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with Attribute Fluctuation and Concept Clustering
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Abstract—Concept-cognitive learning (CCL) is a paradigm
that simulates human concept learning by processing given cues
through specific cognitive models. However, existing CCL models
face significant limitations, such as weak correlations between
attributes and decisions, high redundancy within the concept
space, and suboptimal learning performance. To address these
issues, this paper introduces an Attribute Fluctuation-Based
CCL (AFFCCL) model. First, a novel measurement method for
attribute fluctuation is proposed, based on the variation range
of attribute membership degrees. To mitigate redundancy in the
concept space, a fuzzy granular concept space is constructed us-
ing the concept contribution degree. Second, the model leverages
the semantic richness of concepts by integrating similar fuzzy
granular concepts, thereby constructing a clustering space. From
this, upper and lower approximation spaces are derived. Finally,
extensive experiments conducted on multiple benchmarkdatasets
demonstrate that the proposed AFFCCL model outperforms rep-
resentative fuzzy CCL models, neural-network-basedclassifiers,
and traditional similarity-based approaches in termsof accuracy,
interpretability, and robustness.

Index Terms—Concept-cognitive learning (CCL), Granular
computing, Attribute fluctuation, Concept clustering.

I. INTRODUCTION

COGNITIVE computing, a self-learning paradigm within
artificial intelligence, leverages advanced algorithms and

techniques to uncover valuable knowledge and its underlying
structural relationships from vast amounts of data [1]. By
imbuing computer systems with cognitive capabilities such
as comprehension, learning, reasoning, and natural language
processing, cognitive computing enables the effective handling
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of complex decision-making tasks [2]. Among the key method-
ologies driving cognitive computing, knowledge mining based
on formal concept analysis (FCA) [3] has emerged as a
powerful tool. FCA, grounded in set theory and lattice theory,
reveals hidden structural patterns and relationships within data
by analyzing associations between objects and their attributes.
Despite its advantages, FCA is hindered by challenges such
as high construction costs and concept redundancy and low
dynamic adaptability, which limit its broader application and
development.

In recent years, the advancement of concept-cognitive learn-
ing (CCL) has introduced a novel impetus to cognitive com-
puting. CCL, an interdisciplinary field that integrates concepts
from the structured representation of FCA, the upper and
lower approximation of rough sets to deal with uncertainty [4],
the multi-granularity computation of granular computing [5],
and cognitive computing, enables the extraction of valuable
knowledge from given cues using specific cognitive models. It
addresses several limitations of traditional FCA, particularly
the high construction costs associated with concept lattices.
This has led to increasing scholarly attention on CCL. Wu
et al. [6] established a close relationship between multi-label
concepts and features using degree information, effectively
capturing their complex interactions. Yang et al. [7] employed
the Jaccard similarity coefficient to propose an attribute and
object-based CCL method, enhancing the diversity of learning
results by exploiting marginal concepts. To overcome the issue
that the existing CCL models make insufficient use of the skill
context and negative information, Xu et al. [8] proposed a
transformation method to transform between different three-
way information granules, which makes full use of context
information. Furthermore, Xu et al. [9] advanced the field
by integrating positive and negative labels to achieve more
accurate knowledge representation.

In real-world scenarios, the data often exhibit fuzziness.
To address this uncertainty, fuzzy set theory [10] has been
extensively applied across various domains. In feature selec-
tion [11], a more flexible feature description is provided by
quantifying the degree of membership of features to categories.
When measuring uncertainty [12], the membership function
is used to describe the ambiguity of data directly, so as to
describe uncertainty more accurately and provide a variety of
uncertainty measurement methods. In neural networks [13],
fuzzy neural networks are constructed to improve the gen-
eralization ability and robustness of neural networks. Fuzzy
set theory strengthens the ability of cognitive computing to
imitate human reasoning by simulating the progressiveness,
fuzziness and situational adaptability in the process of human
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semantic generalization, enabling cognitive models to process
fuzzy data in the real world. Its integration with CCL has
attracted significant attention. Deng et al. [14] leveraged fuzzy
granular concepts to define construction operators, proposing
an incremental fuzzy granular CCL model. Aiming at the
problem that multi-view data is difficult to be effectively
represented and fused by existing single-view fuzzy concept
cognitive learning models, Wang et al. [15] proposed a multi-
view fuzzy CCL model, which reconstructs the fuzzy attributes
of each view, effectively solving the knowledge representation
and fusion problem of multi-view data, and realizing the
effective resolution of representational inconsistency across
parallel perspectives. In order to overcome cognitive barriers
and emulate imaginative processes observed in human brains,
Ding et al. [16] designed an interval-intent fuzzy concept
re-cognition learning model, which effectively simulated the
cognitive process akin to that of human phenomena. Guo
et al. [17], [18] introduced three-way decision models and
proposed a fuzzy-granular three-way CCL model to improve
the dynamic updating mechanism of the incremental three-
way CCL model under fuzzy context, so as to address the
imbalance between high-dimensional data and knowledge evo-
lution limitations. Although these contributions have propelled
the CCL theory forward, current models still face several key
challenges:

1) Weak Attribute-Decision Correlation. Existing models
often overlook the relationship between attributes and
decisions and lack a dynamic weighting mechanism
that can reflect the varying importance of attributes and
concepts across different decision classes.

2) Limited Concept Correlation. Current fuzzy CCL
models primarily rely on the extent of concepts to
compute correlations, failing to fully exploit the se-
mantic intent information of concepts to achieve higher
classification performance.

3) Suboptimal Classification. Many CCL models rely
solely on similarity or structural information between
concepts for sample prediction, thereby underutilizing
the full range of concept information, which limits their
classification effectiveness.

To address these issues, this paper proposes an innovative
approach within fuzzy formal contexts. Specifically, it intro-
duces a method to measure attribute fluctuation by analyzing
the amplitude of membership degree variations across decision
classes. This approach reduces redundancy in the concept
space through the degree of concept contribution, generating
a γ fuzzy granular concept space that accommodates varying
decision classes. Furthermore, the paper introduces a novel
calculation for concept correlation by incorporating both the
extent and intent of concepts, facilitating the generation of
pseudo-concepts with enhanced generalization capabilities via
concept clustering. Inspired by rough set theory’s upper and
lower approximations, we propose a new label prediction
mechanism that integrates structural and similarity information
between concepts. Finally, extensive experiments are con-
ducted, comparing the proposed model’s performance with 20
classification algorithms across 15 datasets, demonstrating its

superior classification ability.
The primary contributions of this work are as follows:
1) Dynamic Attribute Utilization. By measuring attribute

fluctuation based on membership degree variations,
we effectively capture the differential emphasis of at-
tributes across decision classes, enhancing model dy-
namic adaptability.

2) Integration of Intent Information. The inclusion of
concept intent information in the correlation measure-
ment reduces the concept space, thereby simplifying the
model and improving efficiency.

3) Enhanced Label Prediction. A novel label prediction
approach, which combines similarity and structural in-
formation, significantly increases the model classifica-
tion performance.

The remainder of this paper is organized as follows. Section
II provides a brief overview of key concepts in the CCL model.
Section III discusses the construction of the γ-fuzzy granular
concept space. Section IV introduces the concept clustering
and label prediction methodology based on rough set approxi-
mations. Section V presents an experimental validation of the
effectiveness of the model. Finally, Section VII concludes the
paper and outlines directions for future research.

II. PRELIMINARIES
A. Classical Formal Context and Concept

Definition 2.1: [3] Let the triple (U,A, I) be a classical
formal context, where U = {x1, x2, . . . , xn} represents a non-
empty set of objects, with each xi(i ≤ n) denoting a specific
object; A = {a1, a2, . . . , am} is a non-empty set of attributes,
where each aj(j ≤ m) corresponds to a single attribute; and
I ⊆ U × A is a binary relationship between U and A. For
any X ⊆ U and B ⊆ A, let L(X) denote the set of attributes
shared by all objects in X , and H(B) denote the set of objects
that possess all the attributes in B.

Definition 2.2: [19] Let (U,A, I) be a classical formal
context, for any X ⊆ U and B ⊆ A, if L(X) = B and
H(B) = X , then the pair (X ,B) is called a formal concept
(or simply a concept), where X represents the extent and B
represents the intent of the concept (X ,B).

Definition 2.3: [3] Let (U,A, I) be a classical formal
context, for an object x ∈ U , the pair (HL(x),L(x)) is called
the object granular concept. Similarly, for an attribute a ∈ A,
the pair (H(a),LH(a)) is called the attribute granular concept.

Theorem 2.1: [3] Let (U,A, I) be a classical formal context.
For any concept (X ,B), the following properties holds:

(X,B) = ∨
x∈X

(HL(x),L(x)) = ∧
a∈A

(H(a),LH(a)). (1)

This theorem expresses that the formal concept (X ,B) can
be represented both as the least upper bound of the object
granular concepts and as the greatest lower bound of the
attribute granular concepts.

Definition 2.4: [6] Let (U,A, I) and (U,D, J) be two
classical formal contexts. Similar to the operators L and H, the
operators LD : 2U → 2D and HD : 2D → 2U are defined. For
any d1, d2 ∈ D, if HD(d1)

⋂
HD(d2) = ∅, then the quintuple

(U,A, I,D, J) is called a classical formal decision context.



TRANSACTIONS ON FUZZY SYSTEMS, VOL. 18, NO. 9, AUGUST 2025 3

B. Fuzzy Formal Context and Concept

Definition 2.5: [20] Let the triple (U,A, Ĩ) be a fuzzy
formal context, where U = {x1, x2, . . . , xn} represents a
non-empty set of objects, with each xi(i ≤ n) denoting a
specific object; A = {a1, a2, . . . , am} is a non-empty set of
attributes, where each aj(j ≤ m) corresponds to a specific
attribute; Ĩ : U × A → [0, 1] . For each x ∈ U and
a ∈ A, µ(x, a) ∈ [0, 1], where µ(x, a) denotes the degree
of membership of x to attribute a in the fuzzy formal context.

Let LA represent the set of all fuzzy sets on A. For any
X ⊆ 2U and B̃ ⊆ LA, the following operators L̃ : 2U → LA

and H̃ : LA → 2U are defined:

L̃(X)(a)= ∧
x∈X

Ĩ(x, a), a ∈ A,

H̃(B̃)={x ∈ X : ∀a ∈ A, Ĩ(x, a) ≥ B̃(a)}.

If L̃(X)=B̃ and H̃(B̃)=X , then the pair (X , B̃) is called a
fuzzy concept, where X is the extent and B̃ is the intent of the
fuzzy concept (X ,B̃). For each x ∈ U , the pair (H̃L̃(x),L̃(x))
is called a fuzzy object granular concept.

For two fuzzy concepts (X1,B̃1), (X2,B̃2) ∈ L(U,A, Ĩ), a
partial order relationship is defined as (X1,B̃1) ≤ (X2,B̃2),
which holds if and only if X1 ⊆ X2 or B̃2 ⊆ B̃1. In this case,
(X1,B̃1) is called a sub-concept of (X2,B̃2), and (X2,B̃2) is
called a parent concept of (X1,B̃1).

Definition 2.6: [20] Let (U,A, Ĩ) be a fuzzy formal context,
and (U,D, J) be a classical formal context. The quintuple
(U,A, Ĩ,D, J) is called a fuzzy formal decision context, where
D = {d1, d2, . . . , dl} is a decision relation. Additionally, J̃ :
U ×D → {0, 1}, A

⋂
D = ∅.

For each x ∈ U , there exists a unique ∃!d ∈ D that
J(x, d) = 1, and thus, U can be partitioned into U/D =
{c1, c2, . . . , cl}, where ck(k ≤ l) represents the set of objects
under decision attribute k.

Definition 2.7: [21] Let (U,A, Ĩ,D, J) be a fuzzy formal
decision context. The fuzzy object granular concept space
ϵεk(k ≤ l), corresponding to the decision class ck(k ≤ l)
is expressed as:

ϵεk ={(H̃L̃(x),L̃(x))|x ∈ ck}.

Definition 2.8: [14] Let (U,A, Ĩ) be a fuzzy formal context.
For x ∈ U , a ∈ A, the operator ∗ is defined as follows:

(x, a)
∗
= {y ∈ U |Ĩ(y, a) > Ĩ(x, a)}, (2)

where (x, a)
∗ represents the set of objects whose membership

values under attribute a exceed those of Ĩ(x, a). According to
Definition 2.5, (H̃L̃((x, a)∗),L̃((x, a)∗)) is a fuzzy concept.

Theorem 2.2: [14] Let (U,A, Ĩ) be a fuzzy formal context.
Then, for any x ∈ U and a ∈ A, the following equality holds:

(H̃L̃((x, a)∗),L̃((x, a)∗)) = ((x, a)
∗,L̃((x, a)∗)).

Definition 2.9: [14] Let (U,A, Ĩ) be a fuzzy formal context.
For an attribute a ∈ A, the fuzzy attribute granular concept
ϵ̃εa induced by attribute a is defined as follows:

ϵ̃εa =
⋃
x∈U

((x, a)
∗,L̃((x, a)∗)-(∅, A)). (3)

Thus, the fuzzy attribute granular concept space is given by:

ϵ̃ε =

m⋃
j=1

ϵ̃εaj
.

The fuzzy granular concept space Qk, corresponding to the
decision class ck(k ≤ l), is expressed as

Qk=ϵεk
⋃

ϵ̃ε.

III. CONSTRUCT THE γ-FUZZY GRANULAR
CONCEPT SPACE

In a multi-decision context, the weight distribution of at-
tributes across different decision classes may vary. By adjust-
ing the attribute weights according to their relevance in each
decision class, complex information can be more effectively
managed. This section discusses the weighting of attributes
based on the fluctuations in the degree of membership. We
quantify the contribution of each concept by analyzing these
fluctuations and then retain the concepts with higher contri-
butions to reduce redundancy in the concept space, thereby
enhancing the efficiency of CCL.

Definition 3.1: Let (U,A, Ĩ,D, J) be a fuzzy formal deci-
sion context, where the correlation of attribute aj ∈ A with
the decision class ck is as follows:

δck(aj) =
1

|ck|
∑
xi∈ck

Ĩ(xi, aj), (4)

where δck(aj) represents the average correlation between
attribute aj and the decision class ck. While this reflects the
general association between attributes and decisions, it does
not capture the relative importance of each attribute in making
decisions. Next, we measure the fluctuation of attribute values
under different decision classes to better understand how an
attribute varies in importance. The greater the fluctuation, the
smaller the attribute’s weight.

Definition 3.2: Let (U,A, Ĩ,D, J) be a fuzzy formal deci-
sion context. The fluctuation of attribute aj ∈ A with respect
to decision class ck is given by:

Flck(aj) =
∑
xi∈ck

|Ĩ(xi, aj)− δck(aj)|. (5)

The weight of attribute aj in decision class ck is as follows:

wkj =


1

m−1 −
Flck (aj)

(m−1)
m∑

h=1

Flck (ah)
,

m∑
h=1

Flck(ah) ̸= 0,

1
m , otherwise,

(6)
where m represents the total number of attributes. The weight
matrix w is then formed as:

w =


w11 w12 . . . w1m

w21 w22 . . . w2m

...
...

...
wl1 wl2 . . . wlm

 ,

where wkj indicates the weight of aj in decision class ck.
Definition 3.3: Let (U,A, Ĩ,D, J) be a fuzzy formal de-

cision context. If (X ,B̃) is a concept in the fuzzy decision



TRANSACTIONS ON FUZZY SYSTEMS, VOL. 18, NO. 9, AUGUST 2025 4

granular concept space Qk, then the concept contribution
degree of (X ,B̃) is as follows:

CCDd(X ,B̃) = 1−
m∑
j=1

|δck(aj)− B̃(aj)|wkj . (7)

In the fuzzy decision granular concept space, concepts
reflect their degree of influence on decision classes through
their contribution degree. Concepts with higher contribution
degrees are more prominent within the concept space. By
selecting the concepts with higher contribution degrees, the
redundancy in the concept space is reduced, and the influence
of irrelevant and noisy attributes is effectively reduced, leading
to improved learning efficiency.

Definition 3.4: Let (U,A, Ĩ,D, J) be a fuzzy formal deci-
sion context, and let γ (where 0 ≤ γ ≤ 1) be a threshold. The
γ-fuzzy granular concept space Qγ

k is as follows:

Q
γ

k={(X ,B̃) ∈ Qk|CCDd(X ,B̃) ≥ γ}.

The threshold γ serves as a critical value for the concept
contribution degree. It helps to filter out concepts with higher
contribution values and controls the number of concepts in the
concept space. If the threshold is too high, important concepts
may be excluded; if it is too low, the concept space may
become excessively large and redundant. Therefore, γ should
be adjusted and optimized according to the specific task and
domain requirements. Algorithm 1 presents the construction
process for the γ-fuzzy granular concept space Qγ

k .
Example 3.1: In real medical scenarios, disease diagnosis

requires evaluation through multiple indicators. The pneu-
monia diagnosis dataset of the respiratory department of a
certain hospital, as shown in Table I, contains 4 key symptom
indicators (a1, a2, a3, a4) of 6 suspected pneumonia patients
(x1, x2, x3, x4, x5, x6), which are specifically mapped to body
temperature and blood oxygen saturation. The specific map-
pings are body temperature, blood oxygen saturation, white
blood cell count and lung CT shadows. The final diagnosis
results (d1 = 1, d2 = 0) and (d1 = 0, d2 = 1) represent
non-pneumonia and pneumonia respectively. The patients were
divided into 2 decision classes as follows:

c1 = {x1, x2, x3} , c2 = {x4, x5, x6} .

TABLE I
FUZZY DECISION FORMAL CONTEXT.

U a1 a2 a3 a4 d1 d2

x1 0.22 0.62 0.07 0.04 1 0
x2 0.19 0.58 0.10 0.13 1 0
x3 0.22 0.58 0.08 0.04 1 0
x4 0.39 0.25 0.42 0.38 0 1
x5 0.42 0.25 0.51 0.46 0 1
x6 0.58 0.29 0.73 0.75 0 1

Fuzzy granular concept space:

Q1 = {({x1}, {0.22, 0.62, 0.07, 0.04});
({x2}, {0.19, 0.58, 0.10, 0.13});
({x3}, {0.22, 0.58, 0.08, 0.04});
({x6}, {0.58, 0.29, 0.73, 0.75});
({x5, x6}, {0.42, 0.25, 0.51, 0.46});
({x1, x2, x3}, {0.19, 0.58, 0.07, 0.04});
({x4, x5, x6}, {0.39, 0.25, 0.42, 0.38});
({x1, x2, x3, x6}, {0.19, 0.29, 0.07, 0.04});
({x2, x4, x5, x6}, {0.19, 0.25, 0.10, 0.13});
({x1, x3, x4, x5, x6}, {0.22, 0.25, 0.07, 0.04});
({x2, x3, x4, x5, x6} , {0.19, 0.25, 0.08, 0.04})} ,

Q2 = {({x1}, {0.22, 0.62, 0.07, 0.04});
({x6}, {0.58, 0.29, 0.73, 0.75});
({x5, x6}, {0.42, 0.25, 0.51, 0.46});
({x1, x2, x3}, {0.19, 0.58, 0.07, 0.04});
({x4, x5, x6}, {0.39, 0.25, 0.42, 0.38});
({x1, x2, x3, x6}, {0.19, 0.29, 0.07, 0.04});
({x2, x4, x5, x6}, {0.19, 0.25, 0.10, 0.13});
({x1, x3, x4, x5, x6}, {0.22, 0.25, 0.07, 0.04});
({x2, x3, x4, x5, x6} , {0.19, 0.25, 0.08, 0.04})} .

The following text uses C1 ∼ C20 to represent the above
20 concepts in sequence.

Under different decision classes, calculate the correlation of
attributes with respect to decision classes.

δc1(a1) = 0.21, δc1(a2) = 0.59,
δc1(a3) = 0.08, δc1(a4) = 0.07,
δc2(a1) = 0.46, δc2(a2) = 0.26,
δc2(a3) = 0.55, δc2(a4) = 0.53.

Compute attribute fluctuation:

Flc1(a1) = 0.04, F lc1(a2) = 0.05,

F lc1(a3) = 0.03, F lc1(a4) = 0.12,

F lc2(a1) = 0.23, F lc2(a2) = 0.05,

F lc2(a3) = 0.35, F lc2(a4) = 0.44.

Weight the attributes:

w =

(
0.28 0.26 0.29 0.17
0.26 0.32 0.22 0.20

)
.

The contribution degree of all concepts in the fuzzy granular
concept space are as follows:

CCD1(C1) = 0.92, CCD1(C2) = 0.89,
CCD1(C3) = 0.95, CCD1(C4) = -1.00,
CCD1(C5) = -0.37, CCD1(C6) = 0.93,
CCD1(C7) = -0.19, CCD1(C8) = 0.64,
CCD1(C9) = 0.56, CCD1(C10) = 0.61,
CCD1(C11) = 0.61, CCD2(C12) = -0.57,
CCD2(C13) = 0.45, CCD2(C14) = 0.84,
CCD2(C15) = -0.02, CCD2(C16) = 0.62,
CCD2(C17) = -0.27, CCD2(C18) = 0.13,
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Algorithm 1: Construct the γ-fuzzy granular concept
space Q

γ

k .

Input: Fuzzy formal decision context (U,A, Ĩ,D, J)
and threshold γ.

Output: γ-fuzzy granular concept space Q
γ

k .
begin

Compute U/D = { c1, c2, . . . , cl }.
for k = 1 : l do

Q
γ

k ← ∅.
Compute Qk.
for j = 1 : |A| do

Compute Flck and wkj .
end
for (X , B̃) ∈ Qk do

Compute CCDd(X , B̃).
end
if Cd(X ,B̃) ≥ γ then

Q
γ

k ← (X , B̃).
end

end
return {Qγ

1 , Q
γ

2 , . . . , Q
γ

l }.
end

CCD2(C19) = -0.22, CCD2(C20) = -0.24.

Let the threshold γ = 0.6. The γ-fuzzy granular concept
space is as follows:

Q
γ

1 = {C1, C2, C3, C6, C8, C10, C11} ,
Q

γ

2 = {C14, C16} .

IV. CONCEPT SPACE CLUSTERING AND
LABEL PREDICTION

The previous section addressed the construction of the
γ-fuzzy granular concept space. Although the threshold γ
provides a means to control the number of concepts within the
space, it ensures that important concepts are not inadvertently
excluded. However, this results in a relatively large number
of concepts, which significantly reduces the computational
efficiency of the fuzzy CCL model. To mitigate this issue,
the present paper proposes a method to measure the degree of
concept correlation of fusion extent and intent. The concept
clustering of dynamic fusion is used to generate pseudo-
concepts and reduce the scale of the γ-fuzzy granular concept
space, so as to avoid the problems of unstable quality of
pseudo-concepts and dilution of key information caused by
fixed fusion sequence.

Definition 4.1: Let (U,A, Ĩ,D, J) be a fuzzy formal deci-
sion context, and let Qγ

k denote the γ-fuzzy granular concept
space. If (X, B̃) ∈ Qγ

k and for every (X ′, B̃′) ∈ Qγ
k , it holds

that CCDd(X, B̃) ≥ CCDd(X
′, B̃′), then (X, B̃) is called a

key concept within the γ-fuzzy granular concept space.
In the context of concept clustering, the degree of correla-

tion between concepts serves as a measure of the rationality of
the clustering process. We introduce a method for evaluating
the degree of concept correlation that considers both the extent
and the intent of the concepts.

Definition 4.2: Let (U,A, Ĩ,D, J) be a fuzzy formal de-
cision context, and let Qγ

k be the corresponding γ-fuzzy
granular concept space. The degree of correlation between two
concepts, (X1, B̃1) and (X2, B̃2) ∈ Qγ

k , is as follows:

θ1,2 =
∂5 |X1

⋂
X2|

∂5 |X1

⋂
X2|+ ∂3 |X1 −X2|+ ∂4 |X2 −X1|

, (8)

where, ∂1 = CCDd(X1,B̃1), ∂2 = CCDd(X2,B̃2), ∂3 =
|X1−X2|

|X1| ∂1, ∂4 = |X2−X1|
|X2| ∂2, ∂5 = |X1

⋂
X2| ( ∂1

|X1| +
∂2

|X2| ).
A higher value of θ1,2 indicates a stronger correlation

between the two concepts. Let (Us, A, Ĩs, D, Js) be a sub-
context of (U,A, Ĩ,D, J). The clustering process for its γ-
fuzzy granular concept space proceeds as follows: First, the
concepts are sorted by their contribution degrees in descending
order, with the key concept (Xi, B̃i) serving as the core of
the clustering. Next, the degree of correlation, θi,j , between
(Xi, B̃i) and each remaining concept (Xj , B̃j) is computed.
If θi,j ≥ η for a given threshold η (where 0 ≤ η ≤ 1), then
(Xj , B̃j) and (Xi, B̃i) are considered as belonging to the same
pseudo-concept cluster Qp and are removed from the concept
space. This clustering process is repeated until no further
concepts remain in the space. The generated pseudo-concept
clusters are then clustered to form new pseudo-concepts.

Definition 4.3: Let (U,A, Ĩ,D, J) be a fuzzy formal
decision context. For any pseudo-concept cluster Qp

k =
{(X1, B̃1), (X2, B̃2), . . . , (Xp, B̃p)}, the corresponding gen-
erated pseudo-concepts are as follows:

X
p
= X1

⋃
X2

⋃
. . .

⋃
Xp,

B̃
p
(a) =

1

2p−1 (B̃1(a) + B̃2(a) + 2B̃3(a) . . .+ 2p−2B̃p(a)).

Algorithm 2 outlines the clustering process for the γ-fuzzy
granular concept space. Upon completing concept clustering
within the γ-fuzzy granular concept space, the γ-fuzzy gran-
ular concept clustering space, denoted as QF , is obtained as
follows:

QF =


QF

1
QF

2
...

QF
l

 =


(X

p
1

1 , B̃
p
1

1 ) (X
p
2

1 , B̃
p
2

1 ) . . . (X
p
ω1

1 , B̃
p
ω1

1 )

(X
p
1

2 , B̃
p
1

2 ) (X
p
2

2 , B̃
p
2

2 ) . . . (X
p
ω2

2 , B̃
p
ω2

2 )
...

...
...

(X
p
1

l , B̃
p
1

l ) (X
p
2

l , B̃
p
2

l ) . . . (X
p
ωl

l , B̃
p
ωl

l )

 ,

where ωk =
∣∣QF

k

∣∣ (1 ≤ k ≤ l).
Example 4.1: (Continued from Example 3.1) Let the thresh-

old be η = 0.65. The γ-fuzzy granular concept space Qγ
1 is

divided into three clusters as follows:

{C3, C6, C8, C10, C11} , {C1} , {C2} .

Similarly, the division of the γ-fuzzy granular concept space
Qγ

2 is as follows:

{C14, C16} .

For the pseudo-concept clusters {C3, C6, C8, C10, C11} and
{C14, C16}, the corresponding generated pseudo-concepts C

′

3
and C

′

14 are as follows:

({x2, x3, x4, x5, x6},{0.20, 0.39, 0.07, 0.04});
({x4, x5, x6},{0.41, 0.25, 0.47, 0.42}).
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Algorithm 2: Construct the γ-fuzzy granular concept
clustering space QF .

Input: γ-fuzzy granular concept space Q
γ

k and
threshold η.

Output: γ-fuzzy granular concept clustering
space QF .

begin
for k = 1 : l do

Q
F

k ← ∅.
while Q

γ

k ̸= ∅ do
Sort the concepts in Q

γ

k .
Q

p ← (X1, B̃1), Q
γ

k ← (X1, B̃1).
for j = 2 :

∣∣Qγ

k

∣∣ do
if X1

⋂
Xj ̸= ∅ then

Compute θ1,j .
if θ1,j ≥ η then

Q
p ← (Xj ,B̃j), Q

γ

k ← (Xj ,B̃j).
end

end
end
for (Xj ,B̃j) ∈ Q

p

do
Generate (X

p
B̃

p
).

Q
F

k ← (X
p
B̃

p
).

end
end

end
return

{
QF

1 , Q
F

2 , . . . , Q
F

l

}
.

end

(a) (b) (c)

Fig. 1. A graphical demonstration for a new fuzzy concept generation.

In order to represent the processes of concept generation,
Fig. 1 illustrates the overall procedure of a new fuzzy concept
generation, where C0 = (U, ∅) and C23 = (∅, A). Mean-
while, the processes of concept generation can be represented
as follows. Firstly, based on Algorithm 1, a fuzzy granular
concept space can be constructed (see Fig. 1(a) for details).
Secondly, construct γ-fuzzy granular concept space, select the
key concept as clustering core., and then we can generate
a fuzzy concept by Definition 4.3 (see Fig. 1(b) for further
details). Finally, in a similar manner, a pseudo-concept can be
constructed, and we can obtain a new γ-fuzzy granular concept
clustering space and its corresponding fuzzy concepts. Please
refer to Fig. 1(c) for details.

In practical applications, existing fuzzy CCL models typ-
ically perform label prediction by similarity matching after
clustering or weighting the fuzzy concepts. However, this

approach only considers the similarity between concepts and
neglects the structural information inherent among the fuzzy
concepts. To enhance the performance of label prediction, it is
crucial to develop a model that incorporates both similarity and
structural information. Set approximation [21] serves as an ef-
fective approach for CCL, leveraging available clues. Through
the upper and lower approximations, more abundant informa-
tion is extracted from the hierarchical relationship between the
sub-concepts and the parent concepts. This effectively solves
the problem that the traditional similarity matching model only
relies on the surface similarity between concepts and ignores
the structural information. Consequently, it becomes necessary
to construct upper and lower approximation spaces based on
the clustered γ-fuzzy granular concept space.

Definition 4.4: Let Q
F

k represent the γ-fuzzy granular
concept clustering space. For any fuzzy set B̃t, the upper
and lower approximation spaces of B̃t in the γ-fuzzy granular
concept clustering space Q

F

are as follows:

Aprhk(B̃t) =
⋃

(X ,B̃)∈Q
F

k ,B̃⊂B̃t

B̃,

Aprlk(B̃t) =
⋂

(X ,B̃)∈Q
F

k ,B̃t⊆B̃

B̃,

where (Aprh1(B̃t), Aprh2(B̃t), . . . , Aprhl(B̃t)) and
(Aprl1(B̃t), Aprl2(B̃t), . . . , Aprll(B̃t)) denote the upper
and lower approximation spaces of B̃t under the γ-fuzzy
granular concept clustering space QF , respectively.

Label prediction is performed by calculating the maximum
similarity between the fuzzy set of the testing sample and the
fuzzy sets in the upper and lower approximation spaces:

SAhk(B̃t) = 1−

√√√√ m∑
j=1

(B̃t(aj)−Aprhk(B̃t(aj)))
2
,

SAlk(B̃t) = 1−

√√√√ m∑
j=1

(B̃t(aj)−Aprlk(B̃t(aj)))
2
.

Thus, the label prediction is determined as: label =
arg max(max(SAlk1

), max(SAhk2
)), where k1, k2 =

(1, 2, . . . , l). Obviously, the above maximum similarities not
only consider the similarity between fuzzy granular concepts,
but also include the structure information among them. Algo-
rithm 3 presents the label prediction process for the testing
samples.

Fig. 2 illustrates the overall framework of the proposed
Attribute Fluctuation-Based CCL (AFFCCL) model, which
consists of three stages:

(1) Construction of the fuzzy granular concept space.
(2) Formation of the γ-fuzzy granular concept space Q

γ

k

and the γ-fuzzy granular concept clustering space QF based
on attributes fluctuation, threshold γ and η.

(3) Establishment of the upper and lower approximation
spaces for label prediction of testing samples.

The time complexity of the AFFCCL is determined by
the time complexities of Algorithm 1 to 3. In Algorithm
1, the time complexity of constructing the γ-fuzzy granular
concept space O(|U | (|U | |A|+|D|)). In Algorithm 2, the time
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Fig. 2. Overall framework of AFFCCL.

Algorithm 3: Label prediction of testing samples.

Input: Testing samples xt and its B̃t, γ-fuzzy granular
concept clustering space QF = {Qγ

1 , Q
γ

2 , . . . , Q
γ

I }.
Output: The label lt for testing samples xt.
begin

Compute (Aprh1(B̃t), Aprh2(B̃t), . . . ,
Aprhl(B̃t)) and (Aprl1(B̃t), Aprl2(B̃t),

. . . , Aprll(B̃t)).
LD ← ∅, UD ← ∅.
for k = 1 : l do

Compute SAhk(B̃t) and SAlk(B̃t).
UD ← SAhk(B̃t), LD ← SAlk(B̃t).

end
Compute l = arg max(max(UD), max(LD)).
return lt.

end

complexity of constructing the γ-fuzzy granular concept clus-
tering space O(|U | |A|2). In Algorithm 3, the time complexity
of label prediction for testing samples is O(|U | |A|2 |D|).
Therefore, the overall time complexity of the AFFCCL model
is O(|U | |A|2 |D|).

V. EXPERIMENTAL STUDY

In this section, experiments are conducted on 15 UCI
datasets, and comparisons are made with multiple existing
methods to assess the performance of the proposed AFFCCL
model.

A. General Settings

To evaluate the classification performance of the proposed
AFFCCL model, 15 datasets were downloaded from the UCI
datasets. Detailed information about these datasets is presented

in Table II. All datasets underwent Min-Max normalization
to generate fuzzy datasets (U,A, Ĩ,D, J). The normalized
value Ĩ(x, aj) for object x under conditional attribute aj is
defined as follows:

Ĩ(x, aj) =

f(x, aj)− min
1≤i≤n

f(xi, aj)

max
1≤i≤n

f(xi, aj)− min
1≤i≤n

f(xi, aj)
,

where f(x, aj) represents the initial value of object x under
conditional attribute aj , min f(x, aj) and max f(x, aj) de-
note the minimum and maximum values of all objects under
conditional attribute aj , respectively. In the experiments, 80%
of the data from each dataset was randomly selected as the
training set for concept prediction, while the remaining 20%
was used for testing.

TABLE II
DATA SET INFORMATION TABLE.

ID Data set Object Attribute Class

1 Molecular Biology 106 57 2
2 Iris 150 4 3
3 Hepatitis 155 19 2
4 Planning 182 13 2
5 Parkinsons 197 23 2
6 Sonar 208 60 2
7 Glass 214 9 6
8 Audiology 226 69 18
9 Spectf Heart 267 23 2
10 Breast 286 9 2
11 Haberman’s Survival 306 3 2
12 Dermatology 366 34 6
13 Indian Liver Patient 583 10 2
14 Tic-Tac-Toe 958 9 2
15 Image Segmentation 2310 19 7

To verify the effectiveness and feasibility of the proposed
model, AFFCCL was compared with 20 other classification
methods. These include 13 fuzzy similarity-based classifi-
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cation methods, such as CFKNN [22], FENN [23], FRNN
[24], and others, as well as 6 fuzzy CCL-based classification
methods, including FCLM [16], DMPWFC [25], FRCM [26],
MFCCL [17], FGCCL [14], and AFFCCLCS (AFFCCL+ Co-
sine Similarity measure method), as well as a neural network
classification method, MLP (Multilayer Perceptron).

Additionally, to improve the model’s adaptability to real-
world complexity and enhance robustness, Gaussian perturba-
tion was introduced into the concept contribution calculation.
as follows:

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 .

Specifically, let µ represent the mean (location parameter),
σ2 the variance (scale parameter), and e a random variable.
To minimize statistical errors, all experiments were repeated
10 times. The experiments were performed on a platform
running Windows 10, with an Intel(R) Core(TM) i5-6500 CPU
@ 3.2 GHz and 8GB of memory, using Python 3.6 as the
development environment.

B. Comparison of the Number of Concepts

This section analyzes the impact of varying thresholds on
the number of concepts generated by the AFFCCL model
across the 15 datasets. The change in the number of concepts
is illustrated in Fig. 3, where Initial Concept Count DFk,
K Concept Count DFk and Clustered Concept Count DFk
(k = 1, 2, . . . , l) respectively represent the number of concepts
in fuzzy granular concept space Qk, γ-fuzzy granular concept
space Q

γ

k and γ-fuzzy granular concept clustering space QF
k .

Since the number of concepts generated and the threshold
value ranges differ across datasets, the plots in Fig. 3 exhibit
different characteristics. As shown, the number of concepts in
the fuzzy granular concept space decreases monotonically as
the threshold γ increases, while the number of concepts in γ-
fuzzy granular concept space increases monotonically as the
threshold η increases. This behavior effectively reduces model
complexity.

C. Threshold Analysis

In the experiment, both thresholds γ and η range from
[0, 1], with a step size of 0.01. For the threshold γ, if the
value is too large, all concepts are discarded, resulting in a
sharp decline in classification accuracy. Conversely, if γ is too
small, it has negligible effects on classification accuracy and
model complexity. When γ ≤ 0.40, the classification accuracy
remains almost unchanged, but when γ ≥ 0.95, no output is
generated, resulting in zero classification accuracy. Therefore,
the threshold γ was set within the range [0.40, 0.95] with a
step size of 0.01. The threshold η is influenced by γ. When
η ≥ 0.80, its impact on classification accuracy becomes more
pronounced. Consequently, γ as set within the range [0.80,
0.99], also with a step size of 0.01. Fig. 4 shows the impact of
threshold variations on the classification accuracy of AFFCCL.

In datasets (a), (c), (d), (f), (l), and (o), the classifica-
tion accuracy is primarily influenced by changes in γ, with
minimal sensitivity to η. These thresholds mainly affect the

(a) ID1 (b) ID2 (c) ID3

(d) ID4 (e) ID5 (f) ID6

(g) ID7 (h) ID8 (i) ID9

(j) ID10 (k) ID11 (l) ID12

(m) ID13 (n) ID14 (o) ID15

Fig. 3. Graph of Concept Count changes under different thresholds.

size of the concept space, reducing model complexity while
maintaining classification accuracy. In contrast, datasets (c),
(d), (l), and (o) demonstrate improvements in classification
accuracy as η changes, while also reducing model complexity.
The classification accuracy of datasets (b), (e), (g), and (j)
is influenced by both thresholds, but datasets (h), (i), (k),
(m), and (n) show more significant sensitivity to η. These
results suggest that the thresholds have varying degrees of
importance, with γ primarily affecting the number of concepts
and model complexity, and η mainly affecting classification
accuracy. In conclusion, AFFCCL can strike a balance between
complexity and accuracy by selecting a reasonable threshold.
The effectiveness of the multi-granularity mechanism and
concept clustering in improving the classification results has
been proved.

D. Comparison of Classification Performance

For comparison purposes, the algorithms are grouped into
two categories. The first group includes 6 fuzzy CCL al-
gorithms and a neural network algorithm, the second group
includes 13 fuzzy similarity-based classification algorithms.
The classification performance of AFFCCL, along with the
two groups of algorithms, is summarized in Table III. The
best accuracy for each dataset is highlighted in bold. From
Table III, it is evident that AFFCCL achieves an average
classification accuracy of 87.32%, which is 4.61% higher than
FCLM, 11.78% higher than DMPWFC, 5.48% higher than
FRCM, 18.94% higher than MFCCL , 1.24% higher than
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TABLE III
AVERAGE PREDICTION ACCURACY (MEAN ± STANDARD DEVIATION %) OF AFFCCL AND 17 CLASSIFICATION METHODS BASED ON FUZZY CCL AND

FUZZ SIMILARITY.

ID AFFCCL FCLM DMPWFC FRCM MFCCL FGCCL AFFCCLCS MLP

ID1 86.82±6.25 73.64±6.36 43.31±12.81 76.15±7.86 59.50±0.81 84.25±1.13 68.45±7.61 65.91±11.03
ID2 100.00±0.00 97.67±1.53 96.96±2.29 96.00±2.63 58.37±2.10 97.67±2.60 91.25±3.96 97.67±3.00
ID3 90.67±2.49 81.94±5.24 69.97±4.98 84.86±5.40 84.57±2.41 89.71±2.62 83.87±5.45 90.00±7.04
ID4 73.55±3.76 68.11±2.02 60.28±10.57 62.89±6.38 54.73±2.72 72.21±1.58 62.93±5.90 67.31±3.24
ID5 97.50±1.94 96.92±1.54 55.57±16.15 91.86±4.28 79.07±3.74 96.97±0.73 90.06±2.54 97.21±1.71
ID6 87.38±4.13 86.90±3.06 81.89±13.51 84.38±4.74 58.96±4.17 87.16±2.26 77.74±7.87 84.62±5.41
ID7 83.26±5.58 74.19±4.35 72.60±6.35 70.87±6.50 60.45±6.22 77.83±4.54 80.64±4.45 78.53±3.89
ID8 82.39±2.47 75.50±4.85 80.91±10.70 75.23±3.78 56.06±6.45 85.65±1.79 62.21±2.41 79.65±5.42
ID9 84.81±2.46 80.93±4.06 73.56±4.68 77.29±2.90 84.07±1.93 80.14±3.62 76.47±1.53 81.46±4.61
ID10 77.93±1.69 72.76±6.01 77.61±9.11 78.39±7.42 64.52±4.52 80.71±2.07 66.82±6.64 73.08±6.33
ID11 74.68±1.92 72.42±5.92 73.18±4.61 68.79±5.21 73.99±2.15 73.04±3.27 66.19±4.95 74.02±3.93
ID12 96.76±1.83 96.08±1.41 93.15±4.85 96.79±1.09 83.30±1.57 95.19±1.31 95.31±2.10 95.49±1.36
ID13 74.79±1.39 67.01±2.87 62.48±2.41 66.97±3.76 72.18±2.10 74.12±1.12 62.83±4.05 66.64±5.73
ID14 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 65.10±1.75 100.00±0.00 83.90±1.93 100.00±0.00
ID15 99.33±0.18 96.58±0.90 91.64±5.38 97.16±0.73 70.85±2.47 96.49±0.73 97.86±1.91 96.95±2.31

Ave. 87.32 82.71 75.54 81.84 68.38 86.08 77.64 83.24

ID AFFCCL CFKNN FENN FRNN FRNN-FRS FRNN-VQRS IF-KNN PEKNN

ID1 86.82±6.25 79.36±13.01 82.18±11.01 73.55±12.94 83.65±1.77 82.08±1.96 82.27±13.62 80.92±1.43
ID2 100.00±0.00 94.00±8.14 95.33±4.27 88.67±7.33 95.33±4.27 95.33±4.27 94.00±4.67 86.67±14.30
ID3 90.67±2.49 85.00±12.25 86.25±10.38 88.75±6.63 41.25±14.84 75.00±13.69 86.25±10.38 83.75±11.25
ID4 73.55±3.76 55.92±2.23 67.05±4.10 71.46±1.52 64.77±8.45 64.24±7.68 67.60±8.08 68.74±9.23
ID5 97.50±1.94 74.31±0.90 93.68±0.89 84.84±0.78 94.89±4.53 94.47±0.92 93.95±5.82 91.28±1.20
ID6 87.38±4.13 68.21±11.98 77.79±8.97 86.48±6.18 87.45±8.40 86.48±7.77 81.17±10.31 77.31±10.72
ID7 83.26±5.58 45.42±11.41 68.48±13.17 62.48±8.76 70.86±11.80 69.84±10.54 69.99±11.99 71.09±12.99
ID8 82.39±2.47 60.79±11.25 60.24±9.11 56.21±9.69 63.79±11.52 57.71±11.60 63.32±12.57 58.26±12.46
ID9 84.81±2.46 69.02±8.30 65.90±4.67 69.73±6.87 50.48±7.92 47.08±7.56 62.93±5.79 60.71±5.62
ID10 77.93±1.69 67.80±7.26 73.44±4.97 71.37±6.08 72.39±9.16 70.32±7.29 70.25±5.46 67.80±6.89
ID11 74.68±1.92 65.06±6.02 70.26±5.18 73.53±0.94 64.04±5.65 64.04±5.65 71.55±5.02 67.01±7.65
ID12 96.76±1.83 96.42±0.38 96.73±2.02 94.29±0.54 95.35±3.26 94.41±0.51 96.93±0.37 75.44±9.83
ID13 74.79±1.39 63.64±4.60 65.21±5.66 71.36±0.72 65.52±6.49 65.35±6.37 66.55±4.32 61.40±5.81
ID14 100.00±0.00 70.19±0.53 76.62±0.20 69.93±0.61 72.00±0.34 71.92±0.20 79.08±0.47 76.42±0.50
ID15 99.33±0.18 75.67±1.79 94.11±1.22 81.90±1.28 95.19±0.94 95.19±0.94 94.72±1.00 78.10±1.66

Ave. 87.32 71.39 78.26 76.30 74.46 75.70 78.70 73.66

ID AFFCCL EF-KNN-IVFS FRKNNA FuzzyKNN FuzzyNPC GAFKNN D-SKNN

ID1 86.82±6.25 71.72±13.80 75.64±10.58 82.27±13.62 78.45±14.80 80.36±12.64 82.27±13.62
ID2 100.00±0.00 94.67±4.99 92.67±4.67 94.00±4.67 92.67±7.57 94.00±4.67 94.00±4.67
ID3 90.67±2.49 87.50±7.91 86.25±8.75 83.75±12.56 83.75±12.56 81.25±10.08 85.00±10.90
ID4 73.55±3.76 61.58±11.62 57.11±5.63 69.18±8.04 55.49±1.89 68.57±13.31 65.94±7.31
ID5 97.50±1.94 95.56±1.07 88.89±1.50 94.95±5.48 76.41±1.06 96.47±0.67 93.94±5.82
ID6 87.38±4.13 79.29±6.58 80.67±9.61 84.05±9.02 68.69±10.07 85.98±7.45 82.62±9.51
ID7 83.26±5.58 64.33±9.23 63.84±10.06 72.25±12.10 48.43±12.27 73.28±12.05 71.00±11.48
ID8 82.39±2.47 56.13±6.35 56.19±7.73 72.50±11.78 76.97±10.07 70.50±8.71 65.87±9.17
ID9 84.81±2.46 64.86±5.35 64.87±6.54 60.68±5.60 67.85±10.32 61.82±5.03 61.05±6.07
ID10 77.93±1.69 66.08±5.27 68.18±7.59 68.53±9.51 67.45±8.12 67.86±7.75 67.14±7.11
ID11 74.68±1.92 68.26±5.70 71.55±4.29 67.33±5.81 65.72±6.58 68.98±6.76 69.94±5.05
ID12 96.76±1.83 95.96±0.65 94.96±0.76 97.56±2.25 96.46±2.98 97.23±0.25 95.67±3.86
ID13 74.79±1.39 64.52±4.82 61.75±6.56 66.21±3.67 64.66±5.27 64.85±5.30 65.69±3.59
ID14 100.00±0.00 80.22±0.52 84.24±0.60 79.12±0.46 68.51±0.53 80.24±0.47 79.12±0.46
ID15 99.33±0.18 93.16±1.38 93.07±1.75 95.50±0.93 75.32±1.97 94.68±1.06 94.85±1.26

Ave. 87.32 76.26 75.99 79.12 72.46 79.07 78.27

FGCCL, 9.68% higher than AFFCCLCS, and 4.08% higher
than MLP. The AFFCCL model outperforms all algorithms
in the first group. Except for the audiology (ID8), breast
(ID10) and dermatology (ID12) datasets, AFFCCL achieves
the highest accuracy on all other datasets. In comparison to
the second group of algorithms, AFFCCL achieves the best
accuracy on 13 of the 15 datasets, with the exception of the
Sonar (ID6) and Dermatology (ID12) datasets.

E. Time Complexity Analysis

Through the time complexity analysis of AFFCCL model
and 5 fuzzy CCL-based classification models, this section
further analyzes that AFFCCL model achieves the best balance
between time complexity and classification performance. The
time complexity analysis is shown in Table IV, where, U∗ is
the updated object set, C is the granular reduction attribute
set, R(S) is the rule set, V is validation set, T is the test
set, CS

λ̃(i) is the fuzzy concept clusters space, t, the number
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(a) ID1 (b) ID2 (c) ID3

(d) ID4 (e) ID5 (f) ID6

(g) ID7 (h) ID8 (i) ID9

(j) ID10 (k) ID11 (l) ID12

(m) ID13 (n) ID14 (o) ID15

Fig. 4. Graph of Accuracy changes under different thresholds.

of iterations of the parameter γ1 (usually 11), and wk is the
weighted fuzzy concept space.

TABLE IV
TIME COMPLEXITY OF CCL MODELS.

Model Time complexity

AFFCCL O(|U | |A|2 |D|)

MFCL O(|U |+ t |k| |V |+ |C
S
λ̃1(i) | |T |)

DMPWFC O(|A| (|U |+ |wk|2))
FRCM O(|U∗| |A|+ |U | |C|+ |R(S)| |T |)
MFCCL O(|U | (|U |2 + |A|))
FGCCL O(|U | |A|2 |D|)

The time complexity of both AFFCCL and FGCCL is
O(|U |2|A|2 |D|). The size of |U |, |A| and |D| directly affects
the construction time of concept space, which is determined
by the size of data. It is suitable for medium-scale data, and
the importance of attributes is uneven. The time complexity
of FMCL is O(|U | + t |k| |V | + |C

S
λ̃1(i) | |T |). γ1 Affects

the number of clusters |CS
λ̃1(i) |, the larger the γ1, the fewer

clusters and the faster the prediction stage, but it may reduce

the accuracy. The size of |U | directly affects the construction
time of the concept space. The size of |V |and |T | determines
the time-consuming of the parameter tuning and prediction
stage, which is specifically determined by the data size and
the dominant factors of the stage. It is suitable for fuzzy
concept clustering that requires parameter tuning. The time
complexity of DMPWFC is O(|A| (|U | + |wk|2)). The size
of |U | and |A| directly affects the construction time of the
weighted fuzzy concept space. The size of the weighted fuzzy
concept space |wk| affects the time-consuming of constructing
the progressively weighted fuzzy concept space and the pre-
diction stage. The time complexity of the DMPWFC model is
determined by the size of the weighted fuzzy concept space.
In the best case, the concepts generated by different objects
are all the same, that is, |wk| = 1. At this time, the total
time complexity of the DMPWFC model is O(|U | |A|). In the
worst case, the concepts generated by different objects are all
unique, that is, |wk| = |U |, and the total time complexity of
the DMPWFC model is O(|U |2 |A|). Suitable for incremental
learning under dynamic data. The time complexity of FRCM
is O(|U∗| |A| + |U | |C| + |R (S)| |T |). If |R (S)| and |T | are
large, then O(|R (S)| |T |) becomes the bottleneck. If |U∗|
and |A| are large, then O(|U∗| |A|) dominates. The time
complexity of the FRCM model is determined by the fastest
growing part of the data size. If the test phase dominates, the
time complexity is O(|R (S)| |T |). If the incremental learning
phase dominates, the time complexity is O(|U∗| |A|). Suitable
for incremental learning or large-scale test sets. The time
complexity of MFCCL is O(|U | (|U |2 + |A|)). The size of
|U | and |A| directly affects the construction time of concept
space, which is determined by the data size. It is suitable for
small-scale data.

In summary, AFFCCL achieves the best balance be-
tween time complexity and classification performance through
weighted attributes, redundant filtering, and dynamic cluster-
ing. It is especially suitable for scenarios where attributes
are of uneven importance and require real-time processing of
incremental data. Its linear complexity make it perform well
on medium-scale data, outperforming other models.

F. Non-parametric Test Analysis

To further validate the classification performance of each
algorithm, the Friedman test was conducted to systematically
assess whether the differences between AFFCCL and the 6
fuzzy CCL classification methods, MLP, as well as the 13
fuzzy similarity-based methods, are statistically significant.
The test statistic FF is expressed as:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

∼ F (k − 1, (k − 1)(N − 1)),

where χ2
F = 12N

k(k+1) (
k∑

i=1

R2
i −

k(k+1)2

4 ), N is the number of

datasets, k is the number of algorithms, and Ri represents
the average ranking of the i-th algorithm. Using α = 0.05,
the critical value of FF is 1.608. The calculated FF value
of 9.797 exceeds the critical value, indicating significant
performance differences. Subsequently, the Bonferroni-Dunn
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test was performed for further comparison. The critical range
for the difference in average ranks is given by:

CDα = qα

√
k(k + 1)

6N
.

The algorithms were divided into five groups for compari-
son, and the Friedman test was conducted separately for each
group. The results show that FF values for each group exceed
the critical values, indicating significant differences between
the performance of AFFCCL and the other algorithms. The
Bonferroni-Dunn test results confirm that AFFCCL signifi-
cantly outperforms all other classification methods.

Since there are a large number of classification algorithms,
the significance test needs to be strictly adjusted, resulting
in a reduction in statistical power. Group comparison can
reduce the magnitude of the adjustment and improve the
sensitivity of the significance test. We evenly divide the
algorithms into five groups for comparison with the AFFCCL
classification method. To ensure the rigor of the experiment,
the Friedman test was conducted on these four groups of
classification methods respectively. When k=5, the critical
value of the FF test is FF = 2.537. By calculating the five
groups of classification methods, we can obtain FF 1=18.407,
FF 2 =27.016, FF 3 =16.230, FF 4 =21.000, and FF 5 =18.950, all
of which are greater than the critical values, indicating that
there are differences in the performance of each group of
algorithms. According to the critical value lookup table, when
k=5, q0.05 = 2.782, CDα = 1.575. The Bonferroni-Dunn test
diagrams of each group of classification methods are shown in
Fig. 5. In each group of classification methods, the differences
between the average ranking of the AFFCCL classification
method and that of other classification methods are all greater
than the critical values. From this, it can be known that the
AFFCCL classification method is significantly different from
other classification methods.

(a) First group (b) Second group

(c) Third group (d) Fourth group

(e) Fifth group

Fig. 5. Groups of Bonferroni-Dunn test chart of the algorithm.

G. Robustness and Consistency of AFFCCL Model

In order to further comprehensively verify the classification
performance of AFFCCL and different classification methods
on different data sets, robustness analysis will be carried out in
this section. The robustness of any method Mi(i = 1, 2, . . .)
on dataset IDj(j = 1, 2, . . .) is defined as the ratio of the

Fig. 6. Robustness analysis.

accuracy of method Mi on dataset IDj to the minimum
accuracy achieved by all methods on the same dataset , and
the definition of robustness is given as follows:

rMi
(IDj) =

accMi
(IDj)

min accMi
(IDj)

,

where accMi(IDj) is the accuracy of method Mi on dataset
IDj, and min accMi(IDj) is the minimum accuracy achieved
by all methods on dataset IDj.

Therefore, the overall robustness of method Mi is the
sum of its robustness across all datasets, denoted as
rMi

=
∑
j=1

rMi
(IDj). Additionally, it is important to note that

a higher robustness value indicates better performance of
the method. Fig. 6 presents a comparison of the robustness
of AFFCCL with 6 fuzzy CCL-based classification methods
across 15 datasets. From Fig. 6, it can be clearly observed
that the overall robustness of AFFCCL ranks first among all
the comparison algorithms, highlighting the robustness of the
proposed method in classification tasks.

Finally, the Kappa coefficient was employed to evaluate
the stability of the AFFCCL model and its capability to
handle minority categories, providing a measure of the model’s
consistency. A higher Kappa coefficient indicates better con-
sistency. Table V presents the average Kappa coefficients ob-
tained through 10 repeated experiments on the 15 datasets. The
results show that AFFCCL achieves higher Kappa coefficients
compared to the other models, with an average coefficient that
is 2% higher than FCLM, 13% higher than DMPWFC, 2%
higher than FRCM, 19% higher than MFCCL, 0.1% higher
than FGCCL, and 9% higher than AFFCCLCS. Moreover,
the Kappa coefficient for AFFCCL on each dataset is at least
0.61, with 7 datasets achieving coefficients greater than 0.81,
indicating high consistency in most cases.

VI. CONCLUSIONS
In response to the challenges of weak attribute-decision

correlations, and redundancy in the concept space in existing
CCL models, this paper proposes a novel AFFCCL model.
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TABLE V
KAPPA COEFFICIENT OF CCL MODELS.

ID AFFCCL FCLM DMPWFC FRCM MFCCL FGCCL AFFCCLCS

ID1 0.82 0.77 0.42 0.76 0.53 0.79 0.65
ID2 1.00 0.94 0.97 0.95 0.45 0.96 0.90
ID3 0.70 0.67 0.45 0.61 0.60 0.68 0.68
ID4 0.69 0.58 0.60 0.60 0.50 0.71 0.59
ID5 0.90 0.88 0.46 0.89 0.74 0.88 0.81
ID6 0.75 0.76 0.45 0.75 0.44 0.76 0.66
ID7 0.71 0.70 0.69 0.73 0.58 0.73 0.70
ID8 0.83 0.81 0.78 0.81 0.52 0.83 0.59
ID9 0.65 0.65 0.54 0.60 0.54 0.65 0.61
ID10 0.73 0.72 0.71 0.72 0.66 0.72 0.66
ID11 0.72 0.57 0.73 0.63 0.72 0.74 0.64
ID12 0.92 0.96 0.92 0.96 0.87 0.96 0.92
ID13 0.61 0.50 0.42 0.52 0.60 0.60 0.45
ID14 1.00 1.00 1.00 1.00 0.54 1.00 0.78
ID15 0.96 0.97 0.87 0.98 0.65 0.95 0.96

Ave. 0.80 0.77 0.67 0.77 0.60 0.80 0.71

The model incorporates innovative methods such as the mea-
surement of attribute fluctuation based on membership degree
variation and the construction of a fuzzy granular concept
space to reduce redundancy. Additionally, it enhances concept
representation by integrating similar fuzzy granular concepts,
leading to the creation of a clustering space and the derivation
of upper and lower approximation spaces. Experimental results
on multiple real-world datasets demonstrate the superior per-
formance of AFFCCL over traditional fuzzy similarity-based
and CCL-based models in terms of classification accuracy,
consistency, and robustness. Nevertheless, the model does have
limitations: 1) sparse data can undermine the reliability of
attribute fluctuation, and noise interferes with the authentic-
ity of semantic association; 2) the model currently lacks a
mechanism for dynamic updates, which limits its ability to
handle real-time data. 3) AFFCCL excels on static datasets, but
its architecture does not yet support real-time learning, large-
scale, and streaming data. In the future, incremental learning
frameworks, distributed computing optimization and concept
drift processing will be developed to expand the application
scenarios of the model. In future research, the focus will
be on developing more lightweight CCL models to improve
efficiency and scalability in high-dimensional data scenarios.
This will involve optimizing computational complexity while
maintaining classification performance. Additionally, enhanc-
ing the model’s ability to handle incomplete fuzzy formal
contexts and multi-view contexts, as well as, integrating real-
time updates will be key areas of exploration. Expanding the
application of AFFCCL to a broader range of domains and
environments will also be an important direction for further
development.
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