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With the evolution of 5G networks, the demand for Ultra-Reliable Low Latency Communications (URLLC) services is increasing.
Software-Defined Networking (SDN) offers flexible network management to prioritize URLLC services coexisting with best-effort
traffic. Utilizing the network programmability feature of SDN, Software-Defined Queueing (SDQ) framework selects the optimal
output port queue on forwarding devices and routing path for incoming traffic flows to provide deterministic Quality of Service
(QoS) support required for URLLC traffic. However, in the existing SDQ framework, the selections of optimal queue and path
are done manually by observing the traffic type of each incoming flow, the available bandwidth of each potential routing path,
and the status of output port queues of each forwarding device on each potential routing path. The static allocations of path and
queue for each flow are inefficient to provide a deterministic QoS guarantee for a high volume of incoming traffic which is typical
in 5G networks. The limited buffer availability on the forwarding devices is another constraint regarding optimal queue allocation
that ensures an end-to-end (E2E) delay guarantee. To address these challenges, in this paper, we extend the SDQ framework by
automating queue management with a reinforcement learning (RL)-based approach. The proposed queue management approach
considers diverse QoS demands as well as a limited buffer on the forwarding devices and performs prioritized queue allocation.
Our approach also includes a hash-based flow grouping to handle a high volume of traffic having diverse latency demands and
a path selection mechanism based on available bandwidth and hop count. The simulation result shows that the proposed scheme
ReSQ reduces the QoS violation ratio by 10.45% as compared to the baseline scheme that selects queues randomly.

Index Terms—SDN, Reinforcement Learning, QoS, Queue Allocation, Deterministic QoS, URLLC

I. INTRODUCTION

Ultra-Reliable Low Latency Communication (URLLC)
constitutes a significant portion of 5G communication ser-
vices. URLLC services such as critical healthcare appli-
cations, emergency services for vehicular networks, and
use cases for the Industrial Internet of Things (IIoT) have
stringent latency requirements beyond the capability of tra-
ditional networks [20]. Time-Sensitive Networking (TSN)
and Deterministic Networking (DetNet) are two emerging
paradigms that provide support for URLLC [1]. TSN is a
set of standards for Layer 2 that provide a deterministic
Quality of Service (QoS) guarantee [2]. DetNet extends the
policy of TSN for Layer 3 and selects routing paths for
ensuring deterministic QoS support. Software-Defined Net-
working (SDN) offers programmable networking to realize
the queuing algorithms with configurable parameters defined
in TSN standards and deterministic QoS support [3] [4] [5].
Software-Defined Queueing (SDQ) [6] expands the idea of
deterministic QoS provisioning by providing optimal routing
paths and selecting specific priority queues on SDN switches.
Additionally, SDQ performs real-time queue management by
adding, deleting, or updating existing queues. However, the
selection of routing path and queue is fixed in SDQ which is
not suitable for networks where the traffic is heterogeneous
in terms of requirements and volume.
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Deterministic QoS support for URLLC traffic depends on
both the selected switches to route the traffic and the right
queues the traffic should traverse at each switch in the routing
path. Therefore, route and queue management at the granular
level is necessary. Several existing works attempt to achieve
this granularity in route and queue selection utilizing the
network programmability feature of SDN. Tomovic et al. [12]
proposed an SDN-based QoS provisioning framework that
maintains a dedicated queue for each priority flow. Yan et
al. [11] proposed an SDN-based QoS provisioning approach
that assures bandwidth for each traffic type by analyzing
multiple available routing paths. Dutra et al. [5] utilized the
QoS support in Openflow to provide an E2E QoS guarantee to
each flow. However, the existing approaches [12] [11] [5] do
not consider the requirement of creating new queues when the
existing queues are incapable of accommodating an incoming
flow due to insufficient capacity or requirement mismatch.
SDQ [6] addresses this issue by facilitating autonomous queue
creation/deletion based on the dynamics of network traffic
which is heterogeneous in 5G networks. However, the queue
and route allocation are fixed in the SDQ framework and the
existing allocation cannot be changed with varying network
traffic which is typical in the next generation networks. Addi-
tionally, the SDQ solution does not consider the limited buffer
size in SDN switches [21]. Considering these limitations, we
argue that the existing SDQ framework can be enhanced with
learning-assisted queue management.
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In this work, we propose a reinforcement learning(RL)-
based queue allocation (ReSQ) approach extending the SDQ
framework. The proposed scheme ReSQ models queue setting
in each SDN switch considering fixed buffer size. To handle
high traffic load, ReSQ performs path and queue allocation
for flow groups with similar demands. Additionally, in ReSQ,
existing path and queue allocations are modified dynamically
when the QoS demands are not fulfilled. ReSQ has four
main modules — packet grouping, path selection, queue
allocation, and verification. The packet grouping module
clusters similar packets in multiple priority groups using a
hash function. The path selection module selects the routing
path for each priority group based on the available bandwidth
and path length. The queue allocation module executes an RL
model [7] to dynamically allocate queues to incoming traffic
based on respective priorities. Finally, the verification module
identifies the violating traffic for updating the corresponding
queue allocation. Additionally, this module updates the queue
setting. The primary contributions of our work are as follows:
• We formulate a hash function to group packets of similar

flows in a single priority group. This reduces the compu-
tation complexity as path selection and queue allocation
are performed at a time for all flows in a priority group.

• We design a path selection algorithm that assigns a com-
munication path to the incoming flows in each priority
group based on hop count and available bandwidth.

• We design an RL model to dynamically allocate queues
to each priority group. This model considers the QoS
demands of the traffic and reduces QoS violations and
the number of changes in the existing queue allocation.

• Finally, we perform identification of violating flows and
queue setting update as per requirement.

Simulation results depict that the proposed scheme reduces
both the end-to-end (E2E) latency and the QoS violation ratio
as compared to the random queue assignment.

The remainder of this paper is organized as follows. Section
II discusses the SDQ framework and related works. Section
III describes the system model. In Section IV, we discuss
the proposed scheme. Section V depicts the simulation re-
sults. Finally, Section VI concludes the proposed work and
discusses future research directions.

II. RELATED WORKS

In this section, we discuss RL-based traffic engineering,
SDN-based solutions for providing QoS guarantees, and the
SDQ framework which we extend in this work.

A. RL-Based Traffic Engineering

Several existing works propose RL-based traffic engineer-
ing in SDN. Zhang et al. [8] use RL to identify critical
flows in SDN. Subsequently, the critical flows are rerouted
to achieve better link utilization. Guo et al. [9] proposed a
deep RL-based method to dynamically optimize the routing
policy of traffic flows in Software-Defined Internet of Things
networks based on historical data. Casas-Velasco et al. [10]

presented an RL-based scheme that takes routing decisions
based on link-state information in SDN.

B. SDN-Based Solutions for Providing QoS Guarantees

Various recent works investigate routing and resource man-
agement with softwarized network. Yan et al. [11] proposed
an SDN-based QoS-aware scheme, named HiQoS, which
explores multiple available routes and applies traffic-specific
queuing algorithms to provide bandwidth guarantee. However,
the QoS setting in HiQoS is fixed as compared to SDQ where
queues are added or deleted based on the requirement. To-
movic et al. [12] proposed a framework for QoS provisioning
in SDN. The proposed scheme dynamically routes flows based
on priority and resource utilization. However, this approach
uses fixed queues for each switch in the communication path
of a priority flow. Guck et al. [4] presented two network
models for deterministic QoS. In the first model, named
the multi-hop model, each queue is associated with a rate
and buffer budget. The second model, named threshold-based
model considers a fixed maximum delay for each queue.
However, our work considers dynamic queue allocation and
queue setting update for QoS provisioning to heterogeneous
traffic. Dutra et al. [5] introduced a QoS-aware resource man-
agement scheme for SDN-enabled networks. The proposed
scheme aims to provide guaranteed E2E latency based on
OpenFlow queue support. However, this work focuses on
the reduction of resource over-utilization by minimizing the
number of switches in the communication path. Goto et al.
[24] proposed a queueing model for OpenFlow switches with
individual queues for different classes of packets. Based on
this model, the authors analyzed the average packet transfer
delay and packet loss probabilities for different traffic classes.
However, this model considers a single switch and a single
controller only. Li et al. [23] modeled the delay of SDN-based
avionics network considering 802.1Qbv switches and three
traffic classes – best-effort, stream reservation, and control-
data traffic. The authors proposed a queueing model at each
switch where each traffic class is assigned to an individual
first in first order (FIFO) queue. However, the objective of
this work is to optimize bandwidth allocation. Rahouti et
al. [22] proposed a priority-based queueing framework for
SDN data and control planes to achieve QoS provisioning for
heterogeneous traffic. In this approach, the data plane queue
sizes are altered dynamically based on traffic demand, and
the packet drop probability increases when the average queue
size is beyond a threshold. This work considers finite priority
levels and does not handle violating packets/flows.

C. SDQ Framework

Our work extends the SDQ framework proposed by Abbou
et al. [6] for providing deterministic QoS support in SDN
different from traditional queueing techniques. This frame-
work is installed on top of the control plane. It has two basic
components, namely traffic engineering and queue manage-
ment. The traffic engineering module selects communication
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paths for incoming packets based on available bandwidth.
On the other hand, the queue management module allocates
the packets to specific queues in the output ports. This
module also performs the addition, deletion, modification,
and scheduling of queues. SDQ is a promising framework
that provides QoS guarantees that can benefit URLLC traffic
which may co-exist with best-effort traffic. SDQ provides
service-specific queueing and is appropriate for several use
cases including the Industrial Internet of Things and Extended
Reality. However, the performance of SDQ is limited in terms
of high traffic load, re-allocation of routes and queues for
under-performing flows, and heterogeneous traffic demands.

ReSQ enhances the SDQ framework by enabling dynamic
queue allocation and queue setting updates for traffic flows
having heterogeneous latency demands considering buffer
limitation on SDN switches. Also, in this work, we group
flows based on respective demands to handle the high traf-
fic volume. Additionally, our work identifies the flows that
violate the corresponding QoS demands and modifies queue
assignments for these flows for better outcomes.

Fig. 1: Network topology with SDQ framework

III. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, the network topology consists of a set
of SDN switches denoted by N . We assume that the allocation
of flows to queues is performed periodically. In each time slot,
new flows and selected existing flows are assigned to selected
queues. The allocation of a queue to a flow signifies that all
packets belonging to the flow are assigned to the queue. Table
I shows the symbols used in this paper.

TABLE I: Table of Symbols

Symbol Definition
N Set of switches

mi
Number of queues associated with the output
port of ni ∈ N

qij The queue at jth priority level at switch ni
λi,j(t) Packet arrival rate at qij at time slot t
µi,j(t) Packet service rate at qij at time slot t
ρi,j(t) Traffic intensity at qij at time slot t
K Buffer size of a queue

Di,j(t)
Average queueing delay of a packet assigned
to qij at time slot t

F (t) Set of traffic flows at time slot t

Px(t)
Set of packets belonging to fx ∈ F (t) at time
slot t

Dmax
x Maximum allowable delay of fx ∈ F (t)

pathx(t)
Ordered set of switches in the path of fx ∈
F (t) at time slot t

srcx Source node of fx ∈ F (t)
destx Destination node of fx ∈ F (t)

δkx
Propagation delay between the kth and k+1th

switches in the set pathx(t)
Lx(t) E2E latency of fx ∈ F (t)

A. Queuing Model

Let a switch ni ∈ N has mi queues associated with its
output port. Each queue is assigned a priority level and based
on the priority level the scheduler decides the service rate.
For example, the service rate of a higher priority queue is
higher than that of a lower priority queue. The service rate of
a queue can be specified by setting the scheduler properties.
The scheduler may process the queues in priority order or
based on a weighted round-robin schedule [13]. Let qij denote
the queue at the jth priority level at switch ni. At time slot
t, each queue qij has a packet arrival rate λi,j(t) and a packet
service rate µi,j(t). Therefore, the traffic intensity at qij is
ρi,j(t) =

λi,j(t)
µi,j(t)

. For simplicity of the analysis, for each
queue, we consider the M/M/1/K queuing model where K
is the finite queue length. In the M/M/1/K queuing model,
the incoming packets follow Poisson’s distribution, and the
service times of the packets are exponentially distributed [19].
The average queuing delay of a packet assigned to qij is given
by:

Di,j(t) =
1

µi,j(t)

(
1 +Kρi,j(t)

(K+1) − (K + 1)ρi,j(t)
K

(1− ρi,j(t))(1− ρi,j(t)(K+1))

)
(1)

Therefore, if a additional packets are assigned to qij , the
packet arrival rate for the time-slot t becomes λi,j(t) + a

and the traffic intensity is updated as ρ
′

i,j(t) =
λi,j(t)+a
µi,j(t)

.
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Fig. 2: Workflow of the proposed scheme

Accordingly, the increase in queuing delay is given by:
D

′

i,j(t) =

1

µi,j(t)

(
1 +K(ρ

′

i,j(t))
(K+1) − (K + 1)(ρ

′

i,j(t))
K

(1− ρ′
i,j(t))(1− (ρ

′
i,j(t))

(K+1))

)
−Di,j(t) (2)

We assume that the number of queues per switch, the
present arrival rate of each queue, the service rate of each
queue, and the priority level of each queue are known.

B. Traffic Model

Let F (t) denote the set of traffic flows and Px(t) refers
to the set of packets belonging to a flow fx ∈ F (t) at time
slot t. A flow fx ∈ F (t) is characterized by the maximum
allowable delay (Dmax

x ), ordered set of switches in the flow
path at time slot t (pathx(t)), source (srcx), and destination
(destx). We define the following binary variable to denote the
queue allocation for a flow fx at time slot t:

γx,i,j(t) =

{
1 if fx is allocated to qij at time slot t,
0 otherwise.

(3)

Let δkx denote the propagation delay between the kth and
k + 1th switches in the set pathx(t). Therefore, considering
all packets at time slot t, the E2E latency of a flow fx is:

Lx(t) = max
px,y∈Px(t)

(
∑

ni∈pathx(t)

mi∑
j=1

γx,i,j(t)Di,j(t)

+

|pathx(t)−1|∑
k=1

δkx) (4)

To differentiate traffic types, we assign a priority value
to each flow. We get the priority value by normalizing the
maximum allowable delay for the flow. After normalization,
the priority value is approximated to the nearest integer.
Therefore, for a flow fx, the priority value is estimated as:

σx = α+
(Dmax

x −min(Dmax)) (β − α)

max(Dmax)−min(Dmax)
, (5)

where min(Dmax) and max(Dmax) are the minimum and
the maximum value of the maximum allowable delay. The

normalization range is [α, β] with α > 0. Here, low σx value
signifies that fx is a high priority flow. Let B(t) denote the
set of priority groups at time slot t, F g(t) denote the set of
flows belonging to a group bg ∈ B(t) at time slot t, and σg be
the priority value of group bg . Therefore, if a flow fx belongs
to a priority group bg , we get σx = σg as all flows belonging
to the same priority group has the same priority as estimated
in Equation (5).

C. SDQ Framework

Software-defined queueing framework [6] installed on top
of the control plane performs queue management and traffic
engineering. Queue management involves the addition or
deletion of queues, setting service rates, and scheduling
algorithms for processing the queues. On the other hand,
traffic engineering involves the selection of communication
paths for incoming flows.

D. Problem Formulation

Given a set of switches N with each switch ni ∈ N having
mi queues associated with its output port. The goal of this
work is to determine the path and queue allocation for the
flows so that the E2E latency of each flow is less than the
maximum allowable delay. Mathematically,

Minimize
path(t),γ(t)

∑
bg∈B(t)

1

σg

 ∑
fx∈F g(t)

Lx(t)

Dmax
x

 (6)

subject to
Lx(t) ≤ Dmax

x ,∀fx ∈ F (t) (7)

IV. RESQ: THE PROPOSED SCHEME

In this section, we present the proposed scheme ReSQ
for latency-aware allocation of queues at each switch for the
traffic flows.
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A. Workflow of the Proposed Scheme

Fig. 2 shows the basic workflow of the proposed scheme.
This process is triggered at the beginning of each time slot.
Here, the concerned flows are new flows and the flows that
violate E2E latency constraints based on the path selection
and queue allocation in the previous time slot. The concerned
flows are classified into multiple priority groups based on
source, destination, and the maximum allowable delay. Start-
ing with the highest priority group, the available shortest path
is allocated to each group. Subsequently, an RL algorithm
allocates queues to each group. Finally, we determine the
violating flows and delete empty queues.

B. Flow Grouping

Existing traffic classification schemes can be used to clas-
sify the concerned flows in multiple priority groups [14]
[15]. Similar to the work by Daly et al. [14], we use
a hash function to classify the concerned flows based on
respective priority. The hash key for a flow fx is the tuple
keyx =< srcx, destx, σx >. All packets of fx are placed in
a group with a key value the same as keyx. The process of
assigning a flow to a priority group takes O(|B(t)|) time in
the worst case [14].

C. Path Selection

In this work, we assume that the system stores available
paths between each pair of nodes, the hop count of each
path, and the available bandwidth of each path [18]. For each
priority group, the path is assigned. The path selection process
for a priority group bg is described in Algorithm 1. Algorithm
1 estimates the cumulative bandwidth demand for all flows
in a priority group. The available paths are investigated in
increasing order of hop count to satisfy the demands of
URLLC traffic. If a path satisfies the required bandwidth
demand, it is selected for the corresponding priority group.
The path selection process is optimized by prioritizing the
groups in priority order starting with the group with the high-
est priority. The selected paths and queues for existing non-
violating flows remain unchanged. The time complexity of
Algorithm 1 depends on the estimation of the total bandwidth
demand of all flows in the respective priority group and the
verification of available paths for a suitable selection. The
first step takes O(|F g(t)|) time and the second step takes
O(pathgmax) time where pathgmax is the maximum number
of paths between src and dest nodes for the priority group
bg with key {src, dest, σg}. Therefore, the time complexity
of Algorithm 1 is O(|F g(t)|+ pathgmax).

D. Queue Allocation

In 5G networks, the traffic matrix of changes frequently
and the priority group formations change accordingly. There-
fore, for the varying network dynamics, manually designing
heuristic algorithms is tedious and inefficient. Q-learning
(QL) is a widely used algorithm that requires no prior

Algorithm 1 Path Selection Algorithm (PSA) for bg

INPUTS: Key for bg (keyg = {src, dest, σg}), F g(t)
OUTPUT: Selected path for bg (pathg(t))
PROCEDURE:

1: Estimate total bandwidth demand bw of the priority group
2: for each path between src and dest do
3: pathg(t)← The unvisited shortest path
4: if pathg(t) has residual bandwidth bwresg (t) greater

than bw then
5: bwresg (t)← bwresg (t)− bw
6: return pathg(t)
7: else
8: pathg(t)← The next shortest path
9: end if

10: end for

system knowledge and the system gradually learns to make
better choices. QL algorithms converge with the maximum
reward. Therefore, we design a Q-Learning (QL) framework
to allocate queues for each priority group. We use QL to learn
an optimal queue allocation policy on-demand for the new
and existing flows without violating the respective latency
constraints. Eventually, the QL-based system can satisfy the
E2E latency constraint of the new and existing flows with
minimum queue reallocation. Moreover, we speed up the
learning process by using federated agents for each priority
group sharing respective QL model weights.

For the RL algorithm, we define a Markov decision process
as < S,A, T,R, d >, where S is the state space, A is the
action space, Pr(sτ+1|sτaτ ) ∈ T are the transition proba-
bilities, rτ (sτaτ ) ∈ R is the reward function, and d ∈ [0, 1]
is the discount factor [16]. The agent takes action based on
the current state of the environment and the reward received
for each action. The state of the environment changes after
each action based on the respective transition probability. A
policy π(s, a) = Pr(aτ = 1|sτ = s) signifies the probability
of taking action a = aτ in state sτ . The return at time τ is

expressed as Rτ =
∞∑
i=0

di+τri+τ . The goal of the agent is to

determine an optimal policy π∗ = argmax
π

Eπ{R0|s0 = s}.
For a group bg , we define state space, action space, and reward
function as follows:

1) State Space
We define the state of the environment based on the traffic

intensity of all queues in the communication path selected
for the priority group. Let Ng be the set of switches in the
selected path for priority group bg . The state space of the
corresponding environment is defined as:

S = {sj(τ) = {yij(τ)}},∀j ∈ [1,mi],∀ni ∈ Ng, (8)

yij(τ) =

{
0, if ρi,j(τ) ≤ 0.5,

1, Otherwise,
(9)

where j ∈ [1,mi] refers to the priority level of a queue at
switch ni and mi is the total number of queues or priority
levels at ni. We consider an additional empty queue for each
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switch to address the requirement of new queue formation.
However, we assume that the maximum number of queues
per switch is limited to M .

2) Action Space
An action signifies selecting a queue for a priority group.

The action space for a queue is defined as:
A = {aj(τ) = {0, 1}},∀j ∈ [1,mi],∀ni ∈ Ng, (10)

where aj(τ) = 0 denotes that the queue is not allocated for
the priority group and aj(τ) = 1 denotes that the queue is
allocated for the priority group. Therefore, an action signifies
the set of selected queues in the selected path for a priority
group.

3) Reward Function
The goal of the agent is to minimize the number of flows

that violate the E2E latency constraint after each action.
Additionally, the agent aims to reduce the number of changes
in the existing queue allocation. For an action a(t), the value
of reward r(t) is defined as:

rτ =
1

σg

 ∑
fx∈F g(t)

Dmax
x − Lx(τ)

Dmax
x (1 + v(τ))(1 + c(τ))

 , (11)

where c(τ) denotes the number of changes in the existing
queue allocation for the current priority group, and v(τ)
denotes the number of violating flows for the current priority
group.

Algorithm 2 shows the steps of the queue allocation process
based on QL. We consider the maximum number of episodes
as Γ and the RL agent computes γ(t). The parameters for the
Q-learning algorithm are — learning rate α, discount factor z,
and exploration policy ε. The time taken for queue allocation
depends on the number of episodes, episode horizon time,
and the size of the Q-table. Based on the formulated Markov
decision process, the size of both the state space and the
action space is 2|N

g|M each. In reality, M is a user-defined
parameter, and the value of |Ng| is low as Algorithm 1
prioritizes shortest paths for path selection. Therefore, the
time complexity of Algorithm 2 is O(ΓH22|N

g|M ).

E. Verification
After completion of each time slot, the system identifies

the flows that violate the E2E latency constraint. The path
and queue allocation for these flows remains unchanged until
the start of the next time slot. In the next time slot, flow
grouping is performed for the violating flows as well as
the new flows. The verification module also updates the
current queue settings. If any queue is empty, it is deleted
and the queue priority levels are reset. The identification
of violating flows takes O(|F (t)|) time. The identification
of empty queues takes O(|N |M) time in the worst case.
Therefore, the worst-case time complexity of the verification
module is O(|F (t)|+ |N |M).

V. PERFORMANCE EVALUATION

A. Simulation Settings
We use a discrete event simulator with a time slot duration

of 50 ms to evaluate the performance of ReSQ. For the

Algorithm 2 Queue Allocation Algorithm (QAA)

INPUTS: Number of episodes (Γ), episode horizon time
(H), Learning rate (α), exploration policy (ε), discount
factor (z)

OUTPUT: γ(t) . queue allocation
PROCEDURE:

1: Q(st, at)← 0, ∀st ∈ S, ∀at ∈ A . Q-table
2: for each e ∈ Γ do
3: for each τ ∈ H do
4: Select num ∈ [0, 1] randomly
5: if num > ε then
6: aτ ← argmax

a
Q(sτ , a)

7: else
8: aτ ← randomly selected action
9: end if

10: Take action aτ and go to state sτ+1 to get reward
rτ+1

11: Update γ(τ)
12: Q(sτ , aτ ) ← (1 − α)Q(sτ , aτ ) + α[rτ +

zmax
a

Q(sτ+1, a)] . Q-table update
13: end for
14: end for
15: return γ(t)

TABLE II: Simulation parameters

Parameter Value
Topology ATT, Abilene [17]
Number of Switches 25 (ATT), 11 (Abilene)
Maximum number of queues
per switch 3

Packet generation rate 200-1000 packets/second
Bandwidth demand of a flow 0.003− 5 Mbps
Maximum allowable delay 5− 300 ms
Duration of a time slot 50 ms
Learning rate 0.1 [7]
Discount factor 0.95 [7]
Exploration policy 0.9 [7]

TABLE III: Traffic categories

Latency-sensitivity Maximum allowable delay
High 5− 100 ms
Medium 101− 200 ms
Low 201− 300 ms

simulation, we consider the ATT topology having 25 switches
[17] as the default topology. Additionally, we evaluate the
performance of ReSQ with Abilene topology [17] which is
a smaller topology than ATT. Table II shows the simulation
parameters. The packet generation rate is varied between 200
packets/ms and 1000 packets/second for each time slot. Each
flow has a fixed bandwidth demand and it varies between
0.003 − 5 Mbps. The ε-greedy Q-learning agent considers
the learning rate (α) as 0.1, discount factor (z) as 0.95 and
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the exploration policy (ε) as 0.9 [7]. For the simulation, we
categorize the incoming flows into three traffic categories
based on the latency-sensitivity as shown in Table III. Each
experiment is conducted for 30 iterations and the 95% confi-
dence interval is considered as the simulation results.

B. Benchmark Scheme

We consider random queue assignment (RQA) as a bench-
mark for the evaluation of the performance of ReSQ. RQA
assigns the flows randomly to the queues in the flow path.
Moreover, this scheme does not include a verification module
to rectify the queue assignments of the violating traffic.
For a fair comparison, we consider the same path selection
procedure for both RQA and ReSQ. To evaluate the efficacy
of the proposed path selection module, we compare ReSQ
with greedy path selection (GPS) where the first available
path with sufficient bandwidth is selected for each priority
group. Additionally, we compare ReSQ with the initial SDQ
solution proposed in [6] to show the necessity of the extension
proposed in this work.

C. Performance Metrics

We consider the following metrics to analyze the perfor-
mance of the proposed scheme:
• E2E latency: The E2E latency of each flow depends on

the selected queue as mentioned in Equation (4).
• QoS violation ratio: QoS violation ratio expresses the

number of flows having E2E latency higher than the
corresponding maximum allowable delay values.

• Flow path length: This metric specifies the average hop
count for the flows to evaluate the performance of the
proposed path selection module.

D. Result and Discussion

1) E2E Latency
From As a performance metric, we analyze the E2E

latency of flow which includes the propagation delay and
the queueing delay at each switch in the respective routing
path as expressed in Equation (4). This metric is one of
the important performance measures, especially for URLLC
traffic having strict latency demands. Fig. 3a, we observe that
the average E2E latency of ReSQ is 60.07% less than that of
RQA. This is because ReSQ allocates queues more optimally
considering specific QoS demands. In particular, for ReSQ,
the RL agent selects an action or queue allocation that reduces
the aggregated E2E latency for a priority group. In contrast,
random queue allocation by RQA increases queueing delay
of some queues and results in high average E2E latency.
Additionally, we observe that the average E2E latency of
ReSQ is 32.1% less than that of SDQ. This is because
SDQ selects a less loaded path to route the traffic and does
not consider the length of the path which influences the
propagation delay. However, ReSQ selects the shortest path
that has enough bandwidth to accommodate the request and

 0

 100

 200

 300

 400

200 400 600 800 1000

E
2
E

 L
at

en
cy

 (
m

s)

Packet Generation Rate (packets/second)

 ReSQ  RQA  SDQ

(a) Comparison with RQA

 0

 50

 100

 150

 200

200 400 600 800 1000

E
2
E

 L
at

en
cy

 (
m

s)

Packet Generation Rate (packets/second)

 Latency-Sensitivity: High
 Latency-Sensitivity: Medium

 Latency-Sensitivity: Low

(b) Performance of ReSQ for different traffic categories

Fig. 3: ATT Topology: E2E latency

the RL agent minimizes the E2E delay further by selecting
appropriate queues with low delay.

In a network having heterogeneous traffic with different
latency demands, it is important to serve the highly latency-
sensitive traffic earlier than other traffic. Therefore, we com-
pare the performance of ReSQ for different traffic classes
categorized by respective latency demands. From Fig. 3b,
we observe that highly latency-sensitive traffic experiences
significantly low E2E delay as compared to other traffic
categories. This is because ReSQ selects the set of optimal
queues that reduces the gap between the maximum allowable
latency and the E2E latency as stated in Equation (11).
For example, a highly latency-sensitive flow fx has a low
maximum allowable delay Dmax

x . For this flow, the RL agent
selects queues so that the E2E latency Lx(τ) is lower and
the difference (Dmax

x − Lx(τ)) is higher to obtain a higher
reward. Therefore, E2E latency decreases with increasing
latency-sensitivity of the flows.

2) QoS Violation Ratio
We consider the QoS violation ratio as a performance

metric to measure the number of flows that fail to complete
within the respective delay budget due to inefficient path
selection and queue allocation. Fig. 4a shows that the QoS
violation ratio of ReSQ is 10.45% less than that of RQA.
This is because of cautious queue allocation for latency-
sensitive flows. In particular, the RL agent aims to minimize
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the number of violating flows to achieve a higher reward
as mentioned in Equation (11). Moreover, each RL agent
periodically rectifies its earlier decision in subsequent time
slots and modifies queue allocation for violating traffic. The
average QoS violation ratio of ReSQ is 7.63% less than that of
SDQ. This is because SDQ does not consider the reallocation
of violating traffic. Whereas, ReSQ performs flow grouping,
path selection, and queue allocation for violating traffic to
reduce further QoS violations.
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Fig. 4: ATT Topology: QoS violation ratio

We analyze the QoS violation of ReSQ for different traffic
categories. From Fig. 4b, we observe that the QoS violation
ratio for highly latency-sensitive traffic is high. This is be-
cause the maximum allowable delay values of these flows
are very low as shown in Table III.

3) Flow Path Length
Low flow path length implies low aggregated propagation

delay which in turn reduces the E2E latency as stated in
Equation (4). Therefore, we compare the average flow path
length achieved by ReSQ with that of the benchmarks. Fig.
5 shows that the average flow path length for ReSQ is sig-
nificantly lower than that of GPS. This is because Algorithm
1 explores the paths in the order of hop count and selects
the path with sufficient capacity. On the other hand, the GPS
method greedily selects the first available path with sufficient
bandwidth. Therefore, in this case, a selected path may have
a larger length. From Fig. 5, we also observe that SDQ has
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a significantly higher path length compared to ReSQ. This is
because SDQ prioritizes available paths based on the available
bandwidth in each path. SDQ selects the least loaded path.
Therefore, in SDQ, achieving the minimum path length is not
guaranteed.
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Fig. 6: Performance of ReSQ for ATT and Abilene topologies

Topology size has a significant effect on path and queue
selection. A large-scale topology has multiple options for path
selection which result in some paths with high propagation
delay because of high hop count. On the other hand, the
selections of path and queue are limited in smaller topologies
due to less number of available options. Therefore, it is
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interesting to observe the performance of ReSQ for topologies
having different dimensions. Fig. 6 evaluates the performance
of ReSQ for ATT and Abilene topologies. From Fig. 6a, we
observe that E2E latency for Abilene is less than that for ATT.
This is because Abilene is a smaller topology than ATT and
the number of switches in each flow path is low resulting in
low propagation delay. For the same reason, the average QoS
violation ratio for the Abilene topology is low. However, as
shown in Fig. 6b, for low packet generation rates such as 0.2
packets/second, the QoS violation for Abilene is higher than
that of ATT. This is because ATT topology has more paths
available to well-distribute the traffic so that the queuing delay
is less at each switch in the flow path. However, as the traffic
load increases the increase in propagation delay increase the
E2E latency, and the QoS violation ratio increases as well for
the ATT topology.

VI. CONCLUSION

This paper extends the concepts of the software-defined
queueing framework by automating the selection of routing
paths and queues for traffic flows belonging to heterogeneous
priority classes. The proposed scheme ReSQ employs a
hashing-based technique to classify incoming packets into
multiple priority groups. Additionally, QL is used to assign
queues to the priority groups in parallel. One of the strengths
of ReSQ is that it automates the queue allocation and queue
setting update in the SDQ framework. Additionally, ReSQ
routes flow through optimally selected paths with low hop
counts to reduce the propagation delay which is a significant
component of E2E latency. Accordingly, the performance
evaluation shows promising results in terms of E2E latency
and QoS violation ratio.

ReSQ re-allocates path and queue for all violating flows
which may not be feasible because there may be some
violating flows that can never fulfill the respective latency
demands. Therefore, in the future, we plan to extend this
work by selecting violating flows for which path and queue
re-allocation is feasible. Additionally, we plan to consider
multiple output ports associated with each switch.
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