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Abstract—In Telco cloud environment, virtual network func-
tions (VNFs) can be shipped in the form of virtual machine
images and hosted over commodity hardware. It is likely that
these VNF images will contain highly sensitive data and mission
critical network operations. For this reason, these VNF images
are prone to malicious tampering during shipping and even
after uploaded to the cloud image database. Furthermore, due to
various applications, there is a requirement from mobile network
operators to seal VNFs on specific platforms which satisfy
certain hardware and software configurations. This requires
cloud service providers to introduce some mechanisms to verify
VNF image integrity and host sealing before the instantiation of
VNFs. In this paper, we present a proof of concept demonstrated
with the help of an experimental setup to solve the above-
mentioned problems. We also evaluate the performance of the
envisioned setup and present some insights on its usability.

I. INTRODUCTION

Network function virtualization infrastructure (NFVI) pro-
vides numerous benefits for the transition of Telco hardware
functions into software-based functions leveraging popular
virtualization technologies. Several research works have been
conducted to explore the potentials and challenges in Telco
cloud [1]. Researchers have also manifested the virtualization
possibilities of existing physical network component such as
the evolved packet core (EPC) to unveil the potential of NFVI
[2].

Along with the advancements in the area of cloud and NFV,
mobile network operators (MNOs) are considering to deploy
their services in the cloud. One of the major challenges they
are facing, is how to verify the integrity of cloud infrastructure
in order to establish trust in the cloud. The notion of trust is an
important factor to consider, especially when mission critical
telecommunication functions are placed in the cloud.

In cloud environment, virtual machine (VM) images are
used to launch VM instances, which act as virtual servers
to deliver the specified services. In NFVI, VNFs can be
deployed over a single VM or multiple VMs. In the latter
case, each VM will host one component of the VNF [3].
As a matter of fact, there are many threats present in the
existing environment to compromise the VNF image integrity
[4]. Tt is easy to tamper a VNF image by inserting malicious
code or software into it while it is in transit or in rest on
cloud image database. If a VNF image needs to be transfered
via internet and there are no appropriate security methods in
use, then there exists possibility of injecting malware into the
VNF software image during the transit. One similar study is
performed in [5], where a researcher found anonymity network

TOR (The Onion Router) exit node adding malware to the
software binary files while they are being downloaded from the
internet. There is also a possibility that cloud image database
can become compromised when it is located in a network
with limited security protection [6]. In addition to that, cloud
administrators can have enough privileges to access and copy
or steal sensitive data in a VNF image as demonstrated by
Rocha et, al and Khan et, al in [7], [8]. These threats expose
the risks of violation of VNF data integrity, privacy and
confidentiality.

Besides integrity verification of VNF software images,
MNOs also require their VNFs to be placed on the hosts
with certain hardware and software configurations such as
the choice of the operating system (OS), hypervisor and
also geographical location of the underlying physical host as
depicted in Figure 1. This process can be termed as VNF-
Host sealing. VNF-Host sealing can be defined as the process
which uses trusted platform module (TPM) to bind some VNF
instance to a specific compute host which satisfies the given
set of system configuration policies. There is another concept,
which sounds similar to VNF-Host sealing, known as virtual
machine sealing as introduced by Red Hat. Contrary to VNF-
HOST sealing, virtual machine sealing is actually a process
of removing all system-specific details from a virtual machine
instance before creating an image template from it [9].

The rest of this paper is structured as follows. Sections II
presents some related work. Section III discusses the compo-
nents needed to setup a trusted cloud. In Section IV, we present
the testbed experimental setup along with its performance eval-
uation. In Section V, we provide the use cases of VNF image
integrity verification and VNF-Host sealing and discuss the
different relevant challenges, defining new directions for future
research work. Section VI concludes the paper recapping the
main findings of the envisioned experimental setup.

II. RELATED WORK

In [10], a survey on NFV security was performed. This
survey lists some of the relevant security challenges. Some
of these pertain to the need-to-use standard security mecha-
nisms in NFVI, defining the standard interfaces, challenges
associated with Management and Orchestration (MANO) and
also the elasticity of VNFs. While this survey paper does not
deal with integrity verification as a need, it mentions trust
management as one of the future challenges.

According to [11], integrity verification of some software
can be achieved by setting up a signing authority. Signing



authority produces the cryptographic signature of the origi-
nal software and validation authority verifies the signature.
In practice, cryptographic hash digest of software image is
calculated in the beginning and signed using the private or
root key of the signing authority to produce the signature.
For validation, fresh hash digest of the software image should
be re-calculated. The validation authority uses this fresh
hash digest along with the associated signature to check the
software integrity. In order to detect the tampering of VNF
images, signing and verification authorities can be setup in
two different ways as below:

1) Performing signing and verification locally on the same
system.

2) Involving trusted third party to perform signing and
verification.

OpenStack cloud infrastructure is introducing VM image
signature verification feature in its future release [12]. In this
feature, signing and verification entities are setup locally on the
controller node. Cloud users can generate the image signature
and public key certificate and store it on the controller node.
The issue with this technique is that the signature verification
is performed locally. In case, when cloud image database is
compromised, it would be easy for an attacker to add his own
signature and public key certificate in the image metadata.
This will not be detected since image signature would still be
valid. Also, there is no protection from malicious administrator
who can have enough privileges to compromise the VNF
image integrity. Performing signature verification externally
and preferably by involving a trusted third party is the wise
approach.

VNF sealing to a certain host is relatively a new problem.
In traditional computers, an analogous to this problem is
addressed by using a technique called CPU pinning, whereby
the processes are bound to specific CPUs and are allowed
to be executed only on them. In a cloud scenario, CPU
pinning refers to the pinning of virtual CPUs (vCPUs) of
VNF instances to the physical CPUs of the host [13]. This
is useful in scenarios whereby two guest vCPUs compete for
CPU time of the host, which might lead to high latency of
the work load running on the VNFs. CPU pinning avoids this
latency by allocating vCPUs to specific threads in the host,
thereby, efficiently balancing the workload execution on the
vCPU [14]. While this solution can guarantee the SLA of
running VNFs on certain physical CPUs, it does not state the
platform configurations of the host required to VNF instance.

III. COMPONENTS OF TRUSTED CLOUD

In this section, we present the techniques to set up a trusted
cloud environment in which cloud nodes are able to verify
their boot time integrity measurements. TPM module, trusted
boot (tboot) tool and a remote attestation service are used to
accomplish this setup. The components of trusted cloud are
discussed hereunder.

A. Trusted Platform Module (TPM)

Trusted computing group (TCG) has provided TPM spec-
ifications and recommended to use TPM module to store
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Fig. 1. General idea of VNF-Host sealing

passwords, cryptographic keys, certificates and other sensitive
information. TPM contains platform configuration registers
(PCRs) which can be used to store cryptographic hash mea-
surements of the system’s critical components [15], [16]. There
are in total 24 PCRs in most TPM modules starting from 0 till
23. Figure 2 depicts these PCR registers and their association
with the system’s components.
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Fig. 2. TPM platform configuration registers (PCRs)

B. Trusted Boot

Trusted boot (tboot) is an open source tool which uses
Intel’s trusted execution technology (TXT) to perform the
measured boot of the system. Trusted boot process starts
when tboot is launched as an executable and measures all
the binaries of the system components (i.e., firmware code,
BIOS, OS kernel and hypervisor code). Tboot then writes these
hash measurements in TPM’s secure storage [17]. It should be
noted that trusted boot and UEFI (Unified Extensible Firmware
Interface) secure boot are two different technologies used for
different purposes. Trusted boot is used to measure the boot
loader and other system components, whereas UEFI secure
boot is used to authenticate if the system has booted up using
the digitally signed boot loader and other system components.
Thus, UEFI can only be used to restrict unauthenticated
software to boot but it can not provide the measurement of



system components to be used for attestation. The interested
reader may refer to this link [18] for more detailed explanation.

C. Remote Attestation Service

Remote attestation is the process of verifying the boot time
integrity of the remote hosts. It is a software mechanism
integrated with TPM, to securely attest the trust state of the
remote hosts. It uses boot time measurements of the system
components such as BIOS, OS, and hypervisor, and stores the
known good configuration of the host machine in its white
list database. It then queries the remote host’s TPM module
to fetch its current PCR measurements. After receiving the
current PCR values, it compares them against its white list
values to derive the final trust state of the remote host [19].
This process is depicted in Figure 3. Practical implementation
of remote attestation service is known as open cloud integrity
technology (OpenCIT). OpenCIT is an open source tool and
is hosted on GitHub [20].
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Fig. 3. Remote attestation process

D. OpenStack Resource Selection Filters

In OpenStack, when a VNF is launched, the nova scheduler
filters pass through each host and select the number of hosts
that satisfy the given criteria. Each filter passes the list of
selected hosts to the proceeding filter. When the last filter
is processed, OpenStack’s default filter scheduler performs a
weighing mechanism. It assigs weight to each of the selected
hosts depending on the RAM, CPU and any other custom
criteria to select a host which is most suitable to launch the
VM instance [21][22]. Additionally, it is also possible to create
own custom filters. One example of a custom filter is the trust
filter, whose function is to find the hosts which are booted in
trusted manner and their boot time trust state is attested by a
remote attestation server.

IV. TESTBED EXPERIMENT

In this section, we attempt to solve the problems of
detecting VNF image tampering and VNF-Host sealing in
an OpenStack-managed cloud environment. In this proof of
concept demonstration, we made some modifications to the
VNF startup procedure of OpenStack as explained below.

A. Implementation Setup

Our testbed experiment consists of four phyiscal server
machines and two virtual machines, all running Debian Linux
Ubuntu 14.04. This configuration setup contained two Intel
Xeon Servers E5-2600 v3 @2.20 GHz with 72 GB RAM and
TPM version 1.2, two HP ProLiant servers DL360 G5 having

Intel Xeon CPU 5160 @3.00GHz and 24GB RAM. Both
virtual machines have 2 GB RAM and 1 vCPU allocated. The
OpenStack Kilo version is used as the software for managing
the cloud infrastructure.

B. Virtualization Technologies Used

We carried out our experiment using two popular choices
of virtualization technologies, namely KVM hypervisor and
Docker container. OpenStack supports both virtualization tech-
nologies. For detailed functioning and performance compari-
son studies of these technologies, the interested reader may
refer to the work of [23], [24].

C. Verification and Sealing process

In order to sign and verify a VNF image, we setup signing
and verification authorities using OpenSSL. Both use asym-
metric cryptographic key pair (i.e., private keys and public
keys) to generate and verify signatures. In our setup, signing
authority requires 32 bytes long SHA256 hash digest of the
VNF image to be signed and produces PKCS7 (Public Key
Cryptography Standards 7) formatted signature file as an
output. Each signed VNF image has separate signature file
which is used in verification process for its integrity checking.
In order to verify the signature from signing authority, the
fresh SHA256 digest of the image is calculated and is used as
an input to the signature verify tool along with the associated
PKCS7 signature file. The verification tool uses root certificate
containing the public key of signing authority to verify if the
image’s signature are valid. The output is the decision if the
image verification either succeeded or failed. The complete
signing and verification process is shown in Figure 4.
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Fig. 4. Process of VNF signature generation and verification

(b) Signature verification

In this research work, we implemented a Security Orchestra-
tor (SecO), a server written on Node.js v0.10.25 with express
framework. SecO listens to the signature verification and VNF-
Host sealing requests from OpenStack and provides the result
back to it. SecO also hosts signature verification tool and acts
as a verification authority. MongoDB database is used in SecO
to store signature files and sealing policies.

We used OpenCIT as a remote attestation server. OpenCIT
requires trust agent to be installed on the target host to



enable the communication with its TPM module. In our setup,
OpenCIT provides the PCR measurements of the remote host
whenever requested by SecO.

In order to enable the communication between SecO and
OpenStack, we built two custom filters. First is the verification
filter, written in Python, for OpenStack nova scheduler. The
primary purpose of this verification filter is to calculate the
fresh SHA256 hash digest of the VNF image and send it to
SecO along with its unique identifier for signature verification.
The verification filter first extract the VNF image ID from
the OpenStack’s base filter properties and then uses image
ID to locate the VNF image location on image server in
order to calculate the hash digest. In OpenStack image server
(known as glance), the VNF images are named by their ID
and typically stored in the directory /var/lib/glance/images/
on image server.

The second filter is the VNF sealing filter and is used to
seal VNF instances to a specific host. The process of sealing
is performed by associating the VNF image with one or more
sets of policies in its metadata. In this experiment, VNF image
policy is defined by using the PCR measurements of the
remote host which possesses the desired system configuration.
In our defined policy, the OS parameter is set as Ubuntu
server with Linux kernel version 3.19.0-39 and hypervisor
as KVM. The purpose of this sealing filter is to select the
host which satisfy the conditions defined in the sealing policy.
These polices can also be defined for a pool of hosts by listing
the PCR measurements of all hosts in the subset. The sealing
filter works by first extracting the VNF image ID and the
list of available hosts from OpenStack base filter properties.
It then sends the list of all the hosts to SecO for matching
them with the stored policies. Upon receiving the sealing
request, SecO fetches the current PCR measurements of each
host from OpenCIT server. It then compares the retrieved
PCR measurements against the associated policy of the VNF
image. If the measurements of some host match with the
policy, the VNF sealing is considered to be successful on that
particular host. Figure 5 depicts this process. In figure 6, we
give the complete overview of the signature verification and
VNF sealing process, showing the flow of messages among
all the components.

D. Performance Evaluation

The metrics used to evaluate the performance of this testbed
setup are time overhead and response time of SecO under
different loads. We first examined the correlation between
various VNF image sizes and time taken to perform signature
verification and host sealing over them. We performed this
experiment on 5 different VNF image sizes such as 13 MB,
289.8 MB, 951.1 MB, 2.5 GB and 5 GB. The normal launch
time of the VNF images versus the launch time with the
signature verification and host sealing is depicted in Figure 7.
The blue area in figure 7 shows the normal VNF launch time
while the red bars show the launch time with the signature
verification and host sealing. This time is calculated from the
moment when a VNF image is launched and until it becomes
available to use. From figure 7, it can be seen that the time
overhead introduced by the verification and VNF sealing filter
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is only a few seconds for small-size VNF images. This is due
to the fact that less time is needed to calculate hash digest
over them. However, the time overhead increases for bigger
VNF images since the hash digest calculation takes longer
time. Additionally, the overhead time becomes significant only
when the VNF image size exceeds 2 GB. This result looks
satisfactory since we assume that 2 GB image size should be
sufficient for compiling most of the VNF software images.
Next, we measured the effect of using different hashing
functions to calculate the hash digest of a VNF image. This
analysis helps in selecting the best hash function in terms of
performance and security. Hashing algorithms tested in this
experiment are MD5, SHA1 and SHA256. Although using
MDS5 algorithm is not a feasible option as it has been cracked
down long ago, we used it in this study since it is still widely
used in software integrity verification [25]. The time it takes
to calculate the hash digest by these three hashing functions
versus VNF image size is plotted in figure 8. It can be seen that
MD5 and SHA1 algorithms take shorter time in calculating
the hash digest but they are considered insecure. On the other
hand, SHA256 is the most secure hashing function but it incurs



B MNormal VNF launch time @VNF Launch timewith Signature verification and host s=aling
195
180 174
165
150
135
120
105
50
75
60
45
30
15

MNO. OF SECONDS

13 MB 230 MB 350 MB 2.5 GB 5 GB

VNF IMAGE SIZE

Fig. 7. Comparison of VNF normal launch time versus time with signature
verification and host sealing

HASH CALCULATION TIME (SECONDS)

13 MB

250 MB 950 MB

VNF IMAGE SIZE

25GB 5.0 GB

mMD5 mSHAL mSHA256

Fig. 8. Comparison of hash calculation time of VNF images

higher time overhead. It can be seen in figure 8 that the hash
digest calculation time is almost the same for all three hashing
functions for VNF images with size less than 950 MB. For
VNF images exceeding 2.5 GB, the time gap seems to broaden.
Nevertheless, we consider SHA256 hashing function as the
best choice since the time overhead is not very significant as
compared to other hashing functions.

In order to test the robustness of the signature verification
and VNF-Host sealing method, we configured SecO on two
different platforms: first in a virtual machine using KVM
hypervisor and second in a Docker container. We tested the
response time of SecO using two different configurations
(i.e., with 1-vCPU and 2-vCPU). The performance of SecO
is measured in terms of signature verification and sealing
requests versus its response time to process them. Figure
9 depicts the response time of SecO. It becomes apparent
that the time taken by SecO to respond to 100 simultaneous
signature verification and sealing requests is mostly the same
in all four configurations. It gets significant when 500 or
more simultaneous requests arrive at SecO. SecO container
running on Docker is the fastest among all in responding to
the verification and sealing requests. That is thanks to better
latency and computing efficiency of the application containers
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Fig. 9. SecO performance using KVM and Docker

as compared to VMs.

V. USE CASES AND DISCUSSIONS

Using a VNF signing and verification method, VNF vendors
can sign their VNF images and ship them to customers (e.g.
mobile network operators). When a customer validates a VNF
image’s signature using vendor’s public key, this provides a
guarantee that images are integral and it also ensures the proof
of ownership that VNF images come from the real vendor.
VNF-Host sealing method can be useful in applications which
require digital right management (DRM). A MNO can define
custom policies that would enforce VNFs to start only on
particular platforms and refuse to launch them if the platform
is different.

The experimental work described in this paper has brought
a number of challenges regarding the provisioning of trust.
These challenges are discussed below:

1) Setting up a trusted cloud using the components dis-
cussed in this paper is very complex and highly technical
process, specially when leveraging TPM module. TPM
driver support varies in each OS and requires different
tricks to get it working. In addition, TPM requires hard-
ware and software provisioning by the help of scripts
made by OEMs (original equipment manufacturers).
This is compulsory step in order to use TPM with trusted
boot.

2) In hybrid trusted cloud, whereby underlying infrastruc-
ture consists of both trusted and untrusted platforms
(i.e. a platform with limited trust features), resource
management is quite challenging. Indeed, it is possible
that trusted resources are limited and the launch of
mission-critical VNFs, required to run only on trusted
platform, is denied. In order to solve this problem,
extensive resource selection policies can be defined on
trusted resources and related fault tolerance mechanisms
can be developed.

3) A useful result, derived from this work, is the definition
of run time trust in cloud, which is still very vague
and ill-defined. There are many potential challenges



present with providing trust during cloud run time,
especially challenges with measuring and verifying the
critical system binary files when they are loaded into
the memory. It should be noted that the concept of
trusted compute pools [26] and trusted cloud at the
moment only prevents from firmware root kit and boot
kit attacks. Root/Boot kits are activated when the system
is rebooted and they remain hidden since the OS security
engines and anti-virus softwares are not activated at that
level. Thus even after using the trusted boot technique,
there is no guarantee that the cloud infrastructure would
not be compromised during the run time. Also, using
number of different components (such as SecO and
remote attestation server) to build trusted cloud requires
trust to be placed on each component. Securing all
of these remote components is as critical as securing
the cloud infrastructure itself. This is trade-off between
setting up the security functions locally on cloud systems
and remotely outside the cloud.

VI. CONCLUSION

In this paper, we discussed the need for VNF image integrity
verification and VNF-Host sealing. In this vein, we devised
mechanisms to address these problems. We implemented a
signing and verification functionality in SecO (i.e., Security
Orchestrator; external management entity) that can verify
the integrity of VNF images during the launch time. This
method detects if a VNF image is maliciously or accidentally
tampered. It also proves the ownership of VNFs and protects
them from internal attackers such as malicious administrators.
We studied the Telco cloud requirements for launching VNFs
on the specific hosts and accordingly presented adequate
mechanisms to seal VNFs on certain hosts with given platform
configurations.

Further, we evaluated the performance of our experiment
setup using metrics such as response time and overhead time.
In the performance evaluation of the experimental setup, we
found that adding signature verification over the existing cloud
infrastructure, such as OpenStack-based ones, does not add
any major overhead time for VNF images of sizes smaller
than 2 GB. The overhead time becomes significant only when
VNF image size exceeds 2 GB. We also presented the SecO
server’s performance evaluation on both KVM hypervisor and
Docker container. SecO running on Docker container appears
to be faster in processing the verification and sealing requests.
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