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Abstract—Mobile multimedia services are gaining great mo-
mentum among subscribers of mobile networks (MNs). An un-
derstanding of the network traffic behavior is essential in the
evolution of today’s MNs and, thus, leads to more efficient plan-
ning and management of the network’s scarce bandwidth re-
sources. The communication efficiency can be largely improved
(i.e., optimizing the allocation of the network’s limited resources
and sustaining a desirable quality of service) if the network an-
ticipates the needs of its users on the move and, thus, performs
reservation of radio resources at cells along the path to the desti-
nation. In this vein, we propose a mobility prediction scheme for
MNs; more specifically, we first apply probability and Dempster–
Shafer processes for predicting the likelihood of the next destina-
tion, for an arbitrary user in an MN, based on the user’s habits
(e.g., frequently visited locations). Then, at each road junction, we
apply the second-order Markov chain process for predicting the
likelihood of the next road segment transition, given the path from
the trip origin to that specific road junction and the direction to
the destination. We evaluate our proposed scheme using real-life
mobility traces; the simulation results show that the proposed
scheme outperforms traditional schemes.

Index Terms—Cellular network, destination prediction, mobil-
ity model, mobility pattern, mobility prediction, path prediction,
quality-of-service (QoS).

I. INTRODUCTION

C ELLULAR networks have become pervasive in our
society and offer a high-data-transfer rate. These charac-

teristics allow mobile users with portable devices to use vari-
ous services/applications, such as multimedia streaming, with
quality-of-service (QoS) requirements. QoS support in mobile
environments is highly challenging because of mobility and
resource scarcity [1]. Ensuring QoS, anywhere and anytime,
can only be achieved if we are able to predict where a user
would likely demand network usage.

Mobility is an inherent characteristic of users in mobile net-
works (MNs); it introduces considerable overhead in mobility
management and forwarding services to ensure communication
reliability [2]. Indeed, mobile users frequently change their
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points of attachment to the network; this action is called handoff
and is a key element in MNs to provide QoS to the users and
support users’ mobility [3]–[5]. During handoff, a user may
experience different data streaming rates due to disparity in the
bandwidth availability at the different visited cells along the
movement path of the user. Frequent changes in streaming rates,
mainly those with high magnitude, may severely impact the
perceived QoS [6]–[8]. Thus, the key current challenge in MNs
is to provide a minimum acceptable QoS in each cell visited by
the user; this requires prior knowledge of the user’s long-term
movement within a time period dt (e.g., 30 min in advance). In-
deed, if the network can predict the user’s path (i.e., subsequent
transitions of road segments/portions toward the destination),
it can then provide the user with the required QoS during the
whole session. More specifically, the network will accept the
user into the network (e.g., for a multimedia streaming session)
only if there are sufficient resources (e.g., bandwidth) in each
cell (during the user’s residence in the cell) along the predicted
path; otherwise, the user will not be allowed to access the net-
work. Thus, a mobility model (more specifically path prediction
[2], [9]–[27]) with reasonable accuracy is of vital importance
to provide QoS for mobile users. In this paper, we propose a
relatively accurate mobility prediction scheme, which is called
Destination And Mobility path Prediction (DAMP), that allows
predicting final or intermediate destinations (e.g., within a time
period) and, subsequently, mobility paths of mobile users (e.g.,
vehicles, cyclists, and pedestrians) based on 1) the trip origin
and current location, 2) current and future directions of the mo-
bile users, 3) the current and history of the trajectories followed
by the users, and 4) the information on the users’ contextual
knowledge. DAMP consists of two models, namely, Destination
Prediction Model (DPM) and Path Prediction Model (PPM).

The objective of DPM is to estimate the user’s destination
within a time period; it takes into account 1) the user’s habits
in terms of frequently visited locations, 2) the direction from
the movement origin to the current location, and 3) the user’s
contextual knowledge. Indeed, making use of the direction
from the movement origin to the current location, DPM de-
termines potential future destinations; accuracy is improved
using historical and contextual knowledge. It is possible that
a group of potential future destinations may be reached after
using the same road segments within a travel time period;
thus, DPM performs clustering of possible destinations that
aims to reduce the number of potential future destinations; for
example, ten potential future destinations can be regrouped into
three destination clusters. To form a destination cluster, DPM
combines two types of methods: 1) DPM computes, based on
second-order Markov chain, the probability that each possible
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destination cluster is the next destination cluster making use
of filtered historical movement pattern; the filtering process is
based on the day and the time of the day to increase accuracy;
and 2) DPM builds on the work proposed in [28], wherein mo-
bility prediction is based on evidential reasoning of Dempster–
Shafer’s theory making use of the user’s contextual knowledge.
DPM gives different weights to each method according to the
number of days in the considered historical movement pattern.

Based on the computed destination cluster, we propose PPM
that aims to estimate the path (i.e., subsequent transitions of
road segments toward the destination) a user would take during
his movement from the current location toward the destination
within time period dt. PPM takes into account 1) the user’s
habits in terms of the frequency of using road segments to reach
a specific destination (e.g., estimated destination cluster), 2) the
direction from the current location to that specific destination,
3) the current trajectory/path (i.e., subsequence transitions of
road segments from the movement origin to the current lo-
cation), and 4) spatial conceptual maps. More specifically, at
each road junction/intersection, PPM determines the next road
segment a user will likely use during his movement toward
the destination; indeed, PPM selects the potential next road
segments among the adjacent road segments of the considered/
current road junction according to the current direction (i.e.,
direction from the last crossed road junction to the current road
junction) deviation compared with the estimated destination
cluster. Then, making use of filtered historical movement trace,
PPM computes, based on an extended second-order Markov
chain, the probabilities of all selected potential next road seg-
ments given current trajectory/path and destination; the road
segment among the potential next road segments with the
highest probability is then selected as the next road segment.
Here, the historical movement trace filtering process is based
on the day of the week (e.g., weekend, holiday, and Labor Day)
and the time of the day (e.g., morning, noon, afternoon, and
night). PPM repeats the same process until the selection of
the last road segment to the destination cluster. The predicted
user’s path consists of the list of the selected road segments.
To the best of our knowledge, this is the first work that takes
into account both the user’s habits and the user’s contextual
knowledge to estimate the user’s path to the destination. In
addition, this work is the first to consider destination clustering
to reduce errors using historical and contextual knowledge.
More importantly, this work presents one of the few schemes
that allow for predicting, without a restrictive assumption (e.g.,
known specific user pattern), the whole path from the origin
to the destination. In this paper, we do not take into account
energy consumption of user equipment (UE); indeed, we do
believe that energy consumption is not an important constraint
for vehicles, and the impact on their batteries is expected to be
negligible. For users using smart phones on board vehicles, they
can always consider charging them while being on the move. In
case charging is not possible on board vehicles, users shall be
given the flexibility to manually disable DAMP. DAMP can be
also automatically disabled if a UE device has battery below
a predefined threshold, e.g., 20% of the battery. It is worth
noting that users who are not in motion do not run DAMP;
thus, they do not use UE energy for the mobility prediction

process. Indeed, for the sake of energy saving, DAMP can be
automatically disabled when a UE device is moving at a speed
lower than a predetermined threshold, e.g., an equivalent of a
general pedestrian speed.

The remainder of this paper is organized as follows.
Section II presents some related work. Section III describes
the data collection algorithm and the database structure
and presents our proposed mobility prediction scheme using
second-order Markov chain. Section IV evaluates the proposed
mobility prediction scheme via simulations. Section V con-
cludes this paper.

II. RELATED WORK

Mobility modeling has been extensively studied in many
types of wireless networks during the past ten years [2],
[9]–[27]. Mobility model analysis can be used to create models
for predicting user mobility. User mobility prediction allows
estimating/predicting the location and trajectory of the user in
the future. The commonly used mobility models are random
walk, random waypoint, fluid flow, Markovian, and activity-
based mobility models. The simplest of these models are
the random walk and random waypoint models; they were
originally proposed to emulate the unpredictable mobility of
particles in physics. The other models are used for prediction,
such as path prediction. It has been shown that users follow
daily routines and that mobility models have cyclic properties
[1], [2], [12], [14], [19], [23], [26], [27], [29]–[33]. Many
researchers rely on such principles to define user mobility
prediction models that benefit from the periodic nature of
mobility. One of the important fields of users’ mobility predic-
tion models is the individual mobility prediction models; basic
models [1], [2], [12], [14], [19], [23], [26], [27] are models that
employ location, direction, time, and conditional probability.
Indeed, based on the regularity of user mobility, a conditional
probability distribution of next moves is defined considering
movement direction and time; the move with the highest value
is predicted as the next move. In other words, the cell that was
most frequently visited according to the current location, the
current movement direction, and the time of the day is predicted
as the next cell.

Recently, a considerable amount of work has been done on
developing users’ mobility prediction models. Many of these
models [2], [21]–[23], [26], [27], [30], [34] heavily rely on
the availability of prior information on the users’ mobility
history. Whereas the continuous tracking of mobile users may
lead to better predictions in terms of movement, such mod-
els suffer from the large overhead accrued due to constant
monitoring; obviously, this requires a more detailed analysis
of the users’ mobility history and the application of advanced
data mining and knowledge discovery techniques. The models
presented in [17], [28], [35], and [36] are examples in which
the prediction requires no knowledge of the users’ mobility
history; unfortunately, these models are limited to predicting
only where a user is likely to move (i.e., user’s final destination)
instead of the path to reach this final destination. For example,
a scheme that incorporates geographic maps with identifiable
landmark objects (e.g., schools, malls, gyms, and libraries) into
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the users’ mobility prediction models has been proposed in
[28]; more specifically, the mobility prediction architecture [28]
gathers the necessary information for the prediction process and
analyzes this information using the Dempster–Shafer theory to
predict future locations of the mobile user. The process of the
location prediction is carried out in three main phases: infor-
mation gathering, evidence extraction, and decision making.
Information gathering is concerned with capturing the neces-
sary contextual information that includes environment context
(places of interest for users and road segments) and user context
(user’s interests, user’s tasks and goals, and user’s schedule).
Making use of this contextual information, they generate bodies
of evidence applying the concepts of the Dempster–Shafer
theory; for example, the evidence suggesting that a student
with a high interest in exercising would be going to the gym
is eliminated if his schedule does not allow enough spare time.
Then, they compute the belief mass of each body of evidence
(i.e., the probability that the body of evidence occurs). Finally,
to determine the user’s future predicted location, they combine
each pair of hypothesis-belief mass using the Dempster rule of
combination; a hypothesis represents a location or a sequence
of locations. Indeed, they compute the belief function Bel(Hi)
of hypothesis Hi. Bel(Hi) quantitatively describes all the rea-
sons to believe in hypothesis Hi. The location with the highest
belief value is the predicted future location of the user. How-
ever, this technique (i.e., destination prediction model) is used
in certain path prediction models [7], [8] to improve prediction
accuracy by eliminating or affirming certain paths according to
the predicted destination. However, such models require a vast
amount of information (e.g., user’s preferences, user’s goals,
and user’s schedules) to be collected and processed and may not
perform very well with temporary changes in the surrounding
infrastructure.

A few models consider using both mobility historical data
and current conditions in the network. One example is the
model proposed in [27], which considers both the current
trajectory of mobile users (i.e., ordered set of cells already
transited) and time-of-day, as well as historical data, to predict
the likelihood of single-cell transition and N -cell transition for
an arbitrary user in wireless networks; the prediction model
performed quite well for lower values of N (e.g., two cells).
In [23], a short-term prediction model that employs mobility
history for predicting the future location of a mobile user
while considering the mobile user’s current trajectory within the
predefined navigation zone was proposed; this model is limited
to only next-cell prediction. In [26], a long-term mobility pre-
diction model that considers both the current trajectory and the
movement direction, as well as historical data, was proposed;
however, the model requires an immense amount of mobility
history and massive processing load.

In the following, we briefly overview our previous contribu-
tions [7], [8] that are most related to the proposed model. In [7],
we proposed a method to estimate a user’s future destination
based on the use of filtered user’s mobility history and con-
textual knowledge; the filter is based on the type-of-day (e.g.,
working, holiday, and weekend) and the time-of-day (morning,
noon, afternoon, evening, and busy hours); the proposed model
also takes into account the movement direction. The drawbacks

of this model are as follows: 1) The automatic identification
of frequently visited locations (FVLs) has not been taken
into account; 2) the databases are not updated according to
the user’s predictability level, which is the degree to which
a correct prediction of a user’s mobility can be made; this
degree is related to the frequency of visited places and tran-
sited roads according to the day-of-week and the time-of-day;
3) the frequency function of FVL is not explicitly defined; and
4) the weighted sum of the belief and probability functions is
not related to the user’s predictability level. In [8], we proposed
an approach that predicts the path the user will use within a
time period during his movement from the trip origin to the
destination; the approach makes use of filtered users’ mobility
history, current movement data (e.g., trip origin and current
location), and spatial conceptual maps while assuming a priori
knowledge of the destination [7]. More specifically, at each road
junction (starting from the location where the user first accesses
the network), the next road junction the user will likely use
during his movement toward the trip destination, is determined.
The drawbacks of this approach [8] are as follows: 1) The
deviation function takes into account the trip origin instead
of the previous road junction, and 2) common conditional
probability is used instead of second-order Markov chain that
is more appropriate in this type of situations.

To conclude, we summarize the limitations of existing mo-
bility prediction models as follows: 1) they are limited to short-
term (e.g., next-cell) mobility prediction [22], [33]; 2) they
do not consider the temporal context (e.g., day-of-week and
time-of-day) [14], [23], [26], [27] and/or the whole path from
the trip origin to the current location and the direction to the
destination [2], [14], [23], [26], [27], [29]; these parameters
play a key role in improving prediction accuracy; 3) they
compute more than on predicted path [29]; 4) they incur high
processing overhead [14], [23], [26]; 5) they require massive
data storage space [14], [29]; 6) they make restrictive assump-
tions (e.g., user’s movements follow a specific pattern [37]); and
7) they solely rely on the history of individual users’ movement
[21], [22].

In this paper, we propose a model that proposes solutions
to overcome these limitations. The proposed DAMP scheme
considers several criteria, namely, trip origin to current location,
current and future directions, user contextual (UC) knowledge,
day-of-week, and time-of-day, in predicting paths; it is a long-
term users’ mobility prediction model. To limit the impact of
using user mobility history (that may change), DAMP considers
user knowledge and regular spatial and temporal patterns for
predicting the mobility of users.

III. DAMP: DESTINATION AND MOBILITY PATH

PREDICTION MODEL

Here, we present the details of the proposed scheme, called
DAMP. More specifically, we present 1) the process used by
DAMP to collect data of interest for the prediction procedure
and the structure of the database used to store these data;
2) the semi-Markov process used by DAMP to derive DPM and
PPM; 3) the DPM that estimates the mobile user destination;
and 4) the PPM that predicts, given the destination computed
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TABLE I
UC INFORMATION STRUCTURE

by DPM, the path the user would take during his movement
from the current location to the destination.

A. User Mobility Patterns

1) Assumptions: In this paper, we assume that the road
topology consists of several roads and junctions while the entire
network space is assumed to be divided into cells. We refer to
the location frequently visited by a user (e.g., home, school,
shop, mall, and office) as an FVL. We assume that a road junc-
tion or an FVL is represented by a node; each node is identified
by a node ID that is related to its geographic coordinates (i.e.,
latitude and longitude); we refer to data about visited nodes
(e.g., time, date, and node ID) as mobility data. We refer to
the road between two nodes a and b as a road segment and
identify it using a road segment ID that is represented by the
node pair (a, b), where a → b �= b → a. A user’s location is
identified by his geographic coordinates. The movement of a
mobile user through the network can be described by a list that
represents the sequence of road segments that was visited by
the user throughout the trip. A user’s mobility pattern from the
network’s perspective is determined by the user’s terminal (e.g.,
mobile phone) mobility pattern. The users’ mobility history
patterns can be periodically recorded using node ID (road
junction and FVL).

The mobility history can either be recorded for each user
or collectively for all users into a single history profile per
location. The latter method is more suitable for situations where
all users generally exhibit similar behavior at a given navigation
zone and are also not significantly impacted by erratic behaviors
from one or more users. Although different groups of users have
different mobility patterns, it can be difficult to address every
type of group behavior in a single mobility model. To derive
DPM, we need contextual knowledge about users; we assume
that UC information is organized into six categories, as shown
in Table I. The UC database can be built 1) by having users fill
out a questionnaire and explicitly express their interests with

regard to different places within their living areas or 2) by hav-
ing users “continuously” registering both their tasks and sched-
uled appointments. To implement mobility data collection, we
assume that 1) the UE maintains a database that records data
about the user movements and his living area; 2) static data
about geographic maps (topology/map of roads), called a nav-
igation map (NM), are readily available; and 3) the UE em-
beds technology, such as a tachometer and Global Positioning
System (GPS), that samples user velocity and coordinates of
places visited by the user, along with the day and the time of
the visits. It is also assumed that an NM database contains ge-
ographic coordinates of nodes (e.g., road junctions and FVLs).
An FVL is extracted from the UC database shown in Table I or
automatically inserted. Indeed, when a user’s velocity is 0 and
the current location is not a road segment or road junction, we
assume that the current location may be a new visited place and
insert it in an FVL database. A user movement trace (UMT)
database contains user ID, date d, time t, and node ID (an
FVL or a road junction) that represents user location at date
d and time t. A user frequently visited location trace (UFVLT)
database contains user ID, date d, arrival time ta, departure time
td, and node ID (an FVL) that represents user location at date d
from arrival time ta to departure time td; in other words, arrival
time ta denotes the time when the user reaches the location,
whereas departure time denotes the time when she leaves it.

To limit the size of UMT and UFVLT databases, each entry/
record in UMT and UFVLT databases is deleted after a certain
number of days, called record lifetime (RL), that is closely re-
lated to the user’s predictability level. Effectively, each user has
a predictability level stored in UC; RL decreases when the pre-
dictability level increases; a “high predictability” level means
the user is more predictable (i.e., it is easier to predict user’s
movements). For example, for a “high (resp., intermediate/
low) predictability” level, the user’s RL can be set to two (resp.,
three/four) weeks. Static databases Node, Road junction, FVL,
User, UC, and NM are updated every six months and also
whenever an update becomes required.
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The following section presents in detail the data collection
process.

2) Data Collection Process: Algorithm 1 presents the pseu-
docode, executed by UE, for recording data. At every time unit
t (e.g., 1 s), the current velocity of the user and geographic
coordinates (latitude and longitude) of his current location are
measured. When the user’s current location is a location (a road
segment or a road junction), which is stored in the NM database
(Line 3), it is inserted together with the current timestamp (date
and time) into the UMT database (Line 4). When the user’s
velocity decreases and falls to 0, the user is deemed not moving
(Line 5). Thus, his current location is inserted together with
the current timestamp (current date and current time) into the
UFVLT database (Lines 6) when the current location is not a
road junction or a road segment (Line 5); it is worth noting that
a road junction or a road segment visited by a user cannot be
designated as an FVL. The attribute “current time” of current
timestamp is assigned to the field “arrival time” in the UFVLT
database (Line 6). Indeed, arrival time corresponds to the time
when velocity falls to 0, whereas departure time corresponds
to the time when velocity starts increasing; in this case, current
velocity is different from 0 (Line 8).

Algorithm 1: Pseudocode for movement data gathering.

Input: User_ID, NM, FVL
Variable: X (Boolean with initial value = true)
Output: UMT, UFVLT, and FVL
1. each t sec {
2. Measure current_velocity and current_location
3. If (current_location is road junction or road segment)
4. Put in UMT the 4-tuple (user_ID, current_date,
current_time, current_location_ID)
5. If [(current_velocity = 0) and (current_location is not
road junction or road segment) and (X = true)] {
6. Put in UFV LT the 5-tuple (user_ID, current_date,
current_time, 0, current_location_ID)
7. X = false
8. } elseif [(current_velocity �= 0) and (current_location is
not road junction or road segment) and (X = false)] {
9. Update the last record of UFV LT set
departure_time = current_time
10. X = true
11. If (current_location does not exist in FV L)
12. Put in FV L the 1-tuple (current_location_ID)
13. }
14. }

Therefore, when the current velocity is different from 0 and
the current location is not a road junction or a road segment
(Line 8), the departure time of the last inserted location in the
UFVLT database is updated, making use of the current time
(Line 9). When the last inserted location in the UFVLT database
(i.e., current location) does not exist in the FVL database
(Line 11), it is inserted into the FVL database (Line 12). The
time complexity of Algorithm 1 is O(n), where n is the number
of time units t during data gathering.

B. Semi-Markov Process

The mobility behavior can be modeled as a semi-Markov
process and can be applied for predicting the transition that an
arbitrary user makes from its current location within time period
dt. The model assumes knowledge of the transition probabili-
ties; these probabilities are computed using the mobility history
that is collected by each user. To avoid an opportunistic location
as an FVL, we derive the frequency function f() that is defined
as follows:

f(l) =
nl

nd
(1)

where nl and nd denote the number of times location l is
recorded in the UFVLT database and the number of recorded
days in the UFVLT database, respectively. Thus, location l
is considered FVL if and only if f(l) exceeds a predefined
threshold fth.

Each mobile user records his mobility history (i.e., UMT
and UFVLT databases); this allows for the computation of
road segment (resp., FVL) transition probabilities Pi→j [i.e.,
transition from road segment (resp., FVL) i to road segment
(resp., FVL) j]. The prediction accuracy of road segment (resp.,
FVL) transitions can be improved by additionally considering
prior road segment transitions of the user before the transition
into the current road segment. In this case, road segment (resp.,
FVL) transition probability can be modified to Ph,i→j , which
is a second-order Markov chain, where h is the subsequence
transitions of road segments from the trip origin to the road
segment i (resp., from FVL i to the current road segment). The
accuracy of the prediction can also be improved by additionally
considering the type of the day and the time of the day. For
example, a user who works from Tuesday to Thursday at a
factory, from Friday to Saturday at a school and does not work
on Monday will have three types of days: factory day, school
day, and rest day.

Second-order Markov chain is derived from a semi-Markov
process where the successive state occupancies are governed
by the transition probabilities Pi→j ; the semi-Markov process
depends on both the current state and the next state transition.
The semi-Markov process for a time-homogeneous process is
given by Qi,j(dt), i.e.,

Pi→j = Qi,j(dt) = Pr{Xn+1 = j, Tn=1 − Tn ≤ dt|Xn = i}
(2)

where Xn and Xn+1 represent the state of the system after the
nth and (n+ 1)th transitions, respectively, with Tn and Tn+1

being the times at which the nth and (n+ 1)th transitions occur,
respectively. Qi,j(dt) denotes the probability that, immediately
after making the transition into state i, the process makes a tran-
sition into state j within t units of time. Thus, the probability
Qi,j() [see (2)] can be computed to evaluate the predictions
of an arbitrary user making a transition to a next location
(e.g., FVL). However, the semi-Markov process for mobility
prediction can also be extended to the case where times-of-
day T ioD (e.g., morning, noon, afternoon, and night), types-
of-day TyoD (e.g., weekend, labor day, holiday, and vacation
day), and the user’s previous locations h are considered in the
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mobility pattern, i.e., extending Qi,j(dt) to QTioD,TyoD
h,i,j (dt, d),

which is defined as follows:

PTioD,TyoD
h,i→j =QTioD,TyoD

h,i,j (dt, d)

= Pr {Xn+1 = j, Tn+1 − Tn ≤ dt|Xn = i

Xn−1 = h, Tn+1 ∈ T ioD, Tn ∈ T ioD

d ∈ TyoD}

=
nh,i,j(T ioD, TyoD)

N∑
k=1

nh,i,k(T ioD, TyoD)

(3)

where d is the current date that is used to define TyoD at which
the nth and (n+ 1)th transitions occur, nh,i,j(T ioD, TyoD) is
the number of times the transition from FVL i to FVL j has
occurred within times-of-day T ioD and types-of-day TyoD
after crossing h, and N is the cardinality of the set of possible
states j.

For the road segment transition prediction, accuracy can be
improved by additionally considering the next destination (i.e.,
FVL to be reached after the current trip) of the user; in this
case, the probability Qi,j() defined in (2) can be modified to
Ph,i,j,D, where D is the estimated destination (an FVL) of the
trip, and h is the set of transited road segments before entering
road segment i. Thus, the semi-Markov process can also be
extended to the case where the user’s estimated destination is
considered in the mobility prediction, i.e., extending Qi,j(dt)

to QTioD,TyoD
h,i,j,D (dt, d), which is defined as follows:

PTioD,TyoD
h,i→j,D =QTioD,TyoD

h,i,j,D (dt, d)

= Pr {Xn+1 = j, Tn+1 − Tn ≤ dt|Xn = i

Xn−1 = h, Xlast = D Tn+1 ∈ T ioD

Tn ∈ T ioD, d ∈ TyoD}

=
nh,i,j,D(T ioD, TyoD)

N∑
k=1

nh,i,k,D(T ioD, TyoD)

(4)

where Xlast represents the destination of the current trip,
nh,i,j,D(T ioD, TyoD) is the number of times the transition
from road segment i to road segment j toward FVL D has
occurred within times-of-day T ioD and types-of-day TyoD
after crossing h, and N is the cardinality of the set of adjacent
road segments of road segment i. In the following section, we
describe how our proposed model makes use of NM, UFVLT,
and UC databases to predict the user’s destination.

C. DPM

The proposed DPM, as part of DAMP, makes use of UC, NM,
and UFVLT databases to predict the user’s destination (i.e., the
next FVL to be visited). Fig. 1 shows the interactions between
UC, NM, and UFVLT databases and DPM functions (e.g., f(),
o(), clustering, Ph,i,j(), Bel(), b(), and ws()).

Fig. 1. DPM processes.

Indeed, the locations stored in UC and UFVLT databases
represent the user’s potential destinations (i.e., FVLs). DPM
does not predict a single destination but a cluster of destinations
that likely includes the user’s destination; we define a cluster
of destinations as a set of FVLs that can be visited/reached by
a user using the same portion of path (set of road segments)
within time period dt. Before the clustering process, we make
use of the deviation function o to select potential destinations
Ψ; the deviation function o measures the deviation rate of an
angle (always smaller than 180) and is defined as follows:

o : [0, 180] → [0, 1]

o(θ) = 1 − θ

180
.

Indeed, we measure the deviation rate o(θcl ) of each FVL l,
which is selected in the UFVLT database, where f(l) ≥ fth
using (1). θcl denotes the angle formed by the current movement
direction (i.e., vector from the trip origin to the current location)
and the movement direction toward FVL l (i.e., vector from
the current location to FVL l). For better understanding, let
us consider the example shown in Fig. 2; the angle formed by
the current movement direction (vector SC) and the movement
direction toward FVL L4 is the angle θcL4. Notice that the
maximum value of θcl is 180◦ (case of U-turn).

We define Ψ as follows:

Ψ =
⋃
l

{l |o (θcl ) ≥ ε} (5)

where ε = o(θth1), and θth1 denotes a predefined threshold.
In our proposed model, θth1 is set to 90◦ to consider FVLs
located in front of the current location according to the current
movement direction.
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Fig. 2. Destination clustering example.

Using the example shown in Fig. 2, we compute Ψ = {L1,
L2, L3, L4} using (5); in this case, ε = 1/2, assuming θth1 =
90. L5 is not an element of Ψ because o(θcL5) < ε = 1/2.

After computing Ψ, we execute the clustering process. In-
deed, all the elements of Ψ that may be reached using the same
portion of the path within a predefined time period dt of travel
form a single cluster; based on the NM database, we derive a
directed graph G whose edges correspond to road segments and
whose vertices correspond to nodes; the road segment length
represents the weight of the corresponding edge. Making use of
graph G, we determine the shortest path to reach each element
of Ψ using Dijkstra’s algorithm; then, making use of the length
of each computed path and the maximum permitted velocity of
road segments, we determine the portion of that computed path
after dt time of travel; finally, the elements of Ψ, which have
the same portion of the path, form a single cluster. For better
understanding, let us consider the example shown in Fig. 2. In
this example, L1, L2, and L3 may be reached using the same
portion of path PL1 within travel time dL. Hence, L1, L2, and
L3 form a single cluster. Intuitively, the prediction becomes
more accurate when the size of clusters decreases.

DPM predicts the user’s destination (or rather the FVL
cluster) using a combination of belief and probability functions.
DPM uses the belief function, i.e., Bel(), adopted in [28].
Bel() is based on the utilization of the mathematical theory of
evidence as a tool of reasoning to investigate the user’s behavior
concerning his decisions about his future location (i.e., FVL).
The theory is based on two ideas: the idea of obtaining degrees
of belief for a related hypothesis and the idea of applying
Dempster’s rule for combining such degrees when they are
based on different bodies of evidence; more details about this
theory can be found in [28]. The net effect of Dempster’s rule
is that concordant bodies of evidence reinforce each other,
whereas conflicting bodies of evidence erode each other. The
main advantage of the underlying theory of evidence over other
approaches [17], [35], [36] is its ability to model the narrowing
of a hypothesis with the accumulation of evidence and to explic-
itly represent uncertainty in the form of ignorance or reservation
of judgment. Bel() makes use of contextual information, stored
in the UC database, to compute the belief level, i.e., Bel(Ci), of
each formed cluster Ci to be the destination cluster. DPM also
computes the probability PTioD,TyoD

h,cl→Ci that the formed cluster
Ci is the destination using (3), where cl is the current location;
it is worth noting that the set of type-of-day (i.e., TyoD) is
different for each user. DPM uses a weighted sum of the belief

and probability functions to compute the destination; the sum is
defined as follows:

ws(ci) = αBel(Ci) + (1 − α)PTioD,TyoD
h,cl→Ci (6)

where α is computed as follows:

b : [0,+∞] → [0, 1]

α = b(n) =

{
1 − n

RL , if 0 ≤ n ≤ RL
0, if n ≥ RL

(7)

where n denotes the number of days used to learn the user’s
habits, and RL is the user’s record lifetime. Equation (6) shows
that as the number of learning days (of the users’ habits)
increases, the influence of the belief function Bel() decreases
while the influence of the probability function PTioD,TyoD

h,cl,Ci in-
creases. DPM selects the cluster with the largest value of
ws() as the destination cluster. DPM, which is a semi-Markov
process, calculates m state transition probabilities; each state
refers to a discrete FVL, thus adding O(m) space and time
complexity.

D. PPM

PPM assumes a priori knowledge of the destination due to
DPM. The operation of PPM consists in choosing a road seg-
ment (among one or more road segments) at each road junction
toward the destination. The selection process starts from the
current location (i.e., the road junction, immediately after the
road segment where the prediction starts) and is repeated within
a predefined time period dt of travel or until the destination (an
FVL) is reached; at each occurrence of the selection process,
the previous road segment that has been selected becomes the
current road segment, and the road junction immediately after
that current road segment becomes the current road junction.
Indeed, the process terminates when a list of road segments that
constitutes a path from the current location to the destination
cluster (i.e., cluster of FVLs that may be reached using the
same portion of the path within a predefined time period dt
of travel) is computed. Fig. 3 shows the PPM operation. At
each road junction (e.g., the current road junction), PPM starts
by a preselection process choosing a set of road segments Ω
among the adjacent road segments to the current road junction;
Ω represents the set of potential next road segments to be
visited; the preselection process aims to reduce the size of the
set of adjacent road segments used for the selection process; it is
performed by making use of a deviation function r, which mea-
sures the deviation rate of an angle (always smaller than 180);
r() is defined as follows:

r : [0, 180] → [0, 1]

r(θ) =

{
1 − θ

Θ , if 0 ≤ θ ≤ Θ ≤ 180
0, if Θ ≤ θ ≤ 180

where Θ is the angle formed by A
→

and B
→

, A
→

is the correspond-
ing vector of the road segment in the opposite direction to the
previous road segment, and B

→
is the vector from the current

junction to the destination cluster.
Then, making use of the deviation function r(), we measure

the deviation rate r(θj) of each adjacent road segment j to
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Fig. 3. PPM processes.

the current road junction; θj denotes the angle formed by the
corresponding vector of adjacent road segment j and

−→
B . The

preselected adjacent road segments j are those that belong to
the following set:

Ω =
⋃
j

{j |r(θj) ≥ ϕ} (8)

where ϕ = r(θth2), and θth2 denotes a predefined threshold.
For the sake of better understanding, let us consider the example
shown in Fig. 4. Let i → C be the previous selected road
segment and vector

−→
iC be the corresponding vector, C be the

current junction, D be the destination cluster, and C → j be an
element of the set of adjacent segments to the current junction

C. Let θCD
−−→

Cj
−−→ be the angle formed by vector CD

−−−→
and vector

−→
Cj; notice that

−→
Ci is the vector representing the road segment

C → i, which is in the opposite direction to the previous road
segment i → C that has been selected by PPM; selecting the
road segment C → i as the next road segment represents a
U-turn.

Using the example shown in Fig. 4, we compute Ω = {1, 2}
using (8); in this case, ϕ = r(45), assuming θth2 = 45. The
selection of a road segment from Ω as a next road segment is
performed using the product of the following: 1) the transition
probability PTioD,TyoD

h,C→j,D [see (4)]; 2) the deviation function r();
and 3) the penalty function p(), which returns one when the
considered road segment may be used to reach the destination

Fig. 4. Example of the preselection process.

cluster; otherwise, it returns null; the penalty function is defined
as follows:

p(C→j)=

{
1, if possible to reach D through C→j
0, if nonpossible to reach D through C→j.

(9)

Indeed, we compute the product function w(C → j) of each
road segment C → j, in Ω, using (10) and choose the road
segment with the largest value of w(C → j) as the next road
segment. The product function of C → j, in Ω, is defined as
follows:

w(C → j) = PTioD,TyoD
ct,C→j,D × r

(
θCD
−−→

Cj
−−→

)
× p(C → j). (10)

We make use of the deviation function r() when computing the
product function w() to give priority to road segments whose
directions are more oriented toward the destination cluster D

(i.e., the rationale behind using angle θ
−−→
CD−→
Ci

to define the devi-

ation function). The penalty function p() is used to assign 0 to
the product function w() when the considered road segment is
not an option (e.g., dead-end road) to reach destination cluster
D. In case of lack of historical data, it will not be possible to
calculate the transition probability PTioD,TyoD

h,C→j,D [see (4)]; (10)
cannot be applied to compute the product function w(). Thus,
the selection of a road segment from Ω as a next road segment is
performed using the product of the deviation function r() and
the penalty function p(). In this case, the product function of
C → j, in Ω, is defined as follows:

w(C → j) = r

(
θCD
−−→

Cj
−−→

)
× p(C → j). (11)

The selected road segment is added to the list of previous
selected road segments; this list constitutes the predicted path
from the current location to the destination cluster. PPM, which
is a semi-Markov process, calculates g state transition probabil-
ities. Each state refers to a discrete road segment, thus adding
O(g) space and time complexity at each road junction and
O(g2) for the operations of PPM.
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TABLE II
PREDICTION SCHEMES FOR COMPARISON

IV. PERFORMANCE EVALUATION

Here, we evaluate, via simulations, the performance of
DAMP. Similar to [23], [26], [28], and [33], we define one
evaluation parameter that is the prediction accuracy (i.e., path
similarity). As comparison terms, we use the schemes described
in [23], [26], and [27], which are referred to as AP1, AP2, and
AP3, respectively. AP1, AP2, and AP3 were selected because,
to the best of our knowledge, they represent the most recent
work related to mobility prediction in MNs that outperform
existing approaches (e.g., [12], [24], [29], and [33]). Table II
shows the characteristics of DAMP, AP1, AP2, and AP3.

A. Simulation Setup

To evaluate DAMP, we use real mobile user traces (GPS
trajectories), acquired from the Microsoft Research Asia labo-
ratory’s database available in the context of the GeoLife project
[38]. This GPS trajectory data set was collected in a period
of over three years (from April 2007 to August 2012). A
GPS trajectory of this data set is represented by a sequence
of timestamped points, each of which contains the informa-
tion of latitude, longitude, altitude, date, and time. This data
set contains 17 621 trajectories with a total distance of about
1.2 million kilometers and a total duration of 48 000 hours.
These trajectories were recorded by different GPS loggers and
GPS phones and have a variety of sampling rates; 91% of the
trajectories are logged every 1–5 s or every 5–10 m per point.
This data set recorded a broad range of users’ outdoor move-
ments, including not only life routines such as going home or to
work but also some entertainment and sports activities, such as
shopping, sightseeing, dining, hiking, and cycling. According
to GPS trajectories, we identify three groups: 1) subjects whose
mobility is unpredictable; 2) subjects whose mobility is mod-
erately predictable; and 3) subjects whose mobility is highly
predictable. Converting GPS coordinates to Cartesian coordi-
nates, we identify the roads by displaying all the Cartesian
coordinates in a map. Algorithm 1 is used to identify the FVLs;
based on the FVLs and the sequences of timestamped points,
we extract the UC information. DAMP may require a large
number of contextual information to be collected and processed
by a UE device. However, the new-generation UE devices
have sufficient storage space; for example, in our simulation,
the file (PLT file) to be maintained/used by a user is about
2.82 MB (for two months of GPS trace collection). The recent
mobile devices (e.g., Samsung galaxy) can use .XML or .TXT
files (instead of a database management system); these types of

TABLE III
SIMULATION PARAMETERS

files do not require large storage space. Indeed, for a mobile
device of 16 GB of storage space, DAMP will use 0.002% of
this storage space, which is negligible. Table III shows the val-
ues of the parameters used in our simulations; these parameters
are selected according to the road topology of the prediction
area (i.e., navigation zone). For example, the parameters in
Table III are more appropriated for a Manhattan model (i.e.,
a 2-D environment with the roads arranged in a mesh shape).

We define one parameter, which is denoted by Ap, to evaluate
the performance of DAMP in terms of path similarity. In the
literature [26], the distance error is used to measure error for
predictive path queries. However, in some cases, the distance
error is small while the predicted path is very different from
the actual path; this justifies taking into account path similarity
to measure the performance of DAMP. Let Lact be the actual
location of the user after travel time dt (which will become
known only in the future), Lpred be the location of the user
in the predicted path after travel time dt (returned by path
prediction model), Eact be the set of road segments that the
actual path from path prediction origin to Lact contains, and
Epred be the set of road segments that the predicted path from
path prediction origin to Lpred contains. Similar to [26], we
measure path similarity Ap, which is defined as follows:

Ap(Eact, Epred) =
2.|Eact ∩ Epred|
|Eact| = |Epred|

. (12)

In the remainder of this paper, the terms path similarity and
accuracy will be interchangeably used. Unless stated otherwise,
in all simulation scenarios, we use the two months of the
Microsoft Research Asia laboratory’s data set (June–July 2012)
to learn users’ habits (in this case, we state that the length of the
learning phase is 60 days); the learning phase denotes the period
between the time at which mobility data collection is started and
the time at which prediction is performed; the prediction phase
comes after this phase; we use the last month of this data set
(August 2012) as the prediction phase; this period is also used
to compare the actual and predicted path similarity. We also
assume that the path from the trip origin to the current location
(where the prediction process is executed) corresponds to 500 m
of the path from the trip origin to the destination, and the
prediction length dt is 2 h.

To compare DPM with the approach proposed in [28], we
compute the accuracy of destination prediction Ad, which is
defined as follows:

Ad =
nbp

ntp
(13)

where nbp and ntp denote the number of correct estimates
(i.e., Lact and estimated destination are the same) and the total
number of estimates, respectively.
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Fig. 5. Average destination prediction accuracy versus learning phase length
variation.

B. Results Analysis

Simulation results are averaged over multiple runs; indeed,
the simulation program is run 500 times; one run of the simu-
lation program provides ten prediction units; a prediction unit
contains a destination and the path toward this destination. For
each run, we compute Ap (resp., Ad) using (12) [resp., (13)];
thus, to obtain the simulation results shown in Figs. 5–8, we
compute the average of the 500 runs.

Fig. 5 shows the average accuracy of destination prediction
when varying the length of the learning phase. We observe that
for DAMP (resp., DPM-Samaan [28]), the average accuracy of
destination prediction increases (resp., remains constant) with
the length of the learning phase. This can be explained by
the fact that DAMP uses historical data to perform destination
prediction; indeed, the longer the length of the learning phase,
the better the knowledge about users’ mobility habits, and, ulti-
mately, the higher the prediction accuracy; in contrast, DPM-
Samaan uses only the user context (his goals and interests).
Fig. 5 also shows that DAMP outperforms DPM-Samaan;
DAMP provides an average accuracy that exceeds 0.85 for
five days of learning phase length, whereas DPM-Samaan
provides an average of 0.75, regardless of the number of days of
learning phase length; overall, the average relative improve-
ment (defined as [average Ad of DAMP—average Ad of DPM-
Samaan]) of DAMP compared with DPM-Samaan is about 4%
for 0 day of learning phase length and over 20% for 25 days
or more of learning phase length. At 0 day of learning phase
length (i.e., in case of lack of historical data), DAMP uses
only the belief function of DPM-Samaan according to (6)
and (7); yet, DAMP and DPM-Samman do not provide the
same accuracy; this can be explained by the fact that DAMP
performs the destination selection process after the preselection
and clustering processes. At 30 days of learning phase length,
DAMP accuracy is about 96%; according to (6) and (7), at
30 days of learning phase length, DAMP does not make use of
the belief function proposed in [28]; indeed, for RL = 30 days
(the maximum value of RL) and n = 30 days (which represents
30 days of learning phase), (6) becomes ws(ci)=PTioD,TyoD

h,cl→Ci ;
in this case, DAMP uses only the probability function.

Fig. 6 shows the average accuracy when varying the length
of the learning phase. We observe that, for the four schemes,
the average accuracy increases with the length of the learning

Fig. 6. Average prediction accuracy versus learning phase length variation.

phase. This is expected since the longer the length of the
learning phase, the better the knowledge about users’ mobil-
ity habits, and, ultimately, the higher the prediction accuracy
becomes when historical data are used to perform prediction.
Fig. 6 also shows that DAMP outperforms AP1, AP2, and AP3;
for example, DAMP provides an average accuracy of 0.55 for
five days of learning phase length, whereas AP1 (more efficient
than AP2 and AP3 in this scenario) provides an average of 0.20
for five days of learning phase length; overall, the average rela-
tive improvement (defined as [average Ap of DAMP—average
Ap of AP1]) of DAMP compared with AP1 is about 35% for
five days of learning phase length. At ten days of learning phase
length, DAMP accuracy is about 72%, whereas AP1 requires
60 days of learning phase length to provide the same accuracy;
this means that DAMP requires a smaller learning phase length
(one day compared with six days for AP1) to perform prediction
with similar accuracy. This can be explained by the fact that
1) DAMP filters data taking into account the type-of-day (e.g.,
labor day, weekend, and weekday) and that 2) DAMP makes
use of user context in addition to the mobility history traces.
Indeed, user context along with historical data helps improve
prediction accuracy. We also observe that AP1 outperforms
AP2 and AP3; this can be explained by the fact that AP1, for
prediction purposes, uses data filter (i.e., time-of-day); thus,
when the length of the learning phase increases, the prediction
accuracy increases; in this case, AP1 becomes more accurate
than AP2 and AP3 when the length of the learning phase
exceeds five days. In case of lack of historical data (i.e., learning
phase length is equal to 0 day), DAMP accuracy is about
38%, whereas AP1, AP2, and AP3 accuracy is 0%; this can
be explained by the fact that DAMP makes use of the direction
toward the destination when there is no mobility history traces
[see (11)]; AP1, AP2, and AP3 are only based on historical data;
hence, without mobility history traces, they cannot perform a
prediction.

Fig. 7 shows the average accuracy when varying the length
of the path from the trip origin to the current location. We
observe that for DAMP, AP1, and AP2 (resp., AP3), the average
accuracy increases (resp., remains constant) with the length of
the path from the trip origin to the current location (i.e., path
already traveled by the user toward the destination); this can be
explained by the fact that DAMP, AP1, and AP2 use the portion
of the path already traveled by the user to compute the remain-
ing path to the destination; in contrast, AP3 uses only the last
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Fig. 7. Average prediction accuracy versus path-already-traveled variation.

Fig. 8. Average prediction accuracy versus prediction length variation.

crossed location; indeed, DAMP, AP1, and AP2 try to match the
current path (from the trip origin to the current location) to paths
stored in their databases of the user’s trajectory history. Thus,
when the size of the current path increases, the prediction accu-
racy increases. Fig. 7 also shows that DAMP outperforms AP1,
AP2, and AP3; DAMP provides an average accuracy of 0.89 for
0 km of path already traveled, whereas AP1 (more efficient than
AP2 and AP3 in this scenario) provides an average of 0.70 for
0 km of path already traveled; the average relative improvement
of DAMP compared with AP1 is about 19% for 0 km of path
already traveled. We also observe that DAMP’s (resp., AP1’s)
average accuracy increases more rapidly between 0 and 0.5 km
(resp., between 0.5 and 1.5 km) of path already traveled by the
user. This means that DAMP requires a smaller path already
traveled by the user (about 0.5 km compared with 1.5 km for
AP1) to predict the path with better accuracy. We also observe
that, at 0 km of path already traveled (i.e., the prediction
process is executed at the trip origin), DAMP performance is
about 96%, whereas AP1 requires 1.25 km of path already
traveled to provide the same performance. This means that
AP1, compared with DAMP, requires that the user be located
more closely to the destination to predict the path with better
accuracy. This can be explained by the fact that 1) DAMP
uses the direction from the current location to the destination
to compute, at each location, the potential next location, and
2) DAMP filters historical data based on the type of the day.

Fig. 8 shows the average accuracy prediction when varying
the prediction length (i.e., dt). We observe that, for the four
schemes, the average accuracy decreases with the length of the
prediction. This is expected since when the prediction length

Fig. 9. UE energy consumption versus varying numbers of runs.

increases, the number of possible paths increases, and thus, the
prediction accuracy decreases. Fig. 8 also shows that DAMP
outperforms AP1, AP2, and AP3; this is mainly due to the fact
that DAMP predicts a destination cluster (in opposition to a
single destination) and makes use of the movement direction
toward the destination cluster during the prediction process.

In particular, destination clustering allows the grouping of
probable destinations (as a single destination: a cluster) when
the length of prediction increases. This grouping reduces the
number of probable destinations and increases the path predic-
tion accuracy toward these probable destinations. DAMP pro-
vides an average accuracy of 0.99 for 0.5 h of prediction length,
whereas AP1 (more efficient than AP2 and AP3 in this sce-
nario) provides an average of 0.76 for 0.5 h of prediction length;
overall, the average relative improvement of DAMP compared
with AP1 is about 23% for 0.5 h of prediction length. We also
observe that AP2 (resp., AP3) outperforms AP1 around 3.5
(resp., 4) h of prediction length. This can be explained by
the fact that AP2 and AP3, in contrast to AP1, for predic-
tion purposes, consider the user’s current direction (i.e., vec-
tor/direction from the trip origin to the current location). Thus,
when the prediction length increases, the prediction accuracy
values of AP2 and AP3 are less impacted compared with those
of AP1; indeed, the usage of the current direction reduces the
number of probable paths and increases the path prediction
accuracy; in this case, AP2 (resp., AP3) becomes more accurate
than AP1 when the length of the prediction exceeds 3.5 (resp.,
4) h. Although AP2 and AP3 use similar techniques as DAMP
(e.g., user’s current direction), they do not make use of the
direction toward the destination. Indeed, when the length of the
prediction is 3.5 (resp., 4) h, DAMP provides an average of 0.89
(resp., 0.89), whereas AP2 (resp., AP3) provides an average of
0.51 (resp., 0.45); overall, the average relative improvement of
DAMP compared with AP2 (resp., AP3) is about 38% (resp.,
44%). This means that DAMP predicts the remaining path to the
destination with better accuracy despite the expansion of length
of prediction. This can be explained by the fact that DAMP uses
the direction from the current location to the destination cluster.

Fig. 9 shows the UE energy consumption when varying
the number of runs (i.e., one run of the simulation program
provides ten prediction units, and each prediction unit contains
a destination and the path toward this destination).

We observe that, for the four schemes, the remaining bat-
tery energy decreases with the number of runs. This is ex-
pected since when the number of runs increases, the energy
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Fig. 10. Impact of Bel() on DAMP accuracy versus learning phase length
variation.

consumption increases, and the remaining battery energy de-
creases. Fig. 9 also shows that AP3 consumes an average of
1.27% per run of battery energy, whereas DAMP consumes an
average of 2.08% per run of battery energy; overall, the average
relative improvement of AP3 compared with DAMP is about
0.81% per run of battery energy. The 0.81% battery energy
consumption increase is a small price to pay for better path
prediction accuracy. In this vein, it shall be noted that for mobile
users with energy consumption constraints, some energy-aware
settings can be envisioned in a way that the proposed solution
is automatically disabled when the batteries of their devices
go below a certain threshold. Furthermore, if the proposed
solution is efficiently used for users without much constraint
in energy consumption, the optimization and savings achieved
in the network resources can be used to accommodate more
mobile users with energy consumption constraints.

Fig. 10 shows the average accuracy when varying the length
of the learning phase.

In the figure, the DAMP version not integrating the belief
function, i.e., Bel(), adopted in [28] is referred to as DAMP-
out. Fig. 10 shows that DAMP outperforms DAMP-out. Indeed,
DAMP provides an average accuracy of 0.55 for five days of
learning phase length, whereas DAMP-out provides an average
of 0.32 for five days of learning phase length; overall, the aver-
age relative improvement of DAMP compared with DAMP-out
is about 23% for five days of learning phase length. According
to (6) and (7), at 30 days of learning phase length, DAMP
does not make use of the belief function proposed in [28];
DAMP and DAMP-out exhibit similar performances in terms
of accuracy at 30 days of learning phase length.

In summary, the analysis of the simulation results shows
that schemes that use data (e.g., user context) in addition to
historical mobility traces outperform schemes that are limited
to mobility traces when the size of historical mobility traces
is not large enough (i.e., the length of the learning phase is
not long enough). Likewise, historical mobility traces filtering
increases the accuracy when the length of the learning phase
increases. We also observe that schemes that consider the path
from the trip origin to the current location outperform others
when the length of path already traveled increases, whereas
the schemes that consider the current movement direction (i.e.,
vector/direction from the trip origin to the current location) out-
perform others when the length of prediction increases. Finally,

taking into account the direction from the current location to the
destination allows for improving performance despite the ex-
pansion of prediction length. We summarize DAMP evaluation
findings as follows: 1) DAMP uses the path from the trip origin
to the current location in the prediction process; although AP1
and AP2 use the path from the trip origin to the current location,
they require a long path from the trip origin to the current
location to predict, with better accuracy, the path from the
current location to the destination; 2) DAMP uses movement
direction in the prediction process; although AP2 and AP3 use
movement direction, they do not consider the direction toward
the destination; 3) DAMP uses user context and filters historical
data based on the type of the day and the time of the day;
this helps increase accuracy. Although AP1 uses similar data
filter, it is limited to the days-of-week, and thus, it requires a
long time (four times more than DAMP) to predict, with better
accuracy, the path from the current location to the destination.

The communication complexity of DAMP is 0; indeed,
DAMP does not communicate with the network system to
predict users’ mobility; all the databases and the processes are
maintained/run by the UE. Admittedly, some communication
overhead may become required if UE devices have to respec-
tively report their predicted paths to the MN system so that their
communications over the MN get optimized, e.g., as in [6]. The
computational complexity of DAMP is O(m) +O(g2), where
m is the number of FVLs, and g is the number of road segments
of the NM. Indeed, DPM calculates m transition probabilities
of FVL, whereas PPM calculates g2 transition probabilities of
road segment. We evaluated the computational complexity as
a computation time on a Samsung Galaxy S4 (2 GB of RAM,
4*1.9 GHz of processor speed). For each run, we use a different
mobility trace. The obtained results show that the computation
time is smaller than 1 s for most users; this time can be
greatly improved with optimal programming/implementation of
DAMP in smart phones.

V. CONCLUSION

In this paper, we have introduced a destination and mobility
path prediction model, which is called DAMP, for predicting
subsequent transitions of road segments across the mobility of
users within a predefined time period dt. DAMP consists of
two models: DPM (for predicting the user’s destination) and
PPM (for predicting subsequent transitions of road segments
toward the predicted destination). We evaluated, via simula-
tions, DAMP and compared it against three related schemes
recently proposed in [23], [26], and [27]. The simulation results
demonstrated that DAMP achieved better accuracy regardless
of the predictability level of users, learning phase length, pre-
diction lengths, and already-traversed path length. The obtained
results also clearly show that the utilization of user context,
path traversed from the trip origin to the current location and
the movement direction together with fine-grain filtering of his-
torical data (e.g., type-of-day) greatly increases path prediction
accuracy. The findings of this contribution (estimated path) can
be used, for example, to better estimate the handoff times along
estimated paths [39]. Currently, we are working on integrating
the proposed DAMP with a suitable bandwidth-management
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and admission control scheme; a preliminary version of this
scheme can be found in [6].
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