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Unmanned Aerial Vehicles (UAVs) are opening up new opportunities for extensive applications. The traffic flow model is critical
to evaluate the traffic needs of various applications in designing and deploying UAV system. However, the traffic flow model has not
been explored in multi-services oriented UAV system. To this end, this paper proposes a general traffic flow model for multi-services
orientated UAV system. Under such a model, the network services are first categorized into three subsets, each corresponding to one
of telemetry, Internet of Things (IoT), and streaming data. According to the Pareto distribution, all UAVs are further partitioned
into three subgroups relying on their network usages. We can measure the packet arrival rate for the nine segments, each of which
represents one map relationship between a services subset and a UAV subgroup. Therefore, we can also obtain the number of
packets for each network service and total data size. Simulation results are presented to illustrate that the number of packets and
the data size predicted by our traffic model can well match with these in real scenarios with different network services.

Index Terms—UAV system, multi-services, traffic flow.

I. INTRODUCTION

W IRELESS communications with assistance of un-
manned aerial vehicles (UAVs) have been identified as

a key technology in the next generation wireless systems due
to their promising advantages of low cost and fast deployment,
flexible mobility, large area coverage and line-of-sight links
[1]. Recently, UAVs are widely used in search and rescue
operations, firefighting, agriculture, mapping, surveying and
Internet of Things (IoT) [2], [3], [4], [5]. Equipped with
wireless devices, UAVs can gather/transmit data from sensing,
monitoring, filming, etc. It is predicted that the variety of
services offered by UAVs will increase exponentially in the
near future [6], [7], which poses enormous challenges for
future design and deployment of UAV system. Therefore, it
is urgently required to develop a general traffic flow model
to predict the traffic flows of the multi-services oriented UAV
system for supporting extensive applications.

Only some initial works have dedicated to studying the
traffic flow models. These existing traffic models can be
categorized into non-self-similar models [8] and self-similar
models [9], [10]. The non-self-similar traffic models focus on
an ideal scenario without bursty traffic. However, the burst
traffic are usually generated in various applications, such as
surveillance, multimedia sensor, and habitat monitoring. In
these applications, once detecting an event, a large amount
of data may be generated in a short time after the event
occurs, which creates a bursty traffic. On the other hand, the
self-similar traffic models characterize the statistical analysis
results of data collected over a long time period, and thus the
network traffic exhibits the properties of self-similarity[11].
But the self-similarity traffic models cannot be employed to
predict the real-time network traffic for various applications.
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However, the above models consider only the packet arrival
rate and assume that the packets have the same structure. Thus,
they cannot be applied in general network scenarios, where
there exist different kinds of network services and each service
has its own characteristics. For instance, the telemetry, the IoT,
and the video streaming data should correspond to different
network services requested by UAVs. Furthermore, the UAVs
need to have different network usages in dealing with various
network services with different packet arrival rate and data
size. As a result, two fundamental and interrelated issues arise
in UAV system. The first issue is how to jointly consider the
network services and usages in designing traffic model. The
second issue regards how to develop a general traffic model
for multi-services oriented UAV system. Unfortunately, these
two issues have not been investigated so far. In this paper1,
we jointly consider these two issues in multi-services oriented
UAV system. In particular, we calculate the number of packets
and corresponding data size for each network service. The
main contributions of this paper are summarized as follow.

• We first define the three subsets of network services
requested by the UAVs. Each subset corresponds to one
of the telemetry, IoT and video streaming. Under each
subset, the UAVs will exhibit different usages related to
packet transmission frequency and packet’s size

• We use a Pareto distribution to model the non-uniformity
feature of network usages. We then divide all UAVs
into three subgroups depending on their network usages.
By combining these three subgroups and three subsets,
nine network segments can be generated, each of which
consists of a subgroup and a subset.

• We further calculate the average number of packets and
the total data size in each segment, the number of
transmitted packets and the data size in each network

1This paper may be presented in part at the International Conference on
Networking and Network Applications, Haikou, December 2020 [12].
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service.
• Finally, simulation results are provided to illustrate that

our traffic model can well predict the number of packets
and the corresponding data size for the different network
services in comparison with these in real scenarios.

The rest of the paper is organized as follows. In section II,
we review the related works. Section III introduce network
services, subgroups for UAVs, the number of packets, and
traffic data size. Case studies under these three scenarios of
telemetry, IoT and streaming data are discussed in section IV.
Simulation and numerical results are provided in section V.
Section VI concludes this paper.

II. RELATED WORKS

The existing traffic models can be categorized into two cat-
egories: non-self-similar traffic models and self-similar traffic
models. They use probabilistic methods to estimate the traffic
flow for different traffic networks. A careful selection for
the models and parameters is important for support various
applications with different traffic flows.

A. Non-self-similar Traffic Models

The non-self-similar traffic models mainly include Poisson,
compound Poisson and Markov-modulated Poisson models,
which will be discussed below.

1) Poisson traffic models
The Poisson traffic models are studied in [13]. In the Poisson

traffic models, the traffic flow is a Poisson process, which is
widely used for network analysis. In this process, the inter-
arrival times are exponentially distributed with a rate parameter
λ. The Poisson distribution is appropriate if the arrivals are
from a large number of independent sources, referred to as
Poisson sources. The Poisson traffic models considers the
following two assumptions: 1) the number of sources is infinite
and 2) the traffic arrival pattern is random.

2) Compound Poisson traffic models
Based on the Poisson traffic models, the compound Poisson

traffic models are proposed to deliver batches of packets at
once in [14]. The compound Poisson traffic models inherit
the analytical benefits of the Poisson traffic models, such as
memoryless, Poisson distributed aggregation of streams, and
steady-state equation. Specially, the steady-state equation is
still reasonably simple to calculate, although varying batch
parameters for differing flows would complicate the derivation
[15]. Mathematically, this model has two parameters: the
arrival rate λ and the batch parameter ρ ∈ [0, 1].

3) Markov-modulated Poisson traffic models
Because in Point process, the arrival rates vary randomly

over time arise in many applications of interest, notably
in communications modeling, the Markov-modulated Poisson
process (MMPP) based traffic models have been extensively
used for modeling these processes [16]. It is notable that it
qualitatively models the time-varying arrival rate and captures
some of the important correlations between the inter-arrival
times while still remaining analytically tractable. The doubly
stochastic Poisson process MMPP arrival rate is an m-state
irreducible Markov process.

B. Self-similar Traffic Models

The self-similar traffic models consist of Fractional Brow-
nian Motion, Chaotic maps, and Pareto distributed traffic
models.

1) Fractional Brownian Motion traffic models
The Fractional Brownian Motion is used to model the traffic

models in [17]. A Fractional Brownian Motion (fBm) is a
continuous-time Gaussian process defined for all positive time
values, with zero mean, and auto-correlation defined on the
Hurst parameter [18]. One important issue is to determine the
appropriate Hurst Parameters for a self-similar flow, which
proves to be fairly difficult in practice, and significantly limits
the application of fBm.

2) Chaotic maps traffic models
The Chaotic maps model [19] comes to correct the issue

of TCP congestion control that seems to impact self-similar
processes only in the small scale with severe impact. Chaotic
maps model can be seen as continuous-state Markov chains.
A chaotic system with chaotic behavior always displays the
following properties: initial state sensitivity, topological tran-
sitivity, and density of periodic orbits [20]. The future behavior
of a chaotic system is fully determined by its initial state. Any
arbitrarily tiny change in the initial state results in a totally
different orbit. With these significant properties, chaos theory
has wide applications in modeling the traffic flow for various
network services [21].

3) Pareto distributed traffic models
The authors in [8] investigate the Pareto distribution pro-

cess based traffic models. The Pareto distribution process
produces independent and identically distributed (IID) inter-
arrival times [22]. The Pareto distributions are useful modeling
and predicting tools in a wide variety of socioeconomic
contexts, ans it is also well suited to distribution of income
fields.

III. TRAFFIC FLOW MODEL

As shown in Fig. 1, we consider a general traffic flow
scenario in multi-services oriented UAV system, where a
swarm of UAVs can provide various network services with
different traffic flows. In the scenario, UAVs equipped with
diverse devices can generate telemetry data, and gather IoT
data and video streaming. Here, the telemetry data is used
to record the information of UAVs’ status and position. The
UAVs first send the data to base stations, and they then forward
the data to the end users. In the following, we will introduce
networks services, subgroups for UAVs, packet arrival rate,
and traffic data size.

A. Network Services for UAVs

According to the three kinds of data gathered from the UAVs
as shown in Fig. 1, the network services can be classified
into three subsets, each of which is related to a kind of data.
In these subsets, the traffic data is that (1) telemetry data
representing the status information of UAVs themselves like
battery level, GPS coordination, vehicle’s speed, etc., (2) IoT
data on-board UAVs like weather, gas, lidar sensors, etc., and
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Fig. 1: A general traffic flow scenario for UAVs

(3) video streaming data captured by the cameras on-board.
We use the rate of transactions denoted by γi to represent the
share of transaction for each network service subset, where
i = 1, 2, 3 denote the telemetry data, IoT data, and streaming
data, respectively.

B. Subgroups for UAVs
According to the usages of UAVs in real world, we can

classify UAVs into three subgroups: poor, middle and rich,
which mean that the usage frequency of UAVs are from lowest
value to highest. The poor, middle and rich are associated with
the network services in terms of telemetry data, IoT data, and
streaming data, respectively. We use the Gini coefficients to
characterize the non-uniformity input of traffic data in these
three subgroups, where the Gini coefficients are widely used
to describe the non-uniformity input of population data [23].
Let KG,i denote the Gini coefficient, where i = 1, 2, 3 and the
parameter i corresponds to the ith subset of network services.
We further consider the non-uniformity distribution as Pareto
law, and then we have

αi =
0.5(KG,i + 1)

KG,i
, (1)

where αi denotes the Pareto parameter for the ith UAV’s
subgroup.

We use Fj to denote the number of UAVs in the jth
subgroup, where j = 1, 2, 3 represent the poor, middle and
rich subgroups, respectively. Lorenz curves corresponding to
the Pareto distribution with parameter α may be written as
follow [24]

Q(α, x) = 1− (a− F (x))
α−1
α (2)

We use σi to denote the percentage of network usage produced
by the ith subgroup for the ith network service. Then, using
the Lorenz curves, the subgroups can be determined as [25]

F3 = σ
α3
α3−1

3 , (3)

F2 = σ
α2
α2−1

2 − F3, (4)

and

F1 = 1− F2 − F3. (5)

C. Number of Packets

After these UAVs are divided into the three subgroups
according to the network services and network usages, we
obtain the following two classes of events. The first class holds
the events denoted by index i = 1, 2, 3 corresponding to the
demands of services from the telemetry, IoT and streaming
data, respectively. The events in the second class, which are
denoted by index j = 1, 2, 3, correspond to the demands from
UAVs in the poor, middle and rich subgroups, respectively.
The intersection of events from these two classes generates
the segregation of nine segments. We first calculate the packet
arrival rate λij per UAV for the all segments, and determine
the number of packets generated by a swarm of UAVs.

We use βij to denote the share of transactions related to
UAVs from the jth subgroup when requesting services from
the ith network subset. Values of βij may be defined by two
different ways that give the possibility to form the required
equations bellow.

1) The definition of βij on basis of the non-uniformity of
services’ requests

Values of βij should be calculated for the nine segments.
Taking into consideration the expressions 1, 2, 3, 4, 5, and
that

∑
k βij = 1, we have

βi1 = 1− (1− F1)
αi−1

αi ,

βi2 = 1− (1− F1 − F2)
αi−1

αi − βi1,
βi3 = 1− βi1 − βi2,

(6)
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2) The definition of βij over the rate of transaction λij
Using the rate of transactions λij we can easily get the

expression for the rate of transactions generated by all users
of the jth subgroup when requesting services from the ith
subset as follows FjNλij , where N is the total number of
UAVs. Then, βij is determined as

βij =
Fjλij∑
j λijFj

. (7)

We now calculate the unknown parameter λij in (7). Given
the initial input data value of λ11 representing the average
packet arrival rate for the telemetry data from a UAV of the
poor subgroup, we have

λ12 =
λ11β12F1

β11F2
,

λ13 =
λ11β13F1

β11F3
,

λij =
γiβij

∑
j λ1jFj

γ1Fj
, i = 2, 3; j = 1, 2, 3.

(8)

Let N denotes the total number of UAVs in experiment area
and T the experiment duration in seconds. We can calculate the
total number of transmitted packets Pi in ith network service
subset as follows.

Pi = N × T
∑
j

λijFj . (9)

D. Traffic Data Size

Let Wi denotes the average data size of a transaction from
the ith network service subset. We can calculate the traffic
data size from the transactions rate in each network subset as
follows.

Di = N × T ×Wi

∑
j

λijFj . (10)

The total traffic data size is then determined as

D = N × T
∑
i

Wi

∑
j

λijFj . (11)

IV. CASE STUDY

In this section, we present three types of cases including
weather, infrastructure inspection, and research and rescue
scenarios.

A. Weather Scenario

In this scenario, we aim to use UAVs to collect the tempera-
ture and humidity information in a given region. Thus, we can
deploy a swarm of UAVs in the different positions of the region
to get these measurements, and these UAVs are equipped
with temperature and humidity sensors. As shown in Fig. 2,
we provide an example of the deployment of UAVs that are
divided into three subgroups. The red, green, and black UAVs
represent UAVs from the first, second, and third subgroups,
respectively. UAVs in the first subgroup are used to collect
humidity and temperature measurement in specific places.
These UAVs will be firstly sent to the position where we want

to get the measurement and then send the information. UAVs
in the second subgroup are average network users, they use
the network services moderately to send weather measurement
in different places. The UAVs in the third subgroup conduct a
heavy usage of the network services, they are used to collect
weather measurement in all places along their path.

Fig. 2: Weather information’s scenario

B. Infrastructure Inspection Scenario

In this scenario, we aim to inspect some infrastructures in
a specific region. For this purpose, we will use a swarm of
UAVs to get lidar measurements and video streaming of the
premises. The UAVs will be equipped with lidar sensors and
high definition cameras. The Fig. 3 shows an example of UAVs
usage for this mission. UAVs in red, green, and black represent
UAVs from the first, the second, and the third subgroups,
respectively. UAVs from the first subgroup will be used to
get lidar data and video streaming of a specific side of the
premise. UAVs in the second subgroup will get measurement
and video streaming for specific premises or specific sides
of multiple buildings. UAVs in the third subgroup will collect
lidar measurement and video streaming data for many building
and from all sides.

C. Search and Rescue Scenario

In this scenario, multiple UAVs can be applied in search
and rescue scenario. In such a scenario, UAVs equipped with
thermal infrared sensors are able to locate people, and obtain
their stream videos using high definition cameras. As shown
in Fig. 4, we provide an example of the deployment of UAVs.
UAVs in red, green, and black represent UAVs from the first,
the second, and the third subgroups, respectively. The UAVs
in these subgroups will perform the following operations:
obtaining stream videos for the locations of people in the
first subgroup, getting thermal data and stream video for the
locations in the second subgroup, and getting thermal data
in all region searching for people in the third subgroup. The
different subgroups are performing the same scenario to ensure
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Fig. 3: Infrastructures inspection scenario

the continuity of the mission, we may want the UAVs of the
third subgroup to continue their mission of searching for other
people rather than stopping in the people’s locations to send
video streams. We use other UAVs from the first and second
subgroups to perform this specific action.

Fig. 4: Search and rescue scenario

V. PERFORMANCE EVALUATION

Based on the above traffic model and corresponding data
rate formulas, this section conducts the performance evaluation
study under these three scenarios illustrated in Section IV.

A. Simulation Environment

In our study, we use Software In The Loop (SITL) with
Ardupilot to simulate the behaviour of the UAVs in the
network. This will allow us to interact with UAVs and listen
for their telemetry packets. There are 20 UAVs distributed in
the network scenarios, and their telemetry data can be sent to
a server using the MAVLink protocol. On the other hand, the

IoT data like temperature, humidity and lidar are sent to the
server using AMQP protocol. For the video streaming, we use
a raspberry pi to stream a high definition 1080p videos. Notice
that simulating multiple video streaming simultaneously on
the same unit will reduce the streaming rate. To overcome this
problem, we use the unit to behave as only one video streamer
at a time, we run the streaming process on the unit as many
time as much UAVs we simulate. In our simulation, we use 20
instances of simulated UAVs to generate telemetry data. With
each UAV instance, we start a process of generating IoT data
for this UAV. For the video streaming, we run 20 independent
process of video streaming on the raspberry pi unit, each one
corresponds to one UAV.

In the server side, we use a Python script to receive the
telemetry packets, the script calculate the number of received
packets and sum their lengths to calculate the data gathered
from each UAV separately. The IoT data can be captured by
another script, which reads all the information transmitted
through the AMQP protocol and calculates the total size of
packets. A script can also listen to video steams transmitted
through Web sockets protocol for each UAV separately, and
calculates the number of video streams and the total size of
all videos sent from the unit. The parameters used in the
simulation are summarized in Table I.

B. Performance Analysis under Weather Scenario

In this scenario, we analyze the number of telemetry and
IoT packets and the total size of these packets predicted by
our proposed theoretical traffic flow model. These packets are
generated by a swarm of UAVs performing the data collection
for temperature and humidity information in a specific area.
We further conduct a comparison study between theoretical
and simulated results. We summarize the total number of trans-
mitted packets in Fig. 5(a) under theoretical and simulation
cases. It can be observed from Fig. 5(a) that the number of
telemetry packets is significantly more than that of IoT data.
This is because the telemetry packets have higher transmission
frequency than the IoT packets. The average telemetry packet
rate is 100 packets per second per UAV, while the average IoT
packet rate in the third subgroup which uses the network the
most is about 11 packets per second per UAV in this scenario.

We also see from Fig. 5(b) that the total data size of
telemetry packets is not significantly more than that of IoT
packets. This is due to the fact that the average size of an IoT
packet is much greater than the average size of a telemetry
packet.

A careful observation from Figs. 5(a) and 5(b) shows that
theoretical results are almost the same as the simulated ones
for the number of telemetry and IoT packets and data size,
respectively. This indicates that our proposed traffic flow mode
for UAVs can well predict the real results.

C. Performance Analysis under Infrastructure Inspection
Scenario

In this scenario, we investigate the number of telemetry, IoT,
and streaming packets and the total size of these packets under
our proposed theoretical traffic flow model and simulation one.
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TABLE I: Parameter settings

Params. Telem. IoT Stream Description

αi 10 1.125 1.06 Pareto coefficient
98% 2% Share of

transactions for
weather scenario

γi 98% 1.9% 0.1% Share of
transactions for
infrastructure
inspection
scenario

96% 3.9% 0.1% Share of
transactions for
search and
rescue scenario

Wi 34B 1240B 1MB Average size of
a transaction

N 20 Total number of
used UAVs

T 60s Observation
duration in
seconds

σ3 0.9 The percentage
of network usage
of streaming data
from the 3rd

subgroup
σ2 0.9 The percentage

of network usage
of IoT data from
the 2nd and the
3rd subgroups

λ11 100
trans/UAV

Rate of
transactions of
the first
subgroup for the
first telemetry
data

These packets consist of lidar information and video streams
of the premises from an inspection of some infrastructures in
a given area conducted by a swarm of UAVs. We summarize
the total number of transmitted packets in Fig. 6(a) under
theoretical and simulation cases. We can see from Fig. 6(a)
that the number of generated streaming packets is extremely
few compared with IoT and telemetry packets. This is because
the average streaming packet rate in the third subgroup is very
low approximating 0.63 packet per second per UAV in this
scenario.

It can be seen from from Fig. 6(b) that the total data size of
generated streaming packets represent approximately 95% of
the total transmitted data. This is because the average size of
one video is much greater than the average size of a telemetry
and IoT packets.

We further observe from Fig. 6 that theoretical results are

Fig. 5: Number of transmitted packets and network data usage
under the weather scenario

almost the same as the simulated ones for the number of
telemetry, IoT, and streaming packets and for the data size,
respectively. This also indicates that our proposed traffic flow
model for UAVs can also predict the real streaming video data.

D. Performance Analysis under Search and Rescue Scenario

In this scenario, we investigate how the extensive use
of the on-board IoT affect the number of telemetry, IoT,
and streaming packets, and the total size of these packets
under search and rescue scenario in a given area. The search
operation is to unitize the on-board thermal sensor to search for
people in remote places. Once the video streams are received
by the rescue team, they can obtain the people’s states and
locations so that further performing rescue operation.

We summarize the total number of transmitted packets in
Fig. 7(a) under theoretical and simulation cases. An observa-
tion from Fig. 7(a) shows that the total number of generated
telemetry packets is always more than the number of generated
IoT packets. That is because even in this extensive IoT usage
in this scenario, the average arrival rate for telemetry packets
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Fig. 6: Number of transmitted packets and network data usage
under the infrastructure inspection scenario

is higher than that for IoT packets. The former rate is 100
packets/s while the latter one is about 22.68 packets per second
per UAV in the third subgroup.

We can see from Fig. 7(b) that the size of generated IoT
packets exceeds the size of telemetry packets. This is because
in this scenario, UAVs extensively use the IoT sensors on-
board for search operation which leads to an increase in the
network data usage for the IoT service.

VI. CONCLUSION

In this paper, we proposed a general traffic flow model for
multi-services oriented UAV system. Under such a model, the
network services are first categorized into three subsets, and
then the UAVs are divided into three subgroups, which forms
nine mapping relationships between the subsets and subgroups.
We further determined the number of packets for each service
and total data size. The simulation results indicate that our
proposed traffic flow model is general that it can predict the
traffic flows under different scenarios like weather, infras-
tructure inspection, and search and rescue scenarios. These

Fig. 7: Number of transmitted packets and network data usage
under the search and rescue scenario

results also reveal that most of traffic packets are generated by
telemetry service while data size of streaming packets is much
larger than these of telemetry and IoT packets in muti-services
oriented UAV system. Our research is expected to facilitate
the design and deployment of the system with various service
requirements.
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