05, 2020, pp.
8976–8983.

[23] M.-C. Lee, M. Ji, A. F. Molisch, and N. Sastry, “Throughput–outage
analysis and evaluation of cache-aided d2d networks with measured pop-
ularity distributions,” IEEE Transactions on Wireless Communications,
vol. 18, no. 11, pp. 5316–5332, 2019.

[24] C. Li, J. Tang, H. Tang, and Y. Luo, “Collaborative cache allocation
and task scheduling for data-intensive applications in edge computing
environment,” Future Generation Computer Systems, vol. 95, pp. 249–
264, 2019.

[25] S. Wang, X. Zhang, K. Yang, L. Wang, and W. Wang, “Distributed
edge caching scheme considering the tradeoff between the diversity
and redundancy of cached content,” in 2015 IEEE/CIC International
Conference on Communications in China (ICCC). IEEE, 2015, pp.
1–5.

[26] T. Ma, J. Qu, W. Shen, Y. Tian, A. Al-Dhelaan, and M. Al-Rodhaan,
“Weighted greedy dual size frequency based caching replacement algo-
rithm,” IEEE Access, vol. 6, pp. 7214–7223, 2018.

[27] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” arXiv preprint arXiv:1801.01290, 2018.

[28] H. ElSawy, A. Sultan-Salem, M.-S. Alouini, and M. Z. Win, “Modeling
and analysis of cellular networks using stochastic geometry: A tutorial,”
IEEE Communications Surveys & Tutorials, vol. 19, no. 1, pp. 167–203,
2016.

[29] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing, vol. 71,
no. 7-9, pp. 1180–1190, 2008.

[30] R. Li, Y. Zhao, C. Wang, X. Wang, V. C. Leung, X. Li, and T. Taleb,
“Edge caching replacement optimization for d2d wireless networks via
weighted distributed dqn,” in 2020 IEEE Wireless Communications and
Networking Conference (WCNC). IEEE, 2020, pp. 1–6.

[31] J. Dilley and M. Arlitt, “Improving proxy cache performance: Analysis
of three replacement policies,” IEEE Internet Computing, vol. 3, no. 6,
pp. 44–50, 1999.

[32] H. Yao, X. Tang, H. Wei, G. Zheng, and Z. Li, “Revisiting spatial-
temporal similarity: A deep learning framework for traffic prediction,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 5668–5675.

[33] M. Hefeeda and O. Saleh, “Traffic modeling and proportional partial
caching for peer-to-peer systems,” IEEE/ACM Transactions on network-
ing, vol. 16, no. 6, pp. 1447–1460, 2008.

Chenyang Wang (Member, IEEE) received the B.S.
and M.S. degrees in computer science and tech-
nology from Henan Normal University, Xinxiang,
China, in 2013 and 2017, respectively. He is cur-
rently pursuing a Ph.D. degree from the School of
Computer Science and Technology, College of Intel-
ligence and Computing, Tianjin University, Tianjin,
China. He is also a visiting Ph.D. student under the
support of the China Scholarship Council (CSC) at
the School of Electrical Engineering, Aalto Univer-
sity, Espoo, Finland since 15 May 2021. His current

research interests include edge computing, big data analytics, reinforcement
learning, and deep learning. He received the Best Student Paper Award of the
24th International Conference on Parallel and Distributed Systems from the
IEEE Computer Society in 2018. He also received the Best Paper Award from
the IEEE International Conference on Communications in 2021. In 2022, he
received the “IEEE ComSoc Asia-Pacific Outstanding Paper Award”.

Ruibin Li (Student Member, IEEE) received his
B.S. and master degree from the School of Computer
Science and Technology, College of Intelligence and
Computing, Tianjin University, Tianjin, China. Now
he is pursuing his Ph.D. degree at The Hong Kong
Polytechnic University, Hong Kong, China. His cur-
rent research interests include diffusion model, re-
inforcement learning, edge intelligence, distributed
federated learning optimization, and deep learning.



12

Xiaofei Wang (Senior Member, IEEE) received
the B.S. degree from Huazhong University of Sci-
ence and Technology, China, and received M.S.
and Ph.D. degrees from Seoul National University,
Seoul, South Korea. He was a Postdoctoral Fellow
with The University of British Columbia, Vancouver,
Canada, from 2014 to 2016. He is currently a Pro-
fessor at the College of Intelligence and Computing,
Tianjin University, Tianjin, China. Focusing on the
research of edge computing, edge intelligence, and
edge systems, he has published more than 160

technical papers in IEEE JSAC, TCC, ToN, TWC, IoTJ, COMST, TMM,
INFOCOM, ICDCS and so on. He has received the best paper awards of
IEEE ICC, ICPADS, and in 2017, he was the recipient of the “IEEE ComSoc
Fred W. Ellersick Prize”, and in 2022, he received the “IEEE ComSoc Asia-
Pacific Outstanding Paper Award”.

Tarik Taleb (Senior Member, IEEE) received the
B.E. degree (with distinction) in information engi-
neering and the M.Sc. and Ph.D. degrees in infor-
mation sciences from Tohoku University, Sendai,
Japan, in 2001, 2003, and 2005, respectively. He
is currently a Professor at the Center of Wireless
Communications, at the University of Oulu, Finland.
He is the founder and the Director of the MOSA!C
Lab, Espoo, Finland. He was an Assistant Professor
with the Graduate School of Information Sciences,
Tohoku University, in a laboratory fully funded by

KDDI until 2009. He was a Senior Researcher and a 3GPP Standards Expert
with NEC Europe Ltd., Heidelberg, Germany. He was then leading the
NEC Europe Labs Team, involved with research and development projects
on carrier cloud platforms, an important vision of 5G systems. From 2005
to 2006, he was a Research Fellow with the Intelligent Cosmos Research
Institute, Sendai. He has also been directly engaged in the development
and standardization of the Evolved Packet System as a member of the
3GPP System Architecture Working Group. His current research interests
include architectural enhancements to mobile core networks (particularly
3GPP’s), network softwarization and slicing, mobile cloud networking, net-
work function virtualization, software-defined networking, mobile multimedia
streaming, intervehicular communications, and social media networking.

Song Guo (Fellow, IEEE) received the bachelor’s
degree in computer software from the Huazhong
University of Science and Technology, the master’s
degree in computer engineering from the Beijing
University of Posts and Telecommunications, and
the Ph.D. degree in computer science from the Uni-
versity of Ottawa. He is currently a Full Professor
and an Associate Head with the Department of
Computing, The Hong Kong Polytechnic University.
Before joining PolyU, he was a Professor with the
University of Aizu, Japan. His research interests are

mainly in the areas of big data, cloud computing, mobile computing, and
distributed systems. Dr. Guo is an IEEE Fellow (Computer Society) and
the Editor-in-Chief of the IEEE OPEN JOURNAL OF THE COMPUTER
SOCIETY. He was a recipient of the 2019 IEEE TCBD Best Conference
Paper Award, 2018 IEEE TCGCC Best Magazine Paper Award, 2019 and
2017 IEEE Systems Journal Annual Best Paper Award, and other six Best
Paper Awards from IEEE/ACM conferences. His work was also recognized
by the 2016 Annual Best of Computing: Notable Books and Articles in
Computing in ACM Computing Reviews. Some of his Transactions papers
were selected as Featured or Spotlight papers. He was a Distinguished
Lecturer of IEEE Communications Society (ComSoc) and served in the IEEE
ComSoc Board of Governors. He has been named on editorial board of a
number of prestigious international journals like the IEEE TRANSACTIONS
ON PARALLEL AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS
ON CLOUD COMPUTING, and IEEE TRANSACTIONS ON EMERGING
TOPICS IN COMPUTING. He has also served as chairs of organizing and
technical committees of many international conferences.

Yuxia Sun (Member, IEEE) received the B.S. degree
from Department of Computer Science, Huazhong
University of Science and Technology, Wuhan,
China, and the Ph.D. degree from the Depart-
ment of Computer Science, Sun Yat-sen University,
Guangzhou, China. She is currently an Associate
Professor with Department of Computer Science,
Jinan University, Guangzhou. She was a Research
Associate with The Hong Kong Polytechnic Uni-
versity, Hong Kong SAR., and The University of
Hong Kong, Hong Kong SAR., and was a Research

Scholar with College of Computing, Georgia Institute of Technology, Atlanta,
GA, USA. Her current research interests include machine learning, software
safety, system safety, and software engineering.

Victor C. M. Leung (Life Fellow, IEEE) is a
Distinguished Professor of Computer Science and
Software Engineering at Shenzhen University. He is
also an Emeritus Professor of Electrical and Com-
puter Engineering and the Director of the Laboratory
for Wireless Networks and Mobile Systems at the
University of British Columbia (UBC). His research
is in the broad areas of wireless networks and
mobile systems. He has co-authored more than 1300
journal/conference papers and book chapters. Dr.
Leung is serving on the editorial boards of IEEE

Transactions on Green Communications and Networking, IEEE Transactions
on Cloud Computing, IEEE Access, and several other journals. He received
the IEEE Vancouver Section Centennial Award, 2011 UBC Killam Research
Prize, 2017 Canadian Award for Telecommunications Research, and 2018
IEEE TCGCC Distinguished Technical Achievement Recognition Award. He
co-authored papers that won the 2017 IEEE ComSoc Fred W. Ellersick Prize,
2017 IEEE Systems Journal Best Paper Award, 2018 IEEE CSIM Best Journal
Paper Award, and 2019 IEEE TCGCC Best Journal Paper Award. He is a
Life Fellow of IEEE, and a Fellow of the Royal Society of Canada, Canadian
Academy of Engineering, and Engineering Institute of Canada. He is named
in the current Clarivate Analytics list of Highly Cited Researchers.


