
1

Towards Securing IIoT: An Innovative
Privacy-Preserving Anomaly Detector Based on

Federated Learning
Samira Kamali Poorazad, Chafika Benzaı̈d, and Tarik Taleb

Abstract—In the light of the growing connectivity and sen-
sitivity of industrial data, cyberattacks and data breaches are
becoming more common in the Industrial Internet of Things
(IIoT). To cope with such threats, this study presents an anomaly
detection system based on a novel Federated Learning (FL)
framework. This system detects anomalies such as cyberattacks
and protects industrial data privacy by processing data locally
and training anomaly detection models on industrial agents with-
out sharing raw data. The proposed FL framework incorporates
two key components to enhance both privacy and efficiency.
The first component is Homomorphic Encryption (HE), which
is integrated into the framework to further protect sensitive data
transmissions such as model parameters. HE enhances privacy
in FL by preventing adversaries from inferring private industrial
data through attacks, such as model inversion attacks. The second
component is an innovative dynamic agent selection scheme,
wherein a selection threshold is calculated based on agent delays
and data size. The purpose of this new scheme is to mitigate the
straggler effect and the communication bottleneck that occur
in traditional FL architectures, such as synchronous and asyn-
chronous architectures. It ensures that agents are not unfairly
selected by the different delays resulting from heterogeneous
data in IIoT environments, while simultaneously improving model
performance and convergence speed. The proposed framework
exhibits superior performance over baseline approaches in terms
of accuracy, precision, F1-scores, communication costs, conver-
gence speeds, and fairness rate.

Index Terms—Federated Learning, Privacy-preserving, Indus-
trial Internet of Things, and Anomaly Detection.

I. INTRODUCTION

MANUFACTURING and industrial sectors use Internet
of Things (IoT) technologies to automate processes

and improve product quality through Industrial Internet of
Things (IIoT) [1]. IIoT enhances productivity and scalability
through intelligent interconnection and remote management
[1]. However, due to the inherent broadcast nature of wireless
communications, IIoT presents cybersecurity risks, such as
command injection attacks [2]. These attacks take the form of
anomalies – unexpected deviations from the system behavior
– which may indicate malicious activities or system malfunc-
tions. The Stuxnet on Iran’s nuclear power plant in 2010 is
a high-profile example of these attacks [3]. The risk of such
attacks is especially pronounced in older industrial systems,

Samira Kamali Poorazad and Chafika Benzaı̈d are with the Centre
for Wireless Communications, University of Oulu, Oulu, Finland (emails:
samira.kamalipoorazad@oulu.fi, chafika.benzaid@oulu.fi).

Tarik Taleb is with the Department of Electrical Engineering and Infor-
mation Technology, Ruhr University Bochum, Bochum, Germany (email:
tarik.taleb@rub.de).

which were not originally designed with security in mind. [4].
A robust anomaly detection system that continuously monitors
and identifies potential attacks based on data flows in IIoT is
crucial for mitigating potential security vulnerabilities. In this
vein, many IIoT environments have recently adopted central-
ized machine learning-based anomaly detection methods [5].
The use of these centralized approaches provides significant
benefits in terms of improved model accuracy and ease of
deployment [6]. However, they also introduce communication
inefficiencies and raise potential privacy concerns, as large
volumes of IIoT data must be transferred and processed at a
central server [6]. In fact, requiring a central server to manage
all data from IIoT agents increases the risks of data breaches
and establishes a single point of failure [7]. Furthermore, IIoT
data holders tend to avoid sharing sensitive information with
third parties. Therefore, a practical, distributed anomaly de-
tection system that protects data privacy in IIoT environments
is imperative.

Federated Learning (FL), a form of distributed machine
learning, offers a promising solution to meet the aforemen-
tioned need [8]. Through FL, industrial agents are able to
work collaboratively to train global models by transmitting
parameters and local models to a central server rather than
sharing raw training data [7]. Compared to centralized machine
learning approaches, FL does not only safeguard privacy
but also significantly reduces communication overhead, since
sending only model parameters is much more efficient than
sending the original training data. While FL significantly
reduces privacy risk, adversaries can still compromise sensitive
data by intercepting communication channels or compromising
the aggregator server [9]. Thus, FL remains vulnerable to
critical threats such as model poisoning and model inference
attacks [9], [10]. It is crucial that FL’s privacy be further en-
hanced, particularly in the context of IIoT. Multiple secure FL
schemes have been developed to address this need, including
differential privacy (DP), Multiparty Computation (MPC), and
homomorphic encryption (HE) [11].

The choice of communication mode –synchronous or
asynchronous– is as critical as addressing privacy concerns in
FL frameworks. In heterogeneous IIoT environments, where
devices operate at different speeds, due to varying computa-
tional resources and diverse data, the type of communication
mode becomes even more significant. As an example, in FL
with synchronous communication mode, all industrial agents
must upload their local models to the server at the same time
for aggregation [12]. This requirement forces the server to wait

Copyright © 2025 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.



2

for the slowest device, commonly referred to as the straggler,
which delays the entire training process. This delay, known
as the straggler effect, makes Syncrounou Federated learn-
ing (SyncFL) unsuitable for real-time or heterogeneous IIoT
applications, as it significantly slows down the convergence
speed of the model and reduces the training efficiency of the
anomaly detection model. The asynchronous FL (AsyncFL)
[13] was introduced to avoid straggler effects by performing
global aggregation right after a local model has been received.
Despite the frequent model transfer aggregations, AsyncFL
approaches may be problematic for IIoT due to communication
bottlenecks caused by agents communicating with the aggre-
gation server at different times, rather than in a coordinated
manner. One solution for balancing SyncFL and AsyncFL is
to use buffered-based solutions. Fed-Buff [14] is an example
of buffered FL, wherein local model updates are processed
after a K-size buffer is filled at the server. A disadvantage
of Fed-Buff is that it could favor agents with fast training
speeds and results in low model accuracy. Recent research
[15] proposes a Buffered FL (BFL) and an agent selection
method based on the training time of agents in order to fill the
gap in Fed-Buff. However, the authors in [15] considered only
training time and used the agent selection method exclusively
in the first training round, leading to two significant challenges.
First, considering that the computing capabilities of IIoT
agents can fluctuate over time due to resource heterogeneity,
selecting agents only during the first round of FL is neither
dynamic nor efficient. Agents not selected in the initial round
may have sufficient resources in later rounds and should be
reconsidered for selection in subsequent rounds. Second, other
factors, such as the communication delay, which is a variable
factor between the agents and the central server should be
considered. Therefore, focusing solely on training time is not
sufficient. Consequently, there is a need for a comprehensive
FL framework that addresses the highly heterogeneous IIoT
environment by balancing the trade-offs between model con-
vergence speed, accuracy, and varying agent speeds.

As a remedy to the above-mentioned challenges, a novel
Dynamic HE-based FL (DyHFL) framework for the detec-
tion of IIoT anomalies is developed. HE and an innovative
Dynamic Agent Selection method are used to address three
critical challenges, namely: privacy preservation, stragglers,
and communication bottlenecks. HE is chosen for its ability
to preserve both model accuracy and data privacy, whereas DP,
despite its privacy benefits, tends to degrade model accuracy
due to the introduced noise. MPC was excluded due to its high
computational and communication overhead from constant
data exchanges, causing delays that are unsuitable for real-
time IIoT applications that require low-latency responses. In
contrast, HE performs computations on encrypted data without
continuous interaction, reducing overhead and making it more
efficient for real-time IIoT environments. Furthermore, a novel
Dynamic Agent Selection strategy is proposed to overcome
the limitations of previous buffered FL methods, such as the
static agent selection in BFL [15] and the fixed buffer-based
aggregation in FedBuff [14].

Unlike BFL [15], which only considers training time and
performs agent selection once at initialization, DyHFL intro-

duces a sliding window-based mechanism that dynamically
adjusts agent selection at every training round. This mecha-
nism continuously evaluates agent performance based on three
IIoT-relevant metrics: (1) training time, which reflects com-
putational capacity, (2) communication time, which reflects
the total round-trip latency, including model upload/download
transmission with network latency, and (3) local data size,
which represents workload imbalance. This tri-metric evalua-
tion enables DyHFL to adapt to heterogeneous IIoT devices
with varying resources and conditions. In contrast to FedBuff
[14], which fills buffers solely based on the arrival order of
updates—often favoring faster devices—DyHFL employs a
threshold-driven buffer update policy that allows aggregation
to proceed without waiting for all agents. To operationalize
this policy, DyHFL introduces two key functions—Weighted
Average Metrics (WAM) [15] and Exponentially Weighted
Moving Average (EWA). These functions combine three IIoT-
relevant metrics (training time, communication time, and local
data size) to compute a dynamic time threshold, which is then
used to categorize agents as fast or slow. In this way, DyHFL
ensures a fair representation of both groups in the aggregation
buffer, rather than exhibiting bias toward faster agents as in
FedBuff. This work mainly contributes to:

1) Proposing a new method of anomaly detection that com-
bines deep learning (DL) and HE to detect cyber threats
in industrial cyber-physical systems (CPS).

2) Developing a novel FL framework that amalgamates the
potential of synchronous and buffered FL approaches to
effectively address straggler and communication issues
while accounting for the heterogeneous nature of data
and resources in IIoT environments.

3) Designing an adaptive and dynamic agent selection
method that continuously monitors training time, commu-
nication delay, and data size to fairly balance participation
between fast and slow agents across training rounds.

4) Evaluating the proposed DyHFL framework using three
distinct industrial datasets to demonstrate its generaliza-
tion ability, robustness, and superior performance com-
pared to state-of-the-art FL baselines.

The remainder of this article is organized as follows. Section
II discusses some related work in the literature. Section
III introduces the system model, the attack model, and the
proposed privacy-preserving FL method. Section IV discusses
security analysis and communication complexity. Section V
presents implementation details and discusses the evaluation
results. Section VI highlights limitations and potential future
directions. This article concludes in Section VII.

II. RELATED WORK

This section briefly reviews some studies focusing on FL-
based anomaly detection systems for IIoT environments.

A. FL-based Intrusion/Anomaly Detection

1) SyncFL approaches: In [7], the authors proposed a
federated self-learning system for detecting malicious devices
in IoT. Gated Recurrent Units (GRUs) are used in the system



3

to classify data based on thresholds. Additionally, the self-
learning mechanism is leveraged to enhance the detection
performance of the global model as the IoT environment
changes. For detecting energy efficiency anomalies in smart
buildings, the authors of [6] proposed a FL approach based
on Long Short-Term Memory (LSTM). In [4], a Variational
Autoencoder-LSTM model is used to detect anomalies in
industrial control systems (ICS). The authors of [5] devised a
FL framework based on Convolutional neural network (CNN)-
LSTM to reduce communication costs through gradient com-
pression and local computations, wherein the Top-k algorithm
is used to identify and send the ”k” largest gradients for
communication. The work in [16] presents a combination of
One-Class Support Vector Machine (OCSVM) and Isolation
Forests (IF) to detect potentially malicious data points in IIoT.
Stacked Autoencoders (SAE) are also used to extract features
from data to help identify patterns and relationships.

The authors of [17] propose a FL-based anomaly detection
framework for smart grids, enabling smart meters to train
local models without sharing data, ensuring privacy while
maintaining comparable performance to centralized models.
It evaluates seven ML classifiers, demonstrating low resource
consumption, but lacks advanced privacy techniques (e.g.,
HE). In [18] a FL framework for anomaly detection in IoT
networks, integrating mutual information for feature selection
and a deep neural network (DNN) for intrusion detection
is proposed. It employs a mini-batch aggregation scheme to
train models across distributed IoT devices, ensuring data
privacy and high accuracy. However, the work in [18] lacks
robust privacy mechanisms against model inversion attacks,
and favoring fast and well-connected devices due to its mini-
batch aggregation approach.

Aside from the lack of privacy-preserving methods, the
discussed synchronous methods are particularly susceptible
to straggler effects when there are more agents involved. In
real-time industrial domains, stragglers cause delays and slow
convergence, thereby undermining the timely detection and
mitigation of anomalies.

2) AsyncFL approaches: There are often impractical as-
sumptions behind synchronized schemes. First of all, they
require all nodes to transmit weights during every training
round, resulting in significant network congestion. Second,
these schemes require waiting for the slowest agents (i.e.,
stragglers), resulting in substantial delays. To address these
limitations, AsyncFL approaches have been explored as a
more efficient alternative. For example, in [19], the authors
proposed an AsyncFL-based digital twin architecture for IIoT
applications to minimize straggler effects. Results showed
faster convergence and higher learning rates with the suggested
model. Authors in [20] introduced an AsyncFL scheme based
on dynamically selected agents for heterogeneous IoT devices,
which optimizes training by taking into account computing
resources and network conditions. Compared to synchronous
methods, the proposed AsyncFL is more efficient and accurate,
and offers better scalability and robustness, especially in non-
identical data scenarios. However, it introduces complexity and
potential staleness. In [21], the authors proposed a spectral
clustering method based on the latency and direction of model

updates to prevent model staleness. In non-independent and
identically distributed datasets, the scheme also improved
accuracy and convergence speed. In [22], through the use of
a novel aggregation algorithm combined with a cache struc-
ture, the authors developed a Semi-Asynchronous Federated
Averaging (SAFA) method to solve low round efficiency and
poor convergence. Authors in [23] suggested an AsyncFL
model to detect low-rate Distributed Denial-of-Service (DDoS)
attacks. This approach uses bidirectional LSTMs and an atten-
tion mechanism to improve detection accuracy by addressing
missing data issues and ensuring the model learns from past
and future data. The Proposed AsyncFL framework enables
asynchronous updates across agents, reducing the impact of
abnormal parameters and improving robustness. Study results
indicate that the model outperforms state-of-the-art methods in
terms of both accuracy and communication overhead, while
potential implementation complexity was identified. Authors
in [24] introduce DEAFL-ID, a delay and energy-efficient AFL
framework designed for intrusion detection in heterogeneous
IIoT. DEAFL-ID leverages deep Q-learning (DQN) for optimal
device selection to minimize training costs while preserving
detection accuracy. However, the DEAFL-ID framework tends
to prioritize faster devices since the selection criteria favor
lower delay, higher energy efficiency, and better detection
accuracy, which may introduce bias in the global model.

According to the investigated studies, asynchronous ap-
proaches are more accurate, scalable, and efficient in complex
and non-uniform data environments. Nevertheless, despite
their advantages, these methods are not without challenges,
including staleness, increased complexity, and heightened
communication costs. The server may slow down model
convergence if it has to aggregate frequently. As a result, it
is necessary to balance the advantages and disadvantages of
AsyncFL approaches.

3) Buffered FL approaches: Buffer-based approaches have
been introduced to balance the limitations of SyncFL and
AsyncFL frameworks [14], [15]. However, these methods
come with their own drawbacks. In the approach proposed
by [14], the authors overlooked the issue of fairness among
agents, which can lead to the buffer being filled by faster
agents, potentially sidelining slower, yet valuable contributors.
On the other hand, while the work in [15] addressed fairness
through an agent selection strategy, this solution has its limita-
tions as it only applies during the first training round, lacking
the flexibility to adapt dynamically throughout the learning
process. Overall, there is a clear need for a more dynamic
and efficient buffer-based solution to mitigate straggler by
continuously adapting to the varying capabilities of agents,
ensuring a fair and balanced contribution from all partici-
pants. In [25], the authors introduce a buffered FL approach
for anomaly detection in drone networks named Agnostic
Straggler Resilient (ASR Fed), designed to handle straggling
agents efficiently. The proposed method in [25] dynamically
selects agents based on their accuracy and latency, ensuring
that high-performing and responsive agents contribute early,
while straggling agents are included later through a buffer-
and-circumvent aggregation mechanism. Experimental results
demonstrate that the proposed buffered methodology achieves



4

higher accuracy and lower communication overhead compared
to traditional FL algorithms. However, by initially involving
only fast agents and delaying the participation of stragglers,
ASR-Fed limits exposure to the full data distribution, thereby
reducing update diversity. This constraint negatively affects
model generalization, resulting in poorer performance and
slower convergence. While stragglers are eventually included,
their late contribution diminishes the impact of rare or critical
data during the early learning stages.

B. Privacy-enhancing FL

Though FL methodology offers significant privacy-
preserving benefits, concerns about information leakage per-
sist [10]. As outlined in [26], sensitive participant information
in distributed FL can be compromised, even when only model
update data is shared. Publicly available gradients can some-
times be used to reconstruct original training data. To address
these vulnerabilities, Privacy Enhancing Technologies (PETs)
such as DP, MPC and HE have been introduced to enhance
FL’s effectiveness by securing shared model updates.

In [27], an IoT anomaly detection FL model incorporating
DP is proposed to enhance privacy. To this end, the method
employs a Generative Adversarial Network (GAN) to generate
synthetic local model parameters and adds controlled noise to
the raw local models. The study in [28] examines the use
of FL and HE to protect sensitive data shared during the
training of CNN models. The study in [29] demonstrated
that HE can provide comparable model accuracy to that
of non-encrypted models while optimizing communication
and computational efficiency. By employing an aggregated
public key, the proposed method ensures the confidentiality
of individual model updates without significantly affecting
classification performance. Optimizing encrypted model up-
dates is particularly useful for large-scale IoT deployments
with limited resources. The Paillier Federated Multi-Layer Per-
ceptron (PFMLP) proposed in [30] integrates HE with FL to
ensure the security of gradient data during transmission while
maintaining accuracy close to traditional methods. Authors in
[31] provided a secure FL framework incorporating HE and
Verifiable Computing (VC) in order to ensure confidentiality
and integrity in model training, especially in cross-silo settings
with few reliable agents. However, the increased complexity
and resource demands of this approach make it less suitable
for resource-constrained environments, despite maintaining
model accuracy and providing strong privacy and integrity
guarantees. The approach in [32] utilizes HE to enhance FL
privacy, addressing common issues such as privacy breaches,
communication overhead, and a lack of accountability. Mean-
while, the work in [33] applied FL based on CNN and GRU
in order to improve the accuracy of ICS intrusion detection
by learning both spatial and temporal features of network
traffic data, while employing HE as a means of improving
privacy. In [34], the authors presented a method called Partially
Encrypted MPC for FL. The purpose of this approach is
to reduce the high communication and computation costs
associated with traditional MPC while preserving data privacy.
To prevent sensitive information from being exposed during

the aggregation of models, they selectively encrypt key pa-
rameter values or gradients. Despite improving efficiency, this
approach may face complexities and challenges, particularly in
dynamic environments with frequent model updates. Similarly,
the work in [35] presents a method that strengthens FL
security against indirect gradient leakage using MPC. In this
method, a two-round model decomposition process ensures
that the central server receives only a modified version of
the model, preventing data reconstruction. Although MPC
improves model accuracy and strengthens privacy safeguards,
it also increases communication costs and computational re-
quirements. In [36], the authors introduce a two-level privacy-
preserving FL framework for attack detection in Consumer
Internet of Things (CIoT), integrating Partially HE for secure
model aggregation. While achieving high detection accuracy
with reduced false positives, the framework lacks any straggler
mitigation strategy, making it vulnerable to delays or failures
when some CIoT devices are slow or intermittently connected.

Based on the investigated articles and our case which is
IIoT environments, HE is preferred over DP and MPC due
to its ability to protect model updates without compromising
accuracy, which is vital for effective anomaly detection in IIoT
environments. In fact, DP adds noise that can lower model
accuracy. Meanwhile, MPC requires heavy communication
and computation, making it unsuitable for quick-response
scenarios in IIoT. In this work, the adopted HE scheme
follows established approaches in the literature and is not
intended to introduce a novel HE variant; rather, its role is to
provide privacy preservation within DyHFL, enabling secure
collaboration in IIoT without altering the core HE design.

Table I provides a comprehensive review of the studied
articles, highlighting their gaps and advantages. It outlines the
FL approaches, PETs, straggler issues, fairness considerations
among agents with different speeds, and communication bot-
tlenecks present in each study. This analysis offers a clear
comparison of different methods and their associated chal-
lenges, emphasizing areas where further research is needed.
Based on a thorough review of existing literature and the
identified gaps in Table I, it has become apparent that studied
methods lack a unified and efficient approach that provides a
comprehensive solution to the straggler effect, communication
bottlenecks, fairness, and privacy concerns. To fill this gap,
this paper proposes a novel HE-based dynamic buffered FL
framework for privacy-preserving anomaly detection in IIoT
environments. The proposed framework aims to effectively
balance the straggler effect and communication bottlenecks
using a buffer and a novel dynamic agent selection strategy,
while also enhancing privacy in environments with agents
operating at different speeds. As a result, this approach, un-
like existing solutions, optimally balances convergence speed,
model performance, fairness, and communication costs.

III. DYHFL FRAMEWORK

In this section, the system model, the attack model, and the
proposed methodology are introduced. Table II summarizes
the notations used in this study.



5

TABLE I: Summary of Research Gaps in Federated Learning Studies

Papers Approach Straggler mitigation strategy PETs Straggler Fairness Communication
Bottleneck

[4], [5], [6], [7],
[16], [17], [18]

SyncFL × × × N/A N/A

[28], [29], [30],
[31], [33], [36]

SyncFL × HE × N/A N/A

[34], [35] SyncFL × MPC × N/A N/A

[19], [21] AsyncFL Clustering agents by computing power and
Training data availability, communication

latency

× ✓ N/A ×

[20] AsyncFL Greedy agent selection based on higher
computing power and transmission delay

× ✓ × ✓

[22] AsyncFL lag-tolerant model distribution agent selection × ✓ × ✓

[23] AsyncFL Agent selection based on dataset size and model
accuracy

× ✓ × ✓

[24] AsyncFL Deep Q-Network based agent selection
prioritizes high-accuracy, low-delay, and

energy-efficient devices

× ✓ × ✓

[27] AsyncFL Basic asynchronous algorithm DP ✓ N/A ×

[32] AsyncFL Basic asynchronous algorithm HE ✓ N/A ×

[14] Buffer-FL Buffering the first K received updates per round DP ✓ × ✓

[15] Buffer-FL Combination of buffering and agent selection
based on training time in the first round

HE ✓ A/E ✓

[25] Buffer-FL Buffering based on prioritizing fast agents for
early updates, delaying stragglers

× ✓ A/E ✓

DyHFL Buffer-FL Combination of buffering, agent selection, and
sliding window based on training time,

communication time, and data size

✓ ✓ ✓ ✓

Note: ✓ – Addressed; × – Not addressed; N/A – Not an issue ; A/E – Addressed but not enough.

A. System Model

The system architecture in Fig. 1 is designed to ensure
privacy while supporting FL across multiple industrial agents,
each representing an owner of a CPS. It consists of the
following steps:

1) Key generation and Initialization: At the beginning of
the process, a trusted third party generates two crypto-
graphic keys – one public and one private – for enabling
secure communication between industrial agents and the
FL aggregator server. The public key is used to encrypt
data, while the private key is kept secret by each agent
to decrypt data. The keys are then distributed to each
industrial agent.

2) Local Model Training: Industrial agents use their local
CPS data to train DL models.

3) Encryption: Once training is complete, the agent en-
crypts the model parameters (such as weights and biases)
using the public key. In this way, sensitive model param-

eters are protected during transmission.
4) Secure Aggregation of Models: Each agent’s encrypted

model parameters are sent to the server for aggregation.
The aggregation server computes the encrypted global
model by securely aggregating the encrypted parameters
received from each participating agent.

5) Distribution of the Global Model: The encrypted global
model is sent back to all industrial agents once the
aggregation process has been completed.

6) Decryption: The global model is then decrypted by each
agent using its private key. The local model of the agent
is subsequently updated using the decrypted model.

B. Attack Model

The threat model considered in this study addresses both
cyber threats against industrial CPSs and adversarial attacks
targeting the DyHFL framework. The study examines two
main types of cyber threats facing the proposed model system:



6

TABLE II: List of Notations

Symbol Description
T Number of Rounds
F Communication Frequency (local epochs)
N Number of Agents
Nsel Selected agents
M Model Size
m Initial parameters
Magg Encrypted global parameters
SW Sliding window size
B Size of Buffer
α and β Floating-point numbers whose sum equals 1
t st Start training time
t et End training time
t sc Start communication time
t ec End communication time
Data S Local data size of the agent
TTrain T Total Training time
TCom T Total communication time
Global MT Global Metric
ST Thrsh Short Term threshold
LT Thrsh Long Term threshold
c A constant number
ComCst Communication Cost
Pkey Public key
Skey Private key
⊕ HE-based addition
⊗ HE-based multiplication

Fig. 1: High-level architecture of the DyHFL framework.

1) Cyber Threats Against Industrial CPSs: There are a
number of threats to remote operations, including re-
sponse injection attacks, command injection attacks, re-
connaissance attacks, and denial of service (DoS) attacks.
In response injection attacks, fake response messages
are inserted into queries, whereas in command injection
attacks, false commands are inserted into control systems.

DoS attacks overload the target system, causing substan-
tial disruptions to industrial processes, while reconnais-
sance attacks gather sensitive information about the CPSs.

2) Adversarial Threats Against the DyHFL Framework:
This category focuses on two critical threats. In the
first scenario, an ”honest-but-curious” aggregation server
may attempt to learn more than intended by inspecting
the model parameters sent by agents. This could lead
to the server inferring sensitive information about the
agents’ data or reverse-engineering the anomaly detection
model, and compromising privacy in the FL process. The
second concern involves external attacks or malicious
eavesdroppers targeting communication links to intercept
or alter the transmission of local parameters. This can
expose sensitive data or manipulate updates, undermining
the accuracy of the global model and threatening both the
integrity and privacy of the DyHFL framework.

Algorithm 1: DyHFL-based Anomaly Detection
Input: T , N , c, Pkey , Skey , α , β
Output: Desired performance (e.g., accuracy)

1 m← Initial parameters()
2 Magg ← 0 # Encrypted global parameters
3 SW ← 1

c
× T

4 for P ← 1 to SW do
5 for each agent k ← 1 to N do
6 t st← Start Time()
7 Local

(k)
m ← m.train()

8 m
(k)
enc ← Encrypt(Local

(k)
m , Pkey)

9 t et← End Time()
10 T

(k)
Train T ← t et− t st

11 Data S(k) ← Data Size()
12 t sc← Start Time()
13 send to server (m(k)

enc )
14 # Encrypted aggregation on Server
15 for each j ∈ m

(k)
enc do

16 Magg ← (j ⊕Magg)⊗ [N−1]
17 send to agents (Magg)
18 for each agent k ← 1 to N do
19 Receiving (Magg) by agents
20 t ec← End Time()
21 T

(k)
Com T ← t ec− t sc

22 m
(k)
dec ← Decrypt(Magg , Skey)

23 send to server (T (k)
Com T, T

(k)
Train T,Data S(k))

24 # Calculating Final Threshold on Server
25 Normalize (T

(k)
Com T, T

(k)
Train T,Data S(k))

26 Global MT(k) ← α(T
(k)
Com T + T

(k)
Train T) + β(Data S(k))

27 ST Thrsh(P ) ←WAM
(

Global(k)MT

)N
k=1

28 LT Thrsh←
(

EWA
((

ST Thrsh(P )
)SW

P=1

)
+ MAX

((
ST Thrsh(P )

)SW

P=1

))
/2

29 for each i ∈ Global MT(k) do
30 if i ≤ LT Thrsh then
31 [Sm]← i
32 for S ← SW + 1 to T do
33 for each agent k ∈ [Sm] do
34 Local

(k)
m ← m.train()

35 m
(k)
enc ← Encrypt(Local

(k)
m , Pkey)

It is intended that by examining cyber threats, DyHFL
will strengthen the security and resilience of industrial CPSs
against a variety of malicious activities.



7

C. Proposed Methodology
The proposed HE-based FL framework employs two key

strategies to enable efficient training of DL anomaly detection
models across multiple industrial CPS owners: a synchronous
communication mode and a dynamic buffer-based agent
selection mechanism.

On one hand, the framework adopts the synchronous com-
munication modeto mitigate the communication bottlenecks
commonly associated with AsyncFL. In AsyncFL, updated
models must be transmitted individually to each industrial
agent, leading to increased network overhead and inconsis-
tencies in model convergence. By contrast, the synchronous
approach ensures that model updates are aggregated and
distributed in a coordinated manner, significantly reducing
network load and promoting more stable global model updates.

On the other hand, the framework introduces a buffer-
based agent selection mechanism to reduce delays caused
by slow agents, commonly known as the straggler effect in
SyncFL. In synchronous FL, the server must wait for all
selected agents to return their local model updates before
aggregation. This can significantly hinder training progress.
Proposed mechanism resolves this by introducing a buffer
and a time threshold: the aggregation server collects model
updates into a buffer and begins aggregation once the specified
threshold time has elapsed, regardless of whether all agents
have responded. This mechanism not only minimizes training
delays but also mitigates bias introduced by uneven agent
participation, leading to more balanced model performance.
The dynamic buffer-based selection mechanism implemented
by dividing the total number of training rounds T into two dis-
tinct phases: Preliminary Rounds, used to estimate the time
threshold, and Subsequent Rounds, where agent selection is
guided by this threshold.

1) Phase One: Preliminary Rounds (Rounds 1 to SW)
The objective of the preliminary rounds is to estimate a
time threshold that will guide agent selection in subse-
quent training rounds. This is achieved using a sliding
window mechanism, designed to monitor agent-specific
performance metrics over time and ensure fairness and
adaptability. Each agent records the following perfor-
mance metrics that will be used in computing the time
threshold:
• Data size: the volume of local data available for

training.
• Training Time: the duration taken to train the local

model.
• Communication Time: the time required to transmit

the encrypted model to the server and receive the
updated global model.

Below is a detailed Step-by-Step Workflow:
a) sliding window size calculation: In the first step, the

sliding window size (SW) is set equal to the number of
preliminary rounds (P), which is computed as:

SW = P =
T

c
(1)

where T is the total number of training rounds, and
c is a constant that controls the proportion of rounds

allocated to the threshold estimation phase (line 3 of
Algorithm 1).

b) Model Training: Once the public and private keys
are generated, agents obtain parameter values from
the aggregator server. The agents then train their DL
models using their respective data in order to detect
anomalies (line 7 of Algorithm 1).

c) Monitoring Metrics: During the training process, the
amount of time that each agent spends on training
along with the size of data are measured (lines 10 and
11 of Algorithm 1).

d) Model Encryption and Transmission: Once the local
model is trained, the parameters are encrypted using the
public key (line 8 of Algorithm 1). Following training
and encryption, the encrypted parameters are sent to the
aggregator server (line 13 of Algorithm 1). This is the
point at which the calculation of communication time
begins until the agents receive the updated encrypted
global model (line 12 of Algorithm 1).

e) Aggregation: Aggregator server collects encrypted lo-
cal parameters from agents and compute encrypted
global parameters (line 16 of Algorithm 1). These
encrypted global parameters are then sent back to the
agents (line 17 of Algorithm 1).

f) Updating and Decryption: Agents receive the en-
crypted global parameters, which marks the end of the
calculation of communication times (lines 19 and 20
of Algorithm 1). Afterward, using private keys, the
agents decrypt the encrypted global parameters and
update the local model parameters accordingly (line
22 of Algorithm 1).

g) Short-Term Threshold (ST Thrsh): This step
involves calculating the Short-Term Threshold
(ST Thrsh) using agent-specific performance metrics.
The purpose of ST Thrsh is to ensure fair participation
by adjusting selection bias between fast and slow
agents. To calculate the ST Thrsh:
• Each agent’s performance metrics values (data size,

training time, and communication time) are sent to
the server (as described in line 23 of Algorithm 1).

• The performance metrics values are normalized
by the server using the Min-Max scaler, which
rescales the values to the range of [0, 1] (line 25
of Algorithm 1). The Min-Max scaler is defined as
follows:

Xscaled =
X −Xmin

Xmax −Xmin
(2)

where X represents the original value, Xmin is the
minimum value within its respective list (training
time, communication time, or data size), and Xmax

is the maximum value within the same list.
Normalization is necessary to balance the impact
of different parameters, as they exist on differ-
ent scales. Without normalization, larger numerical
values (e.g., data size) could dominate the global
metrics, leading to biased agent selection.

• The normalized metrics are then summed to com-



8

pute the agent’s global metric (Global MT) (line
26 of Algorithm 1), as follows:

Global MT = α · (TTrain T + TCom T) + β · Data S (3)

where α and β are floating-point numbers whose
sum equals one (α+ β = 1), serving as weighting
factors and normalization coefficients to balance
the contributions of different components in the
computation of the Global MT. Their primary pur-
pose is to ensure a controlled trade-off between
the communication and training time components
(TTrain T+TCom T

) and the dataset size component
(Data S). This prevents any single component from
disproportionately influencing the Global MT. By
adjusting α and β, the model can emphasize either
computation time or dataset size depending on
the specific requirements of the system, ensuring
an adaptive and efficient evaluation of the agent’s
performance.

• The computed Global MT values are fed into the
WAM function to derive the ST Thrsh. WAM as-
signs lower weights to faster agents and higher
weights to slower ones, thereby promoting fair par-
ticipation and preventing consistent exclusion from
training. These weights are directly determined by
each agent’s normalized global metrics (line 27 of
Algorithm 1 and Algorithm 2).

h) Long-Term Threshold (LT Thrsh): In the final step
of the preliminary phase, the Long-Term Threshold
(LT Thrsh)—used as the time threshold for buffer-
based agent selection—is computed using an EWA
applied to the sequence of ST Thrsh values (line 28
of Algorithm 1 and Algorithm 3). EWA emphasizes
recent ST Thrsh values have a greater impact on the
LT Thrsh, enabling the threshold to adapt dynamically
while smoothing out transient fluctuations. The result-
ing LT Thrsh serves as the final decision boundary for
agent selection in subsequent training rounds.

2) Phase Two: Subsequent Rounds (Rounds SW+1 to T)
In this phase, the calculated time threshold (LT Thrsh)
from preliminary round is employed by the aggregation
server to govern agent selection and aggregation behavior
(lines 29 to 35 of Algorithm 1). This dynamic approach
ensures that training progresses efficiently without being
hindered by stragglers, communication bottlenecks, and
still preserving fairness and representation across the
agent population.
Algorithms 1, 2, 3 summarize the detailed training pro-
cedure.

Steps b through g of phase one are repeated until the
number of preliminary rounds (P) reaches T/c, while the
subsequent rounds of phase two continue until convergence.
For instance, if T=100 and c=5, then the number of preliminary
rounds will be P=20, which also defines the size of the
sliding window (SW). The remaining 80 rounds constitute the
subsequent phase of training. In this setup, the first 20 rounds

Fig. 2: DyHFL framework Flowchart.

Algorithm 2: Weighted Average Metrics (WAM)
Input: Global metrics for each Agent ← Global MT1, . . . ,Global MTN

Output: Short-term threshold for each preliminary round
1 Sort Global MT 1, Global MT 2, ..., Global MTN in

descending order
2 for each i← 1 to n do
3 weight(i) ← 1

Global MT i

4 # Reverse weight = [W1,W2, . . . ,Wn]
5 weight← [WN ,WN−1, . . . ,W1]

6 W Avg←
∑n

j=1 Global MT(j)·weight(j)∑n
j=1 weight(j)



9

are allocated to the preliminary phase, during which the system
monitors agent behavior and calculates the time threshold. The
following 80 rounds proceed with selected agents based on the
computed threshold, continuing until convergence.

Algorithm 3: Exponential Weighted Average (EWA)
Input: Short-term thresholds ← ST Thrsh1, ST Thrsh2, . . . , ST ThrshP

Output: Final Threshold for short-term thresholds
1 for each i← 1 to n do
2 E Weight(i) ← i∗(i+1)

2

3 Thereshold←
∑n

j=1 E weight(j)∗ST Thrsh(j)∑n
j=1 E weight(j)

IV. SECURITY AND COMMUNICATION COMPLEXITY
ANALYSIS

This section provides a security and communication com-
plexity analysis of the DyHFL framework. It demonstrates how
HE safeguards model updates from both honest-but-curious
servers and potential external eavesdroppers, while also pro-
viding a detailed comparison of the communication cost and
computational complexity across different FL methods.

A. Protection Against an Honest-But-Curious Server

In DyHFL, the central server is assumed to be honest-but-
curious—it correctly follows the protocol but tries to learn
private information from the data it receives. To prevent this,
each agent encrypts its local model updates using a public key
before sending them to the server.

How It Works: Let ∆wi be the model update from agent
i, and Pkey(·) be the encryption function using a public key.
Each agent sends:

Pkey(∆wi) (4)

The server receives encrypted updates from all N agents:

Pkey(∆w1), Pkey(∆w2), . . . , Pkey(∆wN ) (5)

It then performs homomorphic aggregation, which gives
an encrypted sum of the model updates:

Pkey(∆W ) = Pkey

(
N∑
i=1

∆wi

)
(6)

The server cannot decrypt the encrypted model updates, as it
does not hold the private key. The encrypted aggregated model
Pkey(∆W ) is then sent back to the agents, who can decrypt it
using the private key Skey, which is exclusively held by agents:

∆W = Skey
(
Pkey(∆W )

)
(7)

Due to the semantic security of HE [37], which guarantees
that without the private key the server cannot distinguish
between any two encrypted values, the server cannot infer
any information about the individual encrypted model updates,
even though it performs the aggregation. This ensures the
privacy of individual agents, even in the presence of an honest-
but-curious server.

B. Security Against Eavesdropping During Transmission
HE also protects model updates during communication. This

prevents external attackers from learning private information
by intercepting data.

How It Works: Consider an external attacker A attempting
to eavesdrop on the communication between agents and the
server by intercepting model updates during transmission. Sup-
pose A captures a ciphertext Pkey(∆w). Even if provided with
two candidate plaintext model updates, ∆w0 and ∆w1, and
their corresponding ciphertexts Pkey(∆w0) and Pkey(∆w1), the
adversary cannot determine which ciphertext corresponds to
which plaintext with non-negligible probability.

HE is probabilistic, meaning each encryption of the same
plaintext gives a different ciphertext. Its security relies on the
decisional composite residuosity assumption, a hard problem
in number theory. This assumption guarantees that, without
the private key, an adversary cannot distinguish between the
ciphertexts of two different plaintexts.

C. Communication Cost Complexity
Communication cost refers to the total size of messages

exchanged, specifically models transmitted between agents
and the aggregator server, measured in megabytes (MB). The
communication cost (ComCst) for various FL methods is
calculated as follows:

FedBuff ComCst = M × T ×B (8)

SyncFL ComCst = M × T ×N (9)

BFL ComCst = (M × 1×N) + (M × (T − 1)×Nsel) (10)

ASR Fed ComCst = M × (T × Buffs + (T − CirT)× Cirs) (11)

DyHFL ComCst = (M × SW ×N) + (M × (T − SW )×Nsel) (12)

AsynFL ComCst = M × T ×N × F (13)

Where:
• M : Model size
• T : Total rounds
• N : Number of agents
• B: Buffer size
• Nsel: Number of selected agents
• SW : Sliding window size
• Buffs: buffer agent size in ASR Fed
• Cirs: circumvent agent size
• CirT: circumvent threshold size
• F : Communication frequency in AsyncFL which refers

to the average number of communication events—both
uploads and downloads—between each agent and the
server per training round.

Table III compares the time complexity O (Big O) and the
best-case performance Ω (Big Omega) for various FL algo-
rithms. Regarding DyHFL and BFL, the best-case complexity
occurs when the number of selected agents k is minimal,
resulting in a complexity of Ω(T× k).



10

TABLE III: Computational Complexity of FL Baselines

Algorithm Big O Big Omega
DyHFL O(T × n) Ω(T × k)
BFL O(T × n) Ω(T × k)
FedBuff O(T × n) Ω(T × B)
SyncFL O(T × n) Ω(T × n)
AsyncFL O(T × n × F ) Ω(T × n)
ASR Fed O(T × Cirs) Ω(T × Buffs)

In Fedbuff, the complexity is minimized when the buffer
size is minimal, giving a complexity of Ω(T × B). For
ASR Fed, the complexity is minimized when the buffer
agent size (Buffs) is maximized, resulting in a lower bound
complexity of Ω(T × Buffs). Conversely, the complexity
is maximized when the circumvent agent size (Cirs) is
maximized, leading to an upper bound complexity of
O(T × Cirs). The SyncFL method’s complexity remains
relatively stable across different scenarios, with a best-case of
Ω(T× n). Lastly, in AsyncFL, the best case occurs when the
number of communication frequencies is minimized, typically
to one, leading to a complexity of Ω(T× n).

V. EXPERIMENT SETTING AND EVALUATION

A. Experimental Settings

The proposed FL framework was evaluated using three
datasets with different characteristics in terms of number of
classes, the size of the data, and the distribution of the samples,
namely Gas Pipeline dataset [38], the WUSTL IIoT dataset
[39], and the Edge IIoT dataset [40], as described in [15] to
achieve a more comprehensive and reliable evaluation. The
Gas Pipeline dataset contains industrial data with specific
features, while the WUSTL IIoT and Edge IIoT datasets
covers IoT-related data. Using these three diverse datasets
allows us to demonstrate that DyHFL is not dependent on
a specific type of data and can maintain strong, and reli-
able performance across different data volumes, distributions,
and structural complexities. This approach effectively demon-
strates the generalization of the proposed method and prevents
concerns about dataset-specific overfitting. PyTorch was used
to implement the proposed FL framework, while Paillier was
used to implement HE. For demonstrating the effectiveness
of the proposed model in scenarios involving heterogeneous
data, non-identical datasets are used. The non-identical data
distribution allows us to identify which agents are fast and
which ones are slow, allowing us to simulate performance
differences more accurately. Accordingly, FedArtML is used
for the generation of non-identical datasets (Dirichlet and
no-label-skew). Dirichlet Method utilizes the Dirichlet dis-
tribution to create unequal distributions, resulting in agents
receiving different proportions of data and varying percentages
of labels. No-Label-Skew Method ensures that each agent
receives data with the same labels, thereby the distribution of
labels remains consistent. Due to this, agents with larger data
may have longer global times, known as slow agents, whereas
agents with smaller data may have shorter global times, known
as fast agents.

A pre-processing operation was conducted in order to clean
the input data and improve its accuracy. Gas Pipeline dataset
features with only one value are removed, reducing the number

of features from 27 to 18. Datasets are split into three parts:
80% for training, 10% for validation, and 10% for testing.
Min-Max scaling is used to normalize the dataset’s features.

The multilayer perceptron (MLP)-based IDS is implemented
after performing data pre-processing. MLP model with three
fully connected layers was used to analyze the Gas Pipeline,
WUSTL IIoT, and Edge IIoT datasets. In the case of the
Gas Pipeline dataset, the model’s first layer transforms the
18-dimensional input into a 54-dimensional space. The second
layer reduces this to a 20-dimensional space, and the final layer
maps it to eight classes. In the case of WUSTL IIoT, the first
layer transforms the 41-dimensional input into a 9-dimensional
space, the second layer uses the same 9-dimensional space,
and the final layer maps it to five classes. Regarding the
Edge IIoT dataset, the model’s first layer transforms the 15-
dimensional input into a 64-dimensional space. The second
layer reduces this to a 32-dimensional space, and the final layer
maps it to fifteen classes. The model structure was determined
based on the nature of the datasets (dimensionality and class
distribution), experiments with different layer sizes, and the
structure presented in [15].

Stochastic Gradient Descent (SGD) was chosen as the
optimization algorithm, with a batch size of 64 for the
Gas Pipeline dataset and 1000 for the WUSTL IIoT and
Edge IIoT datasets. The learning rate was set to 0.01, and
the momentum was set to 0.8. Based on best practices for
the datasets, these settings were selected to ensure stable and
efficient convergence. To optimize further, future work could
explore different momentum settings or adaptive learning
rates.

The proposed DyHFL framework uses a semi-synchronous
buffer-based strategy. Therefore, to highlight its advantages, it
is compared with five FL methods: SyncFL [12] and AsyncFL
[13] as traditional baselines, and with FedBuff [14], ASR Fed
[25], and BFL [15] as state-of-the-art buffered or selective ag-
gregation methods. This comparison illustrates improvements
over both fully synchronous/asynchronous schemes and ex-
isting buffered approaches. Detailed descriptions of SyncFL,
AsyncFL, and BFL implementations can be found in the
referenced sources. A buffer size equal to 75% of total agents
is recommended for FedBuff implementation, based on the
information provided in Table V. The details of this choice
are described in the Evaluation part of Section V.

The ASR Fed implementation classifies agents into buffer
agents and circumvent agents. Buffer agents include those
whose accuracy and training time exceed a predefined thresh-
old, while circumvent agents consist of those that do not meet
this threshold. The accuracy and training time threshold is
dynamically determined based on the average accuracy and
training time of all participating agents. Agents categorized
as buffer agents are considered fast agents, whereas those
in the circumvent list are classified as slow agents. During
the initial aggregation rounds, only updates from fast agents
are incorporated. Slow agents participate in the aggregation
process only when the total number of rounds reaches a
predefined value, referred to as the circumvent threshold. This
threshold is computed using the following formula based on
reference [25]:



11

Circumvent Threshold = int
(⌈∑

(circumvent agent delays)
buffer agent count

⌉)
(14)

Once the total number of rounds equals the circumvent
threshold, slow agents also contribute to the aggregation
process, ensuring a balanced and adaptive participation mech-
anism.

Four key metrics are evaluated in order to highlight the
advantages of the proposed approach: 1. Agent Selection
Fairness, 2. Convergence Speed, 3. Communication Costs,
and 4. Model Performance.

1) As mentioned earlier, one of the goals of the proposed
method is to balance the participation between fast and
slow (straggler) agents. Agent selection fairness is
defined as assessing the fairness of the proposed method
in terms of the participation of both fast and straggler
agents across the entire agent population. To ensure
that the proposed approach guarantees fair participation
and performance for both fast and straggler agents, we
consider two metrics: Straggler Rate Selection (SRS)
and Fast Rate Selection (FRS). The formulas for these
metrics are as follows:

SRS =
Number of Selected Straggler Agents

All of Straggler Agents
(15)

FRS =
Number of Selected Fast Agents

All of Fast Agents
(16)

SRS measures the proportion of selected straggler agents
compared to the total number of straggler agents avail-
able. The FRS represents the proportion of selected fast
agents relative to all fast agents in the system.

2) Convergence speed is a measure of the number of rounds
required to achieve a specified level of accuracy (i.e., tar-
get accuracy). When an approach requires fewer rounds to
achieve the target accuracy, this indicates a faster rate of
convergence, and vice versa. The purpose of this metric is
to assess the robustness of FL methods against stragglers
as well as their effectiveness in communication efficiency.
This study compares different methods using 20 agents
as a baseline, and a target accuracy of 94.6 % for the
Gas Pipeline dataset, 99.8 % for the WUSTL IIoT
dataset and 98.5 % for the Edge IIoT dataset. In both
cases, the target accuracy is set slightly above the baseline
accuracy that the non-federated method achieves with
centralized data, ensuring that the FL method performs
as well, if not better, with distributed data.

3) Communication Cost, as defined in Section IV.C, de-
notes the total size of data exchanged—specifically the
model parameters transmitted between agents and the
aggregator server—measured in megabytes (MB).

4) Model Performance is evaluated using three key classi-
fication metrics: Accuracy, Precision, and the F1 Score.
These metrics are defined as follows:
• Accuracy reflects the overall correctness of the model,

calculated as the proportion of correctly predicted
instances (both positive and negative) out of all pre-

dictions:

Accuracy =
True Positives + True Negatives

Total Instances
(17)

• Precision quantifies the proportion of correctly pre-
dicted positive instances out of all predicted positives.
It measures the reliability of the model’s positive
predictions:

Precision =
True Positives

True Positives + False Positives
(18)

• F1 Score provides a single performance metric by
taking the harmonic mean of Precision and Recall.
Recall measures the model’s ability to identify all
actual positive instances and is defined as:

Recall =
True Positives

True Positives + False Negatives
(19)

The F1 Score is then calculated as:

F1 Score = 2 ·
Precision · Recall

Precision + Recall
(20)

The F1 Score is particularly useful in imbalanced classi-
fication problems, where it provides a more informative
evaluation than Accuracy by considering both false pos-
itives and false negatives.

B. Evaluation

The results were averaged from four independent runs for
the metrics described earlier (i.e., Agent Selection Fairness,
Convergence Speed, Communication Costs, and Model Per-
formance metrics).

The first step in the evaluation process involves determining
the optimal sliding window size and the corresponding values
of α and β, which are essential for computing the DyHFL
method results. As shown in Table IV, sliding window sizes of
1/10, 1/5, and 1/2 of the total training rounds were evaluated
alongside various combinations of α and β values, specifically
(0.3, 0.7), (0.7, 0.3), and (0.5, 0.5). The evaluation was
performed using three datasets — Gas Pipeline, WUSTL IIoT
and Edge IIoT — under three distinct data distribution sce-
narios: Identical, Dirichlet (non-identical), and No-Label-Skew
(non-identical), all based on convergence speed with 100
agents. Among the tested configurations, the sliding window
size of 1/10 with α = 0.7 and β = 0.3 consistently yielded
slightly better convergence performance compared to larger
window sizes. Consequently, this configuration was selected
as the most balanced and effective choice for use throughout
this study.

The second step is to determine the appropriate buffer size
for achieving appropriate FedBuff results. Buffer sizes of 4,
10, and 15 were tested, representing 25%, 50%, and 75% of
the 20 participant agents. Using the previously defined target
accuracy, the best buffer size was determined by examining
the convergence speed. The results in Table V indicate that
FedBuff faces challenges when dealing with buffer sizes of
four and ten. These two buffer sizes (i.e., 4 and 10) perform
poorly because they do not allow sufficient diversity in updates
before aggregation. The situation is particularly problematic
in non-identical data settings, where data distribution varies
among agents. As an example, in the Dirichlet setting, the
model failed to converge with these buffer sizes for both



12

TABLE IV: Sliding-Window Size Selection in DyHFL Based
on Convergence Speed with 100 Agents

Dataset SW
Size

α / β Dirichlet No-
Label-
Skew

Identical

Gas Pipeline

1/2
0.3 / 0.7 250 58 70
0.7 / 0.3 296 58 70
0.5 / 0.5 296 56 70

1/5
0.3 / 0.7 250 55 62
0.7 / 0.3 250 60 62
0.5 / 0.5 250 78 62

1/10
0.3 / 0.7 235 57 67
0.7 / 0.3 232 55 67
0.5 / 0.5 250 56 67

WUSTL IIoT

1/2
0.3 / 0.7 10 9 9
0.7 / 0.3 10 8 9
0.5 / 0.5 8 7 9

1/5
0.3 / 0.7 8 7 7
0.7 / 0.3 9 9 7
0.5 / 0.5 10 6 7

1/10
0.3 / 0.7 9 9 8
0.7 / 0.3 8 6 8
0.5 / 0.5 8 9 8

Edge IIoT

1/2
0.3 / 0.7 150 25 23
0.7 / 0.3 150 25 23
0.5 / 0.5 150 21 24

1/5
0.3 / 0.7 125 23 24
0.7 / 0.3 120 20 22
0.5 / 0.5 122 21 22

1/10
0.3 / 0.7 100 21 25
0.7 / 0.3 96 20 20
0.5 / 0.5 98 22 22

datasets. When there are not sufficient updates, the model
may become overfit or biased toward certain agents, which
negatively affects its ability to generalize. Alternatively, large
buffer sizes, such as 15, have better results since there are
enough updates to aggregate. Therefore, an ideal buffer size
for FedBuff is 15 (75% of the participant agents) because this
maintains sufficient diversity resulting in faster convergence
and robust model performance.

TABLE V: Buffer Size Selection in FedBuff Based on
Convergence Speed

Dataset SW Size Identical Dirichlet No-Label-Skew

Gas Pipeline
4 80 not converged 284

10 59 not converged 105
15 63 400 61

WUSTL IIoT
4 87 not converged 62

10 95 not converged 125
15 104 590 60

Edge IIoT
4 20 not converged 90

10 15 not converged 85
15 10 500 60

The last step is to conduct the experiments and assess the
results obtained using the defined evaluation metrics.

1) Agent Selection Fairness: To evaluate the performance
of the different FL methods in terms of the defined SRS and
FRS metrics, we consider various percentages of straggler
agents. Specifically, we analyze scenarios where straggler
agents constitute 10%, 20%, up to 90% of the total agent
population, across different total agent counts (i.e., 10, 20, ...,
50 agents). Through 20 rounds, the delay times of fast agents
were simulated using random integer values between 1 and 5
and those of stragglers were simulated using random integer
values between 6 and 10.

According to the results presented in Tables VI and VII,
DyHFL outperforms the BFL method introduced in [15] by
using a sliding window mechanism, making the agent selection
process more dynamic and responsive to changes in agent
performance over time. This adaptive approach better handles
variations in agent performance, especially in environments
where agent availability and performance can fluctuate. In
terms of SRS, the proposed method achieves an average of
56.44%, nearly double that achieved by the BFL method (i.e.,
29.62%). This substantial improvement indicates that DyHFL
is far more effective in managing stragglers across various
agent groups. For example, in Table VII, a gradual increase in
SRS as the straggler agent percentage rises can be observed.
For lower percentages of straggler agents, SRS remains at 0%,
but as the percentage of stragglers increases, SRS begins to
rise, indicating a more adaptive selection process. In contrast,
SRS for the BFL method remains at 0% for up to 50% strag-
gler agents, suggesting that its initial round-based selection is
less adaptive and might not effectively handle new stragglers
appearing in later rounds. Both methods maintain high FRS,
but DyHFL does so more effectively across a wider range of
agent counts and straggler percentages. It achieves a 100%
rate across all agent configurations, while the BFL method
averages 97.91%. Although this difference might seem small,
DyHFL guarantees FRS consistently, making it more reliable.
This suggests that the new method’s dynamic selection process
helps consistently in identifying and leveraging fast agents for
efficient training.

In both SRS and FRS, DyHFL outperforms the BFL method
by incorporating a sliding window mechanism that adapts
to changes in the agent performance. In environments with
varying agent performance, this approach allows for better
management of stragglers and more consistent utilization of
fast agents.

2) Convergence Speed: Fig. 3 illustrates the convergence
speed for different models on both identical and non-identical
datasets for 100 agents.

According to Fig. 3, DyHFL consistently outperforms the
other five methods —AsyncFL, FedBuff, SyncFL, ASR Fed,
and BFL— on both identically and non-identically distributed
datasets, demonstrating its robustness to heterogeneous data.
This robustness is due to its balanced approach of select-
ing both fast and slow agents, ensuring effective learning
and balanced participation. For example, in the Gas Pipeline
dataset, DyHFL converges 11.9 times faster than AsyncFL, 5.6
times faster than FedBuff, 5.3 times faster than SyncFL, and
5.2 times faster than BFL on identical datasets. The perfor-
mance advantage becomes more pronounced on non-identical
datasets, with DyHFL converging 16.3 times faster than
AsyncFL, 14.18 times faster than FedBuff,10.9 times faster
than SyncFL, and 9 times faster than BFL on no-label-skew
data, and 3.4, 3.4, 3, and 2.8 times faster on Dirichlet non-
identical data, respectively. Similarly, with the WUSTL IIoT
dataset, DyHFL surpasses AsyncFL by 112 times, FedBuff by
62.5 times, 6.8 times faster than SyncFL, and BFL by 3.2
times on identical datasets. The advantages are even greater
for non-identical data, with DyHFL converging 158 times
faster than AsyncFL, 60 times faster than FedBuff, 53 times



13

Fig. 3: Convergence Speed Comparison Across FL Methods based on 100 Agents
: (a) Identical Datasets, (b) non-identical datasets with No-Label-Skew distribution, (c) non-identical datasets with Dirichlet
distribution. The y-axis indicates the number of FL rounds required to reach the target accuracy, plotted on a logarithmic

scale.

TABLE VI: Straggler Agent Percentage in BFL

Straggler Agents Percentage 10 Agents 20 Agents 30 Agents 40 Agents 50 Agents
SRS FRS SRS FRS SRS FRS SRS FRS SRS FRS

10% 0% 66.66% 0% 72.22% 0% 85% 0% 88.87% 0% 93.33%
20% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100%
30% 0% 100% 16.66% 100% 22.22% 100% 25% 100% 26.66% 100%
40% 25% 100% 25% 100% 25% 100% 31% 100% 40% 100%
50% 20% 100% 30% 100% 33.33% 100% 35% 100% 44% 100%
60% 16.66% 100% 41.66% 100% 44.44% 100% 45.83% 100% 46.66% 100%
70% 28.57% 100% 42.85% 100% 47.61% 100% 57.14% 100% 62.85% 100%
80% 37.5% 100% 50% 100% 54.16% 100% 59.37% 100% 70% 100%
90% 44.44% 100% 50% 100% 66.66% 100% 69.44% 100% 71.11% 100%

Average 19.13% 96.29% 26.6% 96.9% 30.13% 98.33% 33.08% 98.76% 37.18% 99.25%

TABLE VII: Straggler Agent Percentage in DyHFL

Straggler Agents Percentage 10 Agents 20 Agents 30 Agents 40 Agents 50 Agents
SRS FRS SRS FRS SRS FRS SRS FRS SRS FRS

10% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100%
20% 0% 100% 25% 100% 33.33% 100% 25% 100% 50% 100%
30% 33% 100% 50% 100% 55.55% 100% 50% 100% 60% 100%
40% 50% 100% 62.5% 100% 66.66% 100% 68.75% 100% 65% 100%
50% 60% 100% 70% 100% 73.33% 100% 75% 100% 72% 100%
60% 66.66% 100% 75% 100% 77.77% 100% 79.16% 100% 76.66% 100%
70% 71.42% 100% 78.57% 100% 80.95% 100% 85.5% 100% 82.85% 100%
80% 75% 100% 81.25% 100% 83.33% 100% 85% 100% 74% 100%
90% 77.77% 100% 77.77% 100% 77.77% 100% 77.77% 100% 77.77% 100%

Average 47.09% 100% 53.67% 100% 60.61% 100% 60.7% 100% 62.13% 100%

faster than SyncFL, and 5 times faster than BFL on no-label-
skew data, and 122, 112, 50, and 5 times faster on Dirichlet
non-identical data, respectively. Regarding Edge IIoT dataset,
DyHFL surpasses AsyncFL by 37.95 times, FedBuff by 15.2
times, 1.25 times faster than SyncFL, and BFL by 1.1 times
on identical datasets. The advantages are even greater for non-
identical data, with DyHFL converging 45 times faster than
AsyncFL, 20 times faster than FedBuff, 3.1 times faster than
SyncFL, and 1.1 times faster than BFL on no-label-skew data,
and 9.37, 7.2, 1.20, and 1.13 times faster on Dirichlet non-
identical data, respectively.

This clearly demonstrates the DyHFL’s efficiency and adapt-
ability across diverse scenarios.

The differences in DyHFL convergence results between the
three datasets can be attributed to their intrinsic properties. The
Gas Pipeline dataset is smaller in overall size. As a result,
under No-label-skew conditions, due to the limited number
of samples, agents receive very homogeneous data, making

learning more difficult and convergence slower. Under the
Dirichlet distribution, the diversity of the data mitigates some
of these effects, leading to relatively better performance. On
the other hand, the WUSTL IIoT and Edge IIoT datasets have
a much larger volume of data. Consequently, even under chal-
lenging scenarios such as No-label-skew, agents still receive
sufficiently diverse and abundant data, resulting in more stable
model performance and less variation between different data
distributions.

AsyncFL shows the slowest convergence overall, requiring
the most rounds, particularly for non-identical datasets. Its
asynchronous nature causes each agent to update indepen-
dently, which leads to delays and communication bottlenecks.
These findings suggest that methods relying on unoptimized
communication between the server and agents are less effi-
cient, especially when handling non-identical data. FedBuff
requires significantly more rounds to converge on non-identical
datasets than on identical ones, indicating a struggle to manage



14

TABLE VIII: Two-Tailed t-Test p-Values Comparing DyHFL with Other FL Baselines on Communication Cost

Dataset Agents BFL Fedbuff ASR Fed Async Sync

Gas Pipeline

20 1.05× 10−5 8.43× 10−5 1.38× 10−5 2.88× 10−9 4.97× 10−6

40 2.81× 10−6 7.15× 10−7 8.81× 10−10 3.47× 10−11 5.24× 10−8

80 9.49× 10−5 9.35× 10−5 3.30× 10−7 9.35× 10−11 2.90× 10−7

100 1.25× 10−2 3.18× 10−3 2.17× 10−3 7.27× 10−9 2.58× 10−5

WUSTL IIoT

20 7.11× 10−4 6.92× 10−5 1.17× 10−5 1.93× 10−9 3.59× 10−6

40 1.81× 10−3 2.99× 10−4 1.25× 10−4 1.41× 10−8 2.16× 10−5

80 3.09× 10−2 8.33× 10−4 4.23× 10−5 1.14× 10−9 4.55× 10−6

100 4.55× 10−2 6.46× 10−6 2.17× 10−7 2.49× 10−11 8.10× 10−8

Edge IIoT

20 3.11× 10−2 2.13× 10−7 3.47× 10−9 1.62× 10−10 1.72× 10−7

40 1.04× 10−4 3.04× 10−8 4.74× 10−7 1.27× 10−11 1.41× 10−8

80 8.40× 10−5 2.01× 10−9 1.44× 10−15 6.09× 10−10 1.25× 10−9

100 3.02× 10−2 2.80× 10−8 2.54× 10−8 1.82× 10−11 2.27× 10−8

TABLE IX: Two-Tailed t-Test p-Values Comparing DyHFL with Other FL Baselines on Convergence Speed

Dataset Data Type Async Sync Fedbuff BFL

Gas Pipeline
Identical 3.49× 10−9 9.28× 10−6 2.36× 10−10 6.96× 10−10

No-Label-Skew 2.49× 10−10 3.084× 10−4 2.28× 10−7 2.55× 10−8

Dirichlet 3.19× 10−9 8.68× 10−7 4.64× 10−7 3.92× 10−7

WUSTL IIoT
Identical 7.46× 10−11 1.28× 10−4 1.05× 10−7 9.00× 10−9

No-Label-Skew 1.62× 10−7 5.27× 10−6 3.19× 10−7 9.51× 10−6

Dirichlet 3.75× 10−11 2.50× 10−6 2.45× 10−7 1.31× 10−6

Edge IIoT
Identical 7.103× 10−7 7.18× 10−3 7.224× 10−7 1.747× 10−2

No-Label-Skew 7.798× 10−11 2.620× 10−5 9.706× 10−10 1.038× 10−2

Dirichlet 5.824× 10−8 8.064× 10−4 1.374× 10−7 8.109× 10−3

diverse data distributions effectively. The buffer mechanism
used in the aggregator server contributes to inefficiencies
and delays, as faster agents with less training data tend to
fill the buffer quickly, causing imbalances and biases in the
training process. In comparison to FedBuff and AsyncFL, BFL
performs better on both identical and non-identical datasets,
as it employs an agent selection method to mitigate the
straggler effect. However, since agent selection is only applied
in the first round and lacks a dynamic approach within the
FL framework, it is somewhat inefficient and less effective
compared to DyHFL.

The ASR Fed approaches failed to converge effectively in
the experiments, particularly when the number of agents in-
creased to 100. ASR Fed, while designed to mitigate the strag-
gler problem by prioritizing fast agents (buffer agents) and
incorporating updates from slow agents (circumvent agents)
only after a computed threshold, still suffers in high-agent
scenarios. When the number of agents scales up, the threshold
for including slower agents in ASR Fed increases accordingly,
causing many agents to be excluded from early aggregation
rounds. This leads to insufficient global representation during
training and consequently slows down or prevents convergence
altogether.

Table IX presents the two-tailed t-test p-values from the
comparison of DyHFL with other FL baselines (Async, Sync,
Fedbuff, and BFL) in terms of convergence speed, evaluated
across both identical and non-identical datasets.

The two-tailed t-test p-value is a statistical measure used
to determine whether the observed differences between two
methods are statistically significant or could have occurred by
random chance. A p-value less than 0.05 indicates that the
performance difference is statistically significant at the 95%
confidence level.

The results in Table IX show that all p-values are far below

the 0.05 threshold, often reaching the order of 10−7 to 10−20.
This confirms that DyHFL’s improvements in convergence
speed are not due to random variation but are statistically
reliable.

Based on the consistent performance of DyHFL across all
settings demonstrates that DyHFL significantly outperforms
other baselines regardless of dataset type or data heterogeneity.
This validates its robustness and generalizability in real-world
IIoT scenarios, driven by its dynamic approach to balancing
participation between fast and slow agents.

3) Communication Cost: Table X shows the settings that
have been considered for this calculation.

TABLE X: Experimental Parameters

Parameter Value
Rounds 10
Local epochs 10
Number of agents 20,40,80,100
Sliding window 1/10 of rounds
α and β 0.7 and 0.3
Buffer size for Feddbuff 75% of total agents
Gas Pipeline dataset Model size 0.009 MB
WUSTL IIoT dataset Model size 0.002 MB
Edge IIoT dataset Model size 0.014 MB

According to Fig. 4, and compared to other algorithms, the
DyHFL reduces communication costs by dividing the total
communication cost into preliminary and subsequent rounds.
The result of this optimization is lower communication costs,
especially when there are a lot of agents.

The BFL method also reduces communication costs by
dividing total communication costs between the first and
subsequent rounds. However, the BFL approach is not as



15

effective as DyHFL, which results in higher communication
costs. Fedbuff reduces communication costs by buffering and
transmitting updates from a fraction of model updates (75%
of total agents), which also minimizes model transmissions.
While Fedbuff’s buffering reduces communication overhead,
it may slow convergence due to potential biases from agents
with less data or lower accuracy. In contrast, SyncFL transmits
updates from all agents in each round, resulting in higher
communication costs. SyncFL’s comprehensive aggregation
captures diverse data patterns, leading to faster convergence
despite higher costs.

Fig. 4: Comparison of communication cost (exchanged
message size in megabytes, presented on a logarithmic scale)
across agents in FL methods: (a) Gas Pipeline Dataset, (b)
WUSTL IIoT Dataset, and (c) Edge IIoT Dataset.

AsyncFL has the worse results as a consequence of frequent
communications with the server. AsyncFL’s frequent com-
munications significantly increase its communication costs,
making it the least efficient of the other methods.

The communication cost of ASR Fed is lower compared to
AsyncFL and SyncFL, as it prioritizes fast agents and delays
the participation of slow agents. This selective participation
reduces the frequency and volume of communication, espe-
cially in the early rounds, leading to a better communication
cost.

Table VIII presents the two-tailed t-test p-values comparing
DyHFL against other FL baselines in terms of communication
cost across three datasets and varying agent numbers. In all
cases, the p-values are well below the standard significance
threshold (p < 0.05), confirming that the observed differ-
ences are statistically significant. Notably, DyHFL consistently
achieves lower communication costs, with extremely small p-
values (as low as 10−11) when compared to AsyncFL and
ASR Fed, highlighting a substantial performance gap. The
consistent statistical significance across datasets and agent
scales reinforces the robustness of DyHFL’s communication
efficiency advantage.

4) Model Performance: Fig. 5 compares six FL algorithms
- SyncFL, AsyncFL, FedBuff, ASR Fed, BFL, and DyHFL -
on the mentioned datasets with 100 agents and 10 rounds,
demonstrating their performance through key metrics: Accu-
racy, Precision, and F1 Score. In the image, each subfigure
corresponds to one of three conditions (identical, no-label-
skew non-identical, Dirichlet non-identical), and reveals key
insights about FL baseline effectiveness in handling identical
and non-identical data distributions.

DyHFL consistently shows the best performance across all
datasets and conditions, scoring high across all metrics. Its
success lies in its balanced selection of agents, which ensures
a fair representation of both fast and slow agents. With this
strategy, DyHFL is able to handle diverse and imbalanced data
distributions more effectively than other algorithms.

BFL achieves similar results to DyHFL due to its approach
in selecting agents that ensures fairness between them. How-
ever, BFL’s results are not as optimal as DyHFL’s because
BFL’s agent selection method lacks the dynamic adaptability
of DyHFL, which makes it less effective.

SyncFL also performs well, with results similar to DyHFL’s.
This is largely due to its synchronous communication method,
which ensures uniform model updates across all agents.
SyncFL does not include the fairness adjustments that give
DyHFL a slight advantage, especially when handling diverse
data.

AsyncFL generally performs worse, especially in scenarios
with imbalanced datasets, like the Gas Pipeline dataset, or
with highly non-identical data distributions. Its asynchronous
approach struggles to handle the challenges posed by such data
characteristics, resulting in lower F1 scores. While AsyncFL
achieves high precision on the Gas Pipeline dataset, this is
due to the dataset’s imbalance, which can lead to misleading
results.

FedBuff maintains a competitive position. However, its
buffering mechanism poses challenges, especially when deal-



16

Fig. 5: Model performance comparison of six FL algorithms (SyncFL, AsyncFL, FedBuff, BFL, ASR Fed, and DyHFL)
across different datasets and conditions: (a)–(c) Gas Pipeline dataset under identical, non-identical with No-Label-Skew

distribution, and non-identical with Dirichlet distribution settings; (d)–(f) WUSTL IIoT dataset under the same three
settings; and (g)–(i) Edge IIoT dataset under the same three settings.

ing with non-identical datasets. In FedBuff, the buffering
strategy favors data from faster agents, which can lead to a
poor generalization and training bias.

The model performance of ASR Fed is, on average, consis-
tently the lowest across all scenarios and datasets, as shown in
Figures (a)–(i). This underperformance can be attributed to its
selective aggregation strategy, where only fast agents partic-
ipate in the early rounds. While this reduces communication
cost and mitigates stragglers, it also delays the inclusion of
slower agents (circumvent agents), leading to limited represen-
tation of the overall data distribution. Consequently, the model
lacks diversity in the aggregated updates, which negatively
impacts generalization and ultimately results in poorer model

performance compared to the other approaches.
The results indicate that DyHFL is more effective for

FL tasks with diverse and imbalanced data in a heteroge-
neous environment. Despite the similar convergence speed and
model performance of DyHFL and BFL, DyHFL excels in
other important aspects, such as agent selection fairness and
communication cost, making it more suitable for real-world
applications. This shows that DyHFL is more stable in the
presence of straggler agents while preserving performance.

5) Component Ablation Analysis: To rigorously evaluate
the individual contributions of HE and dynamic agent selection
to the overall performance of the proposed DyHFL framework,
an ablation study was conducted in which each component
—either HE or dynamic agent selection—was selectively



17

removed.
In this analysis, the variants with and without encryption

are denoted as DyHFL Paillier and DyHFL Plain, respec-
tively, while the absence of dynamic selection reverts the
framework to the baseline synchronous aggregation, referred
to as SyncFL Paillier and SyncFL Plain. By disabling one
component (HE and dynamic agent selection ) at a time
and monitoring changes in model performance, convergence
speed, and communication cost, the study provides a clear
quantitative assessment of the role played by each component.
Tables XI, XII, and XIII present the ablation results across all
settings.

Across all datasets and scenarios, DyHFL—both in en-
crypted and plaintext modes—achieves substantially faster
convergence speeds compared to the synchronous FL
(SyncFL) baseline. For example, in the no-label-skew
WUSTL-IIoT dataset, DyHFL converges in only 6 rounds,
whereas SyncFL requires over 320 rounds. This significant
improvement demonstrates the effectiveness of the proposed
dynamic agent selection with buffering in mitigating the
straggler effect that typically slows down synchronous aggre-
gation. By adaptively selecting a subset of agents within a
sliding window and aggregating updates without waiting for
all agents to complete their local training, DyHFL reduces
delays caused by slower participants. This strategy not only
accelerates convergence—often by up to an order of magnitude
in heterogeneous data scenarios—but also directly lowers the
overall communication cost, as the total cost is proportional
to the total number of agents. The reduction in agents due
to the DyHFL agent selection mechanism results in more
efficient use of bandwidth. Moreover, DyHFL consistently
maintains high accuracy, precision, and F1-score across all
data distributions, outperforming SyncFL in both predictive
quality and training efficiency. The dynamic selection mech-
anism further preserves participation diversity across rounds,
which is crucial for sustaining model generalization under non-
identical data distributions. Together, these results confirm that
dynamic agent selection is the primary driver behind DyHFL’s
superior performance, enabling faster, more communication-
efficient, and more accurate FL without compromising fairness
or robustness.

Incorporating Paillier-based HE into DyHFL enables secure
aggregation without exposing individual agent updates, provid-
ing strong privacy guarantees. The encryption process has a
negligible impact on convergence speed or model performance
because the Paillier scheme preserves exact numerical values
during aggregation, avoiding quantization or approximation
errors. Although HE theoretically increases per-round com-
munication size due to ciphertext expansion, in this study
the communication cost is computed using a formula based
on model size (M ), number of agents (N ), total rounds
(T ), and buffer parameters, with M fixed for both encrypted
and plaintext models. This approach isolates the algorithmic
impact of HE and dynamic selection, resulting in identical
reported communication costs for Paillier and Plain variants.
In real deployments that account for the true ciphertext size,
Paillier would introduce a modest increase in per-round cost;
however, DyHFL’s buffering mechanism would still offset

this overhead by significantly reducing the total number of
rounds, thereby preserving overall communication efficiency
while ensuring data privacy.

Overall, the ablation results clearly demonstrate that dy-
namic agent selection is the dominant factor in enhancing
efficiency, while HE strengthens privacy without sacrificing
predictive performance or computational efficiency.

VI. DISCUSSION AND FUTURE DIRECTIONS

Recent advances in privacy-preserving FL motivate po-
sitioning DyHFL against emerging alternatives. One such
method is Federated Transfer Learning (FTL), which allows
collaboration among agents with heterogeneous feature or
label spaces. While FTL is well-suited for cross-domain FL
scenarios, it often lacks strong aggregation privacy guaran-
tees and relies on pre-trained representations. In contrast,
DyHFL assumes aligned input spaces but offers enhanced
privacy through HE and ensures fairness through dynamic
agent selection based on real-time metrics. This makes DyHFL
particularly advantageous in IIoT environments where devices
vary in capabilities, but privacy, latency, and coordination
remain critical.

In the current design, DyHFL incorporates HE-based up-
dates, threshold evaluation, and buffer management, which
introduce additional processing time as well as memory and
energy demands that may exceed the capabilities of embedded
controllers and low-power sensors. The computational cost
of encryption and decryption, combined with ciphertext ex-
pansion, also increases bandwidth usage and can place addi-
tional load on low-rate industrial links. Furthermore, as with
most HE-based FL systems, DyHFL employs a trusted third
party (TTP) for key generation and distribution, introducing a
centralized element that may not align with the requirements
of fully decentralized or adversarial IIoT environments. To
mitigate this, several future research directions are proposed:

• Employ quantized or selectively applied encryption to
reduce computational complexity while preserving confi-
dentiality.

• Adaptive participation mechanisms in which severely
resource-constrained devices participate at reduced fre-
quencies, selectively transmit critical model parameters,
or employ model update compression techniques to min-
imize communication and computation overhead.

• Combine the strong aggregation privacy guarantees of
DyHFL with the cross-domain adaptability of FTL to
address both statistical and feature-space heterogeneity
in large-scale IIoT deployments.

• Integration of Distributed Key Generation (DKG) offers
a promising solution to eliminating the single point of
failure inherent in centralized key management. DKG
allows agents to collaboratively generate cryptographic
keys without reliance on a trusted third party. Incorpo-
rating DKG would enhance resilience, support dynamic
key rotation, and improve security in decentralized or
adversarial environments.

DyHFL achieves strong aggregation privacy and coordinated
convergence in IIoT environments through the integration of



18

TABLE XI: Component Ablation Analysis on Identical Datasets

Dataset Algorithms Convergence
Speed

Communication
Cost

Model Performance

Accuracy Precision F1-score

Gas Pipeline

DyHFL Pailliar 67 0.66 93.3 93.8 90.5
DyHFL Plain 66 0.66 94.3 94.8 91.5
Sync Pailliar 360 3.60 91.8 92.4 89.0
Sync Plain 360 3.60 91.8 92.4 89.0

WUSTL IIoT

DyHFL Pailliar 8 0.15 99.7 99.7 99.6
DyHFL Plain 8 0.15 99.7 99.7 99.6
Sync Pailliar 55 0.80 99.0 99.0 99.0
Sync Plain 54 0.80 98.4 99.2 98.2

Edge IIoT

DyHFL Pailliar 20 0.17 96.6 96.6 96.2
DyHFL Plain 21 0.17 94.6 95.6 95.2
Sync Pailliar 25 2.90 95.5 95.5 95.5
Sync Plain 25 2.90 95.5 95.5 95.5

TABLE XII: Component Ablation Analysis on No-label-skew Non-Identical Datasets

Dataset Algorithms Convergence
Speed

Communication
Cost

Model Performance

Accuracy Precision F1-score

Gas Pipeline

DyHFL Pailliar 55 0.66 92.3 92.8 89.5
DyHFL Plain 53 0.66 92.7 93.2 90.5
Sync Pailliar 650 3.60 90.5 90.7 88.5
Sync Plain 648 3.60 91.3 92.2 89.7

WUSTL IIoT

DyHFL Pailliar 6 0.15 99.8 99.8 99.8
DyHFL Plain 6 0.15 99.8 99.8 99.8
Sync Pailliar 320 0.80 97.8 97.5 97.5
Sync Plain 324 0.80 96.3 93.2 95.4

Edge IIoT

DyHFL Pailliar 20 0.17 96.6 97.6 96.0
DyHFL Plain 20 0.17 96.6 97.6 96.0
Sync Pailliar 62 0.29 80.7 81.9 82.9
Sync Plain 61 0.29 80.7 81.9 82.9

TABLE XIII: Component Ablation Analysis on Dirichlet Non-Identical Datasets

Dataset Algorithms Convergence
Speed

Communication
Cost

Model Performance

Accuracy Precision F1-score

Gas Pipeline

DyHFL Pailliar 230 0.66 91.3 91.8 88.5
DyHFL Plain 229 0.66 91.7 92.1 88.7
Sync Pailliar 700 3.60 87.5 88.5 80.8
Sync Plain 703 3.60 85.2 85.3 76.4

WUSTL IIoT

DyHFL Pailliar 8 0.15 99.9 99.9 99.9
DyHFL Plain 8 0.15 99.9 99.9 99.9
Sync Pailliar 400 0.80 99.5 99.5 99.5
Sync Plain 400 0.80 99.4 99.2 99.6

Edge IIoT

DyHFL Pailliar 96 0.17 91.2 93.2 89.2
DyHFL Plain 93 0.17 92.7 94.8 91.3
Sync Pailliar 116 0.29 87.7 88.2 85.5
Sync Plain 114 0.29 88.4 88.9 86.3

HE with dynamic agent selection. The above mitigations form
a practical roadmap to broaden DyHFL’s applicability in real-
world IIoT.

VII. CONCLUSION

In this paper, we introduced a new dynamic FL framework
designed to detect anomalies, such as cyber threats, in in-
dustrial CPSs. The proposed DyHFL framework incorporates
a secure communication protocol based on HE to protect
model parameters from model inversion attacks. Addition-
ally, an innovative agent selection strategy was developed.
It effectively balances the performance of fast and slow
agents in heterogeneous environments, minimizing straggler
effects and reducing communication bottlenecks. Extensive
experiments, conducted using two real-world industrial CPS
datasets, demonstrated that DyHFL does not only achieve

superior prediction accuracy but also converges more quickly
compared to existing FL approaches, proving its effectiveness
and efficiency in practical applications.

ACKNOWLEDGMENT

This work is partly conducted at ICTFICIAL Oy, Finland. It
is supported in part by the European Union’s Horizon Europe
research and innovation program HORIZON-JU-SNS-2022
under the RIGOUROUS project (Grant No. 101095933), and
the 6G-Path project under Grant No. 101139172. The paper
reflects only the authors’ views, and the European Commission
bears no responsibility for any utilization of the information
contained herein.

REFERENCES

[1] S. K. Poorazad, C. Benzaı̈d, and T. Taleb, “Blockchain and deep
learning-based ids for securing sdn-enabled industrial iot environments,”



19

in Proc. of IEEE Globecom’23, Kuala Lumpur, Malaysia, 2023, pp.
2760–2765.

[2] M. A. Khan, M. R. Karim, and Y. Kim, “A scalable and hybrid intrusion
detection system based on the convolutional-lstm network,” Symmetry,
vol. 11, no. 4, p. 583, 2019.

[3] A. N. Jahromi, H. Karimipour, and A. Dehghantanha, “An ensemble
deep federated learning cyber-threat hunting model for industrial internet
of things,” Computer Communications, vol. 198, pp. 108–116, 2023.

[4] T. T. Huong, T. P. Bac, D. M. Long, T. D. Luong, N. M. Dan,
B. D. Thang, K. P. Tran et al., “Detecting cyberattacks using anomaly
detection in industrial control systems: A federated learning approach,”
Computers in Industry, vol. 132, p. 103509, 2021.

[5] Y. Liu, N. Kumar, Z. Xiong, W. Y. B. Lim, J. Kang, and D. Niyato,
“Communication-efficient federated learning for anomaly detection in
industrial internet of things,” in Proc. GLOBECOM 2020-2020 IEEE
Global Communications Conference, Taipei, Taiwan, 2021.

[6] R. A. Sater and A. B. Hamza, “A federated learning approach to anomaly
detection in smart buildings,” ACM Transactions on Internet of Things,
vol. 2, no. 4, pp. 1–23, 2021.

[7] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and
A.-R. Sadeghi, “DÏot: A federated self-learning anomaly detection sys-
tem for iot,” in Proc. IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), Dallas, TX, USA, Oct. 2019.

[8] Z. Ming, H. Yu, and T. Taleb, “Federated deep reinforcement learning for
prediction-based network slice mobility in 6g mobile networks,” IEEE
Transactions on Mobile Computing, vol. 23, no. 12, pp. 11 937–11 953,
2024.

[9] C. Benzaı̈d and T. Taleb, “Ai for beyond 5g networks: a cyber-security
defense or offense enabler?” IEEE network, vol. 34, no. 6, pp. 140–147,
2020.

[10] T. Taleb, C. Benzaı̈d, R. Addad, and K. Samdanis, “AI/ML for Beyond
5G Systems: Concepts, Technology Enablers & Solutions,” Elsevier
Journal on Computer Networks, p. 110044, 2023.

[11] P. Boobalan, S. P. Ramu, Q.-V. Pham, K. Dev, S. Pandya, P. K. R.
Maddikunta, T. R. Gadekallu, and T. Huynh-The, “Fusion of federated
learning and industrial internet of things: A survey,” Computer Networks,
vol. 212, p. 109048, 2022.

[12] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y.
Arcas, “Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in Proc. 20th International Conference on Arti-
ficial Intelligence and Statistics, ser. Proceedings of Machine Learning
Research, A. Singh and J. Zhu, Eds., Florida, USA, 2017.

[13] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv preprint arXiv:1903.03934, 2020.

[14] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, and
D. Huba, “Federated learning with buffered asynchronous aggregation,”
in Proc. 25th International Conference on Artificial Intelligence and
Statistics, Valencia, Spain, 2022.

[15] S. K. Poorazad, C. Benzaı̈d, and T. Taleb, “A novel buffered federated
learning framework for privacy-driven anomaly detection in iiot,” in
Proc. of IEEE Globecom’24, Cape Town, South Africa, 2024.

[16] A. N. Jahromi, H. Karimipour, and A. Dehghantanha, “An ensemble
deep federated learning cyber-threat hunting model for industrial internet
of things,” Computer Communications, vol. 198, pp. 108–116, 2023.

[17] J. Jithish, B. Alangot, N. Mahalingam, and K. S. Yeo, “Distributed
anomaly detection in smart grids: A federated learning-based approach,”
IEEE Access, vol. 11, pp. 7157–7179, 2023.

[18] X. Wang, Y. Wang, Z. Javaheri, L. Almutairi, N. Moghadamnejad, and
O. S. Younes, “Federated deep learning for anomaly detection in the
internet of things,” Computers and Electrical Engineering, vol. 108, p.
108651, 2023.

[19] W. Sun, S. Lei, L. Wang, Z. Liu, and Y. Zhang, “Adaptive federated
learning and digital twin for industrial internet of things,” IEEE Trans-
actions on Industrial Informatics, vol. 17, no. 8, pp. 5605–5614, 2021.

[20] Z. Chen, W. Liao, K. Hua, C. Lu, and W. Yu, “Towards asynchronous
federated learning for heterogeneous edge-powered internet of things,”
Digital Communications and Networks, vol. 7, no. 3, pp. 317–326, 2021.

[21] Y. Zhang, M. Duan, D. Liu, L. Li, A. Ren, X. Chen, Y. Tan, and C. Wang,
“Csafl: A clustered semi-asynchronous federated learning framework,”
in Proc. International Joint Conference on Neural Networks (IJCNN),
Shenzhen, China, 2021.

[22] W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. Jarvis, “Safa: A semi-
asynchronous protocol for fast federated learning with low overhead,”
IEEE Transactions on Computers, vol. 70, no. 5, pp. 655–668, 2021.

[23] Z. Liu, C. Guo, D. Liu, and X. Yin, “An asynchronous federated learning
arbitration model for low-rate ddos attack detection,” IEEE Access,
vol. 11, pp. 18 448–18 460, 2023.

[24] S. Liu, Y. Yu, Y. Zong, P. L. Yeoh, L. Guo, B. Vucetic, T. Q. Duong, and
Y. Li, “Delay and energy-efficient asynchronous federated learning for
intrusion detection in heterogeneous industrial internet of things,” IEEE
Internet of Things Journal, vol. 11, no. 8, pp. 14 739–14 754, 2024.

[25] V. U. Ihekoronye, C. I. Nwakanma, D.-S. Kim, and J. M. Lee, “Asr-
fed: agnostic straggler-resilient semi-asynchronous federated learning
technique for secured drone network,” International Journal of Machine
Learning and Cybernetics, vol. 15, no. 11, pp. 5303–5319, 2024.

[26] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in 2019 IEEE
Symposium on Security and Privacy (SP), 2019, pp. 691–706.

[27] L. Cui, Y. Qu, G. Xie, D. Zeng, R. Li, S. Shen, and S. Yu, “Security
and privacy-enhanced federated learning for anomaly detection in iot
infrastructures,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 5, pp. 3492–3500, 2021.

[28] F. Wibawa, F. O. Catak, M. Kuzlu, S. Sarp, and U. Cali, “Homomorphic
encryption and federated learning based privacy-preserving cnn training:
Covid-19 detection use-case,” in Proc. European Interdisciplinary Cy-
bersecurity Conference, Barcelona, Spain, 2022.

[29] J. Ma, S.-A. Naas, S. Sigg, and X. Lyu, “Privacy-preserving federated
learning based on multi-key homomorphic encryption,” International
Journal of Intelligent Systems, vol. 37, no. 9, pp. 5880–5901, 2022.

[30] H. Fang and Q. Qian, “Privacy preserving machine learning with ho-
momorphic encryption and federated learning,” Future Internet, vol. 13,
no. 4, 2021.

[31] A. Madi, O. Stan, A. Mayoue, A. Grivet-Sébert, C. Gouy-Pailler, and
R. Sirdey, “A secure federated learning framework using homomor-
phic encryption and verifiable computing,” in 2021 Reconciling Data
Analytics, Automation, Privacy, and Security: A Big Data Challenge
(RDAAPS), 2021, pp. 1–8.

[32] S. Awan, F. Li, B. Luo, and M. Liu, “Poster: A reliable and accountable
privacy-preserving federated learning framework using the blockchain,”
in Proc. ACM SIGSAC conference on computer and communications
security, London, United Kingdom, 2019.

[33] B. Li, Y. Wu, J. Song, R. Lu, T. Li, and L. Zhao, “Deepfed: Federated
deep learning for intrusion detection in industrial cyber–physical sys-
tems,” IEEE Transactions on Industrial Informatics, vol. 17, no. 8, pp.
5615–5624, 2020.

[34] E. Sotthiwat, L. Zhen, Z. Li, and C. Zhang, “Partially encrypted multi-
party computation for federated learning,” in 2021 IEEE/ACM 21st
International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), 2021, pp. 828–835.

[35] C. Zhang, S. Ekanut, L. Zhen, and Z. Li, “Augmented multi-party
computation against gradient leakage in federated learning,” IEEE
Transactions on Big Data, pp. 1–10, 2022.

[36] E. Rabieinejad, A. Yazdinejad, A. Dehghantanha, and G. Srivastava,
“Two-level privacy-preserving framework: Federated learning for attack
detection in the consumer internet of things,” IEEE Transactions on
Consumer Electronics, vol. 70, no. 1, pp. 4258–4265, 2024.

[37] Y. Chen, B. Wang, H. Jiang, P. Duan, Y. Ping, and Z. Hong, “Pepfl:
A framework for a practical and efficient privacy-preserving federated
learning,” Digital Communications and Networks, vol. 10, no. 2, pp.
355–368, 2024.

[38] T. Morris and W. Gao, “Industrial control system (ics) cyber attack
datasets: Gas pipeline and water storage tank,” ICS Data Sets, 2014.

[39] M. Zolanvari, “Wustl-iiot-2021 dataset for iiot cybersecurity research,”
IEEE DataPort, 2022.

[40] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke,
“Edge-iiotset: A new comprehensive realistic cyber security dataset of
iot and iiot applications: Centralized and federated learning,” IEEE
DataPort, 2023.

https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://ieee-dataport.org/documents/wustl-iiot-2021
https://ieee-dataport.org/documents/edge-iiotset-new-comprehensive-realistic-cyber-security-dataset-iot-and-iiot-applications
https://ieee-dataport.org/documents/edge-iiotset-new-comprehensive-realistic-cyber-security-dataset-iot-and-iiot-applications

	Introduction
	Related Work
	FL-based Intrusion/Anomaly Detection
	SyncFL approaches
	AsyncFL approaches
	Buffered FL approaches

	Privacy-enhancing FL

	DyHFL Framework
	System Model
	Attack Model
	Proposed Methodology

	Security and Communication Complexity Analysis
	Protection Against an Honest-But-Curious Server
	Security Against Eavesdropping During Transmission
	Communication Cost Complexity

	Experiment Setting and Evaluation
	Experimental Settings
	Evaluation
	Agent Selection Fairness
	Convergence Speed
	Communication Cost
	Model Performance
	Component Ablation Analysis


	Discussion and Future Directions
	Conclusion
	References

