
Cost aware Caching and Streaming Scheduling for
Efficient Cloud based TV
Zinelaabidine Nadir1,2, Miloud Bagaa2, and Tarik Taleb2

1 University of Laghouat, Algeria, z.nadir@lagh-univ.dz
2 Aalto University, Finland, firstname.lastname@aalto.fi

Abstract—Internet Protocol Television (IPTV) has become
widely used to deliver TV channels over the Internet. Tremendous
efforts have been carried out for making IPTV services an
alternative to traditional TV by offering low-cost TV channels.
The cloud network offers many advantages that give more
flexibility for sharing the content and reducing the cost for end-
users. In this paper, we explore the strength of cloud by allowing
different users to create cost-efficient TV channels on top of the
cloud. The proposed algorithm reduces the cost by exploring
the shared content in the cloud network. The simultaneous
streaming of the content shared among different channels will
reduce the number of streams in the network, and consequently
the otherwise incurred cost. This can be achieved through a
smart scheduling mechanism that schedules the streaming of the
same video to a large number of channels at the same time. The
obtained results prove the efficiency of the proposed solution in
terms of cost efficiency.

I. INTRODUCTION

Multimedia streaming services define the de-facto service
among an ever-growing community of digital content con-
sumers, be they mobile or not [1], [2]. The Internet Protocol
TV (IPTV) services define an imporant use case of multimedia
streaming services. The purpose of IPTV is to provide a cost-
efficient alternative to the traditional TV system, allowing
the distribution of different video content to end-users over
IP networks and reducing significantly the cost of creating
and managing different TV channels. Aggarwal et al. [3]
have shown that the cost of IPTV services would be reduced
further leveraging cloud infrastructure. Indeed, through the
usage of cloud, a simple user becomes able to hold different
channels that serve multiple social communities. In contrast to
traditional TV channels that would need dedicated equipment
and technical stuff for managing individual channels, IPTV
channels on top of the cloud will enable one simple user
(channel owner) to manage many channels from home without
the need for neither dedicated equipments nor technical stuff
[4].

Enabling users to create Over-The-Top (OTT) TV channels
on top of the cloud will make the content more customized
for their social communities, defining the channels’ audiences
[5], [6]. The small number of subscribers gives to the channel
owner the possibility to stream content customized according
to the profiles of his channel’s subscribers. In fact, this is
motivated by recent studies that showed the positive impact of
users’ social interactions on TV channels’ experience [7]–[9],
whereby TV programs could be customized based on, among

many factors, social interactions and comments of channel
subscribers. In fact, as shown in Figure 1, a typical TV channel
requires: i) an appropriate multimedia delivery infrastructure,
ii) content to deliver, and iii) an audience for the channel.
The advances in the cloud computing technology facilitates
the creation of media delivery infrastructure along with their
enabling techniques such as transcoding on the fly [10]–[12].
This infrastructure will be used to store, cache videos on
one of its servers and to stream them to channels’ audience.
The channel content could be self-made videos, content from
online video-sharing websites (e.g., Youtube, dailymotion, and
Vimeo) or videos from other real TV broadcasting channels.
The channel’s audience consists of those who are invited using
different social media networks (e.g., Facebook, twitter, and
LinkedIn) to watch these videos together on a specific schedule
set by the channel owner. The main function of the system,
shown in Figure 1, is to allow users to create OTT TV channels
and to manage their content and their audience [4]. Quite
simply, using such system, the channel owner can create his
own channel by uploading one or multiple videos to the system
and share them with his subscribers and friends, in the form
of TV program, to watch them as a specific schedule.

Video content Channels’
audience

Envisioned
system

Multimedia
Delivery

Infrastructure

Fig. 1. Key elements of the envisioned system.

Nowadays, most of cloud providers adopt pay-as-you-go
model, whereby a user will pay only for the resources that
he indeed used, including CPU, Memory, Storage and traffic
communication [13]. The videos of a channel will be cached
in servers that guarantee the Quality of Service (QoS) for its
subscribers. Thus, the channel owner will be charged for the
time of caching and streaming of those videos from those
servers. In order to reduce the cost for the channel owner,
the caching and streaming time of different videos should be
minimized as much as possible. Indeed, the aim is to make
the caching time fits, as much as possible, the streaming time.

The purpose of the system, presented in this paper, is to
devise an efficient algorithm for i) scheduling the playback of
different content over multiple channels, serving a geograph-
ically distributed group of subscribers, and ii) accordingly
caching the content across an underlying content delivery
network in a way that minimizes the cost incurred with both
caching and streaming of each video while guarantying the
desired QoS. For this reason, the proposed algorithm would
specify the streaming time and the locations of different copies
(caches) of that video for ensuring the QoS with the minimal
cost. Herein, the location of a cache content means the server
where the content cache should be stored. The remainder of the
paper is organized as follows. Some related work are presented
in Section II. In Section III, we formulate the target problem.
The proposed solution is presented in Section IV. The per-
formance evaluation of the proposed solution is conducted in
Section V and the simulation results are discussed therein.
Finally, the paper concludes in Section VI.

II. RELATED WORK

Ensuring QoS for multimedia content requires high network
bandwidth between the server that holds that content and
different clients [1]. Placing the content in far away servers
may downgrade the Quality of Experience (QoE) [14], [15].
On the other hand, duplicating and placing the content near
to the clients can be an expensive process. In order to
overcome this problem, smart caching techniques, combined
with Information (or Content) Centric Networking (ICN/CCN)
techniques, have been proposed [16], [17]. These techniques
cache the multimedia content according to their geographic
popularity. Indeed, each content video would be duplicated
and cached only in the regions where that video is popular.
Along with the emergence of online social networks (OSN),
the management of multimedia caching has become more
challenging [18]. Indeed, the users community of a multimedia
content can be distributed over the world. In order to overcome
this problem, the authors in [18] suggested a new caching
strategy whereby a video is cached in a region only if the
video popularity is higher than a predefined threshold.

Cloud computing has been gaining tremedous potential,
impacting different arenas including mobile telecom [19]. It
brings more advantages when compared to the traditional
architectures, and that is in terms of elasticity and resource
provisioning with minimal cost. Many techniques have been
proposed for managing video caching on top of the cloud. The

caching techniques aim to reduce the cost while guarantying
the QoS. These techniques utilize social features to cache the
content with QoS. Pujol et al. [20] have proposed an approach
that caches videos of a user in the same server with his friends’
videos. However, if videos are assigned to servers based only
on their social information, servers with popular videos could
be accessed more frequently than the ones with unpopular
videos. Therefore, some servers will be more overloaded
than others. To overcome this problem, Cheng et al [21]
have proposed an approach that takes into account the video
popularity and social information for caching videos contents.
Meanwhile, Wu et al. [22] utilized a geo-distributed cloud
to support large scale social media streaming applications.
Wang et al. [23] have proposed an approach that allows the
caching servers to adjust their resources according to the users’
demands. This approach enables caching servers to adapt their
resource capacity to meet with the temporal and the spatial
dynamics of users access. Novel concepts, such as dynamic
Service Function Chaining (SFC) coupled with the benefits of
Netowrk Function Virtualization (NFV) and cloud computing,
have been also explored to cope with social media applications
that involve frequent delivery of videos among a large number
of social networks [24].

In contrast to the aforementioned works, the proposed solu-
tion, in this paper, aims to reduce the caching and streaming
costs of OTT TV channels. The caching and streaming costs
will be reduced by promoting the sharing of the same video
streams among different subscribers of different TV channels.
Moreover, the proposed solution considers both the profiles of
the channels’ subscribers and the access patterns of channels’
videos. The former is used to decide where to cache these
videos, whereas the latter is used to decide when to cache
them.

III. PROBLEM FORMULATION AND ENVISIONED
ARCHITECTURE

A. Envisioned architecture

Figure 2 depicts a general overview of the system architec-
ture and its principal components. The envisioned architecture
consists of the main system server and several cache/stream
servers. The system server is responsible for managing and
scheduling different multimedia content in the cloud. The
cache/stream servers are geographically distributed as part
of the cloud services (e.g., Amazon and Microsoft Azure),
where each server plays the role of a cache and/or streaming
server. These servers will serve many viewers of different
TV channels. We assume that these servers have no limited
capacity of storage. We also assume that these servers can
support any streaming rates and have no limitation in terms
of number of simultaneous streams they can support. In this
paper, we propose an algorithm that will be executed on top
of the system server for managing and scheduling content in
the programs of different TV channels.

The contents of TV channels over the cloud are usually
distributed on different clouds, as well as the channels’ sub-
scribers would be. The channel’s subscribers can be located

Fig. 2. The envisioned architecture.

in many regions/countries in the world. They consist of those
who are invited by the channel owner using different social
media networks to watch his channel. The main function of the
system server is to allow users to manage their channels and
that includes: i) Creating a channel, uploading videos, and
inviting users to that channel; ii) Choosing the appropriate
streaming servers among the available ones for each video
content; iii) Scheduling different videos content by specifying
the exact time where they should be played. Moreover, the
proposed framework aims to guarantee the QoS for all sub-
scribers from any region. According to the end-to-end delay
between a server and channel’s subscribers, the server may
guarantee or not the QoS. For this reason, the videos of a TV
channel should be placed in a server by taking into account
the end-to-end delay between the channel subscribers and that
server.
B. Network model and problem formulation

The goal of this paper is to reduce the cost for deploying
different TV channels on top of the cloud while guaranteeing
QoS. Therefore, the aim is to reduce the number of streams
and caching time for each video. In order to reduce the caching
time, the videos should be cached only during their streaming
time. To reduce further the cost, the number of videos to
be streamed at approximately the same time over different
channels should be increased. If multiple channels schedule in
their program the same video at nearly the same time and share
the same cache content, in the same sever, they will share also
the caching cost among them. Moreover, they will also share
the streaming cost. Indeed, if two channels do not succeed to
schedule the playback of a given video at the same time, then
the number of streams of that server becomes two even if they
share the same cache content. Herein, each channel will pay
the complete cost of one stream. In this case, the benefit of
both channels is the reduction of caching cost.

We assume that the network consists of a set of streaming
servers S and a set of users U . Let C denote the set of
TV channels, each channel i (i ∈ C) may contain a set of

scheduled videos that will be cached in the streaming servers
before their streaming times. Videos of a channel i will be
streamed to its subscribers Ui, where Ui ⊂ U is the subscribers
of channel i. A user u ∈ U can be subscribed to one or
multiple channels. Let Ri be the set of regions of channel
i. Let R denote the set of regions in the network. Formally,
R =

⋃
i∈C

Ri. A user of channel i is also supposed to be in one

region r/r ∈ Ri at a given time. In this paper, we assume
that a server l ∈ S guarantees the QoS for a region r ∈ R
iff the end-to-end delay between that server and a user in
r is lower than a predefined threshold τ . The system server
should guarantee QoS for all users in different regions when
scheduling videos in channel programs and caching videos.

TABLE I
DESCRIPTION OF NOTATIONS AND VARIABLES USED IN THE MODEL.

variable description
C The set of channels.
V The set of videos.
Vi The set of videos that are already scheduled in channel

i.
U The set of users in the network.
Uj A set of subscribers of channel j.
x A user, x ∈ U .
dj The duration of video j.
S The set of servers.
R The system set of regions.
Ri Set of regions of channel i.
ti,j The playback time of video j in channel i.
Υi Set of videos that a user wants to add to his channel i.
si,j An integer variable that indicates the schedule time of

video j in channel j.
xi,j,l A Boolean variable that equals to 1 if video j in channel

i will be cached in server l; 0 otherwise.
yi,i′,j,l A Boolean variable that equals to 1 if channels i and i′

succeed to schedule video j at the same time and from
the same server l; 0 otherwise.

ηj,l Number of streams of video j in server l.
e2er,l The end-to-end delay between server l and users in region

r.
τ End-to-end threshold that is used for ensuring QoS. If

a delay between users in a region and a server is lower
than τ , then QoS will be ensured.

The different notations and variables used in this paper are
summarized in Table I. Let Υi denote the set of videos of a
channel i ∈ C. Administrator of each channel i should ensure
QoS for its subscribers with minimal cost. The scheduling
of a channel means specifying the streaming time and the
caching server of each video scheduled in the program of
that channel. As aforementioned, the proposed framework
explores the schedules of videos in other channels for reducing
the caching and streaming costs. Let Cj denote the set of
channels where a video j is already scheduled. Note that a
video will not be cached in a server until its streaming time
is approached. For this reason, while the streaming time of
videos in scheduled channel Cj should not be changed, the
caching servers can be updated.

For example, let’s assume that a video v is already sched-
uled in a channel j. Let t and l1 denote, respectively, the

scheduling time of v and the server from where v will be
streamed. Lets assume that the owner of another channel i
wants to update his channel with that video. If the server l1
does not guarantee QoS for the users of channel i, then v
should be cached in another server that ensures QoS for those
users. Thus, channels i and j will not share the same video
stream. In order to reduce the streaming and caching time,
an alternative strategy is adopted in this paper. This strategy
consists of changing the caching servers of already scheduled
channels. In this example, if we cache v in another server
l2 that guarantees QoS for the subscribers of both channels.
In this case, both channels will succeed to stream v to their
subscribers using only a single stream and from the same
server. This feature will enable the reduction of the costs of
both caching and streaming of the videos already scheduled
in channels by changing their caching servers whenever the
program of a new channel gets updated with one of these
videos.

IV. PROPOSED SOLUTION

In the following section we will formulate our problem as
a Mixed Integer Linear Programming (MILP) problem. As
mentioned before, we are interested in the optimal placement
of video content and scheduling different channels in order to
reduce the caching and streaming costs. This will be achieved
by reducing the number of effective streams of each video
j. Channels that succeed to cache video j in the same cache
server at the same time, they will share also the caching and
streaming costs. Otherwise, if these channels do not succeed
to cache that video in the same cache server and/or stream it
simultaneously, each channel will pay, separately, the cost of
caching and streaming of that video. Let i denote the active
channel that will be updated with a set of videos Υi. To reduce
the cost, the number of streams should be reduced for each
video j ∈ Υi. For each video j, we need to find a schedule in
that channel and a server, where the video should be cached.
Let si,j be a variable that indicates the scheduling time of
video j in channel i. Let xi,j,l be a boolean variable that takes
the value 1 if video j is cached in server l, otherwise 0.

Each video j could potentially be scheduled in other chan-
nels. Let ti′,j be the playback time of video j in Channel i′

(i′ ∈ Cj ; i 6= i′). To reduce the number of streams, Channel
i needs to: 1) schedule video j at the same time with as
many channels Cj as possible; 2) cache that video in the same
cache server with these channels. The latter will reallocate the
caching servers of video j for each channel Cj in order to
create the minimum number of streams of that video. If we
do not succeed to schedule video j at the same time with other
channels Cj , the owner of channel i will pay for a complete
stream of video j.

min
∑
j∈Υi
l∈S

ηj,l (1)

Subject to:

∀j ∈ Υi :
∑
l∈S

xi,j,l = 1 (2)

∀j ∈ Υi, ∀i′ ∈ Cj , ∀j′ ∈ Vi′ :
∑
l∈S

xi′,j′,l = 1 (3)

∀j ∈ Υi, ∀j′ ∈ Vi

si,j ≥ ti,j′ + dj′ + ai,j,j′ ×M (4)
si,j ≤ ti,j′ − dj + (1− ai,j,j′)×M (5)

∀j, j′ ∈ Υi, j 6= j′

si,j ≥ si,j′ + dj′ + a′i,j,j′ ×M (6)

si,j ≤ si,j − dj + (1− a′i,j,j′)×M (7)

∀j ∈ Υi, ∀i′ ∈ Cj , ∀l ∈ S

|ti′,j − si,j | ≤ (1− yi,i′,j,l)×M (8)
yi,i′,j,l ≤ xi,j,l (9)
yi,i′,j,l ≤ xi′,j,l (10)

∀j ∈ Υi, ∀i′, i′′ ∈ Cj , i
′ 6= i′′, ∀l ∈ S

|ti′,j − ti′′,j | ≤ (1− yi′,i′′,j,l)×M (11)
yi′,i′′,j,l ≤ xi′,j,l (12)
yi′,i′′,j,l ≤ xi′′,j,l (13)

∀j ∈ Υi, ∀l ∈ S, ∀r ∈ Ri

xi,j,l × e2er,l ≤ τ (14)

∀j ∈ Υi, ∀l ∈ S, ∀i′ ∈ Cj ,∀r ∈ Ri′ , i
′ 6= i

xi′,j,l × e2er,l ≤ τ (15)

∀j ∈ Υi, ∀l ∈ S

ρi,j,l −
∑

∀i′∈Cj

yi,i′,j,l ≤ 0 (16)

∀j ∈ Υi, ∀i′ ∈ Cj , ∀l ∈ S

ρi,j,l − yi,i′,j,l ≥ 0 (17)

∀j ∈ Υi, ∀i′ ∈ Cj , ∀l ∈ S

ρi′,j,l −
∑

∀i′′∈Cj

i′′>i′

yi′,i′′,j,l ≤ 0 (18)

∀j ∈ Υi, ∀i′, i′′ ∈ Cj , i
′′ > i′′, ∀l ∈ S

ρi′,j,l − yi′,i′′,j,l ≥ 0 (19)

∀j ∈ Υi, ∀l ∈ S

ηj,l −
(
xi,j,l +

∑
∀i′∈Cj

i′>i

xi′,j,l

)
−

(
ρi,j,l +

∑
∀i′∈Cj

i′>i

xi′,j,l − ρi′,j,l
)

= 0 (20)

In the envisioned optimization problem, we use the follow-
ing notations: 1) variable ηj,l defining the number of streams
generated for each video j in server l; 2) variable i repre-
senting the current channel, where videos Υj will be added;
3) Vi denoting the set of videos that are already scheduled
in channel i. The objective function aims to minimize the
number of streams of each video j in all servers l, where
the video will be cached. Meanwhile, the constraints are used
to ensure the following conditions: constraints (2) and (3)
ensure that each channel should cache each video in only
one server. Constraints (4)-(7) ensure that the scheduled time
of each video should not overlap with any other video in
channel i. Constraints (4) and (5) ensure that the scheduled
time of each video j (∀j ∈ Υi) should not overlap with the
current channel’s videos Vi. This means that two videos should
not have their playing times overlap in channel i. Whereas,
constraints (6) and (7) ensure that the playing times of videos
from Υi should not overlap with each other.

Constraints (8)-(13) ensure that videos that have the same
scheduled time should be cached in the same server to reduce
the number of streams. Constraints (8)-(10) ensure that if
channels i and i′ scheduled video j at the same time, then they
should use the same cache server l for reducing the streaming
cost. In the same manner, Constraints (11)-(13) ensure that if
video j in channels i′ and i′′ is scheduled at the same time,
it then should be cached in the same server. Constraints (14)
and (15) ensure that the end-to-end delay between each cache
server and the channels’ subscribers should be lower than τ .
Constraint (14) ensures that all scheduled videos Υi should be
cached in a server where the end-to-end delay between that
server and the subscribers of the current channel i is lower
than τ . Similarly, constraint (15) ensures that the end-to-end
delay between the subscribers of a channel i′ and the chosen
server l, for caching video j, is lower than τ . Constraints
16- 20 calculate, for each video j and server l, the number of
streams ηj,l that would be minimized by the objective function.

V. SIMULATION AND RESULTS

In this section, we evaluate the performance of the proposed
solution using the Python language programing and the Gurobi
optimization tool [25]. Table II shows the different metrics
used for evaluating the performance of the proposed solution.
To show the performance of our solution, we used a set
of videos (100 videos) with durations varying between 10
and 80 minutes. These videos are randomly distributed on
different channels, and a video can be in the program of
different channels. Videos in the program of the same channel

are scheduled while preventing the overlap of their playback
times. The proposed solution is evaluated in terms of two
metrics, namely 1) the number of streams generated in the
network, formally defined as the total number of streams ηj,l
of all videos j; and 2) the runtime execution of the proposed
solution.

TABLE II
PARAMETERS USED IN THE SIMULATION.

Variable Description
Number of channels 10
Number of videos 100
Number of servers 8
Number of regions 4
Video durations 10,20,40,80 min
Videos scheduled in one channel 1-10
Schedule duration 24 hours

Figure 3 shows the impact of the number of simultaneously
scheduled videos on the proposed solution in terms of stream-
ing cost (i.e., number of generated streams). The proposed
solution is compared against a baseline solution, whereby no
optimization is performed. In the baseline solution, each video
is cached and streamed without taking into account if it is
already scheduled in existing channels. As we have aforemen-
tioned, the QoS is always taken into account when selecting
different caching servers, which creates more restriction on
the proposed solution. Only the caching servers that have a
low latency to the users should be selected. Although this
restriction, we observe, from this figure, that the proposed
solution outperforms the baseline solution, on average, by
more than 50% in terms of number of streams. This means
that when the proposed solution is used, the number of
effective streams will be halved, which eventually reduces
the overall cost. Moreover, the proposed solution outperforms
the baseline solution by more than 60% when the number of
simultaneously scheduled videos reaches 10.

Baseline solution

Proposed solution

Number of simultaneously scheduled videos

N
um

be
r

of
st

re
am

s

Fig. 3. The performance of the proposed solution in terms of reducing the
streaming cost.

Figure 4 shows the impact of the number of simultaneously
scheduled videos on the complexity of the proposed solu-

tion, measured by its executions. We varied the number of
simultaneously scheduled videos between 1 and 10. The first
observation that we draw from this figure that the execution
time is reasonable. In all conducted simulations, the execution
time does not exceed 0.30 sec. We also observe that the
simultaneous scheduling of many videos requires less time
if we schedule them separately, i.e., one by one. For example,
scheduling one video requires 0.02955 sec while scheduling
8 videos requires 0.22511 sec (i.e., 0.22511

8 = 0.028 sec per
video).

Execution time

Number of simultaneously scheduled videos

E
xe

cu
tio

n
tim

e
(s

)

Fig. 4. The execution time of the proposed solution for varying number of
simultaneously scheduled videos.

VI. CONCLUSION

In this paper, we proposed a solution for scheduling IPTV
channels on top of the cloud. The proposed solution aims
to minimize the cost while ensuring QoS. The cost in the
proposed solution is minimized by managing the caching and
streaming of videos in an efficient manner. The proposed
solution schedules videos at the same time in the programs of
as many channels as possible and places the different videos
in the same cache servers, such that the number of effective
streams created in the network is minimized. The obtained
results demonstrate the efficiency of this strategy in reducing
the caching and streaming cost while still maintaining QoS
within an acceptable level.

REFERENCES

[1] T. Taleb and K. Hashimoto. MS2 : A New Real-Time Multi-Source
Mobile-Streaming Architecture. IEEE Transactions on Broadcasting,
57(3):662–673, Sept 2011.

[2] J. C. Fernandez, T. Taleb, M. Guizani, and N. Kato. Bandwidth
Aggregation-Aware Dynamic QoS Negotiation for Real-Time Video
Streaming in Next-Generation Wireless Networks. IEEE Transactions
on Multimedia, 11(6):1082–1093, Oct 2009.

[3] V. Aggarwal, V. Gopalakrishnan, R. Jana, K. K. Ramakrishnan, and V. A.
Vaishampayan. Optimizing cloud resources for delivering iptv services
through virtualization. IEEE Transactions on Multimedia, 15(4):789–
801, June 2013.

[4] T. Taleb and N. Taleb. System and Method for Creating Multimedia
Content Channel Customized for Social Network, Aug 2010. Patent
number EP20110820657.

[5] S. C. Kim and S. K. Kim. Personalized IPTV content recommendation
for social network group. In Consumer Electronics (ICCE), 2011 IEEE
International Conference on, pages 469–470, Jan 2011.

[6] J. Yang, H. Park, G. M. Lee, and J. K. Choi. A web-based IPTV
content syndication system for personalized content guide. Journal of
Communications and Networks, 17(1):67–74, Feb 2015.

[7] Dong-Hee Shin. Defining sociability and social presence in social TV.
Computers in Human Behavior, 29(3):939 – 947, 2013.

[8] Partha Mukherjee and Bernard J. Jansen. Social TV and the Social
Soundtrack: Significance of Second Screen Interaction during Television
Viewing, pages 317–324. Springer International Publishing, Cham, 2014.

[9] Frank Bentley, Karolina Buchner, and Joseph ’Jofish’ Kaye. Mychannel:
Exploring city-based multimedia news presentations on the living room
tv. In Proceedings of the 2014 ACM International Conference on
Interactive Experiences for TV and Online Video, TVX ’14, pages 71–
78, New York, NY, USA, 2014. ACM.

[10] P. A. Frangoudis, L. Yala, A. Ksentini, and T. Taleb. An architecture
for on-demand service deployment over a telco CDN. In 2016 IEEE
International Conference on Communications (ICC), pages 1–6, May
2016.

[11] S. Retal, M. Bagaa, T. Taleb, and H. Flinck. Content Delivery
Network Slicing: QoE and Cost Awareness. In 2017 IEEE International
Conference on Communications (ICC), Paris, France, May 2017.

[12] S. Dutta, T. Taleb, P. A. Frangoudis, and A. Ksentini. On-the-Fly
QoE-Aware Transcoding in the Mobile Edge. In 2016 IEEE Global
Communications Conference (GLOBECOM), pages 1–6, Dec 2016.

[13] F. Z. Yousaf and T. Taleb. Fine-grained resource-aware virtual network
function management for 5g carrier cloud. IEEE Network, 30(2):110–
115, March 2016.

[14] A. Ksentini and T. Taleb. QoE-Oriented Adaptive SVC Decoding in
DVB-T2. IEEE Transactions on Broadcasting, 59(2):251–264, June
2013.

[15] A. Ksentini, T. Taleb, and K. B. Letaif. QoE-Based Flow Admission
Control in Small Cell Networks. IEEE Transactions on Wireless
Communications, 15(4):2474–2483, April 2016.

[16] D. O. Mau, T. Taleb, and M. Chen. MM3C: Multi-Source Mobile
Streaming in Cache-Enabled Content-Centric Networks. In 2015 IEEE
Global Communications Conference (GLOBECOM), pages 1–6, Dec
2015.

[17] Mau Dung Ong, Min Chen, Tarik Taleb, Xiaofei Wang, and Victor C.M.
Leung. FGPC: Fine-grained Popularity-based Caching Design for Con-
tent Centric Networking. In Proceedings of the 17th ACM International
Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, MSWiM ’14, pages 295–302, New York, NY, USA,
2014. ACM.

[18] Sajal K Das, Zohar Naor, and Mayank Raj. Popularity-based caching
for iptv services over p2p networks. Peer-to-Peer Networking and
Applications, 10(1):156–169, 2017.

[19] T. Taleb. Toward carrier cloud: Potential, Challenges, and Solutions.
IEEE Wireless Communications, 21(3):80–91, June 2014.

[20] Josep M. Pujol, Vijay Erramilli, Georgos Siganos, Xiaoyuan Yang,
Nikos Laoutaris, Parminder Chhabra, and Pablo Rodriguez. The little
engine(s) that could: Scaling online social networks. SIGCOMM
Comput. Commun. Rev., 40(4):375–386, August 2010.

[21] Xu Cheng and Jiangchuan Liu. Load-balanced migration of social media
to content clouds. In Proceedings of the 21st International Workshop on
Network and Operating Systems Support for Digital Audio and Video,
NOSSDAV ’11, pages 51–56, New York, NY, USA, 2011. ACM.

[22] Yu Wu, Chuan Wu, Bo Li, Linquan Zhang, Zongpeng Li, and Francis
C. M. Lau. Scaling social media applications into geo-distributed clouds.
IEEE/ACM Trans. Netw., 23(3):689–702, June 2015.

[23] Feng Wang, Jiangchuan Liu, Minghua Chen, and Haiyang Wang. Mi-
gration towards cloud-assisted live media streaming. IEEE/ACM Trans.
Netw., 24(1):272–282, February 2016.

[24] T. Taleb, A. Ksentini, M. Chen, and R. Jantti. Coping With Emerging
Mobile Social Media Applications Through Dynamic Service Function
Chaining. IEEE Transactions on Wireless Communications, 15(4):2859–
2871, April 2016.

[25] Gurobi Optimization - The Best Mathematical Programming Solver, url
= http://www.gurobi.com/, urldate = 2016-10-28.

