472 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

Al-Based Network-Aware Service Function Chain
Migration in 5G and Beyond Networks

Rami Akrem Addad™, Graduate Student Member, IEEE, Diego Leonel Cadette Dutra™,

Tarik Taleb

Abstract—While the 5G network technology is maturing and
the number of commercial deployments is growing, the focus
of the networking community is shifting to services and service
delivery. 5G networks are designed to be a common platform
for very distinct services with different characteristics. Network
Slicing has been developed to offer service isolation between the
different network offerings. Cloud-native services that are com-
posed of a set of inter-dependent micro-services are assigned into
their respective slices that usually span multiple service areas,
network domains, and multiple data centers. Due to mobility
events caused by moving end-users, slices with their assigned
resources and services need to be re-scoped and re-provisioned.
This leads to slice mobility whereby a slice moves between ser-
vice areas and whereby the inter-dependent service and resources
must be migrated to reduce system overhead and to ensure
low-communication latency by following end-user mobility pat-
terns. Recent advances in computational hardware, Artificial
Intelligence, and Machine Learning have attracted interest within
the communication community to study and experiment self-
managed network slices. However, migrating a service instance of
a slice remains an open and challenging process, given the needed
co-ordination between inter-cloud resources, the dynamics, and
constraints of inter-data center networks. For this purpose, we
introduce a Deep Reinforcement Learning based agent that is
using two different algorithms to optimize bandwidth alloca-
tions as well as to adjust the network usage to minimize slice
migration overhead. We show that this approach results in signifi-
cantly improved Quality of Experience. To validate our approach,
we evaluate the agent under different configurations and in
real-world settings and present the results.

Manuscript received July 7, 2020; revised October 29, 2020 and February 7,
2021; accepted February 9, 2021. Date of publication April 21, 2021; date of
current version March 11, 2022. This research work is partially supported by
the European Union’s Horizon 2020 ICT Cloud Computing program under the
ACCORDION project with grant agreement No. 871793 and by the European
Union’s Horizon 2020 research and innovation program under the CHARITY
project with grant agreement No. 101016509. It is also partially funded by the
Academy of Finland Project 6Genesis under grant agreements No. 318927.
The associate editor coordinating the review of this article and approving it
for publication was J. Zhao. (Corresponding author: Rami Akrem Addad.)

Rami Akrem Addad is with the Department of Communications
and Networking, Aalto University, 02150 Espoo, Finland (e-mail:
rami.addad @aalto.fi).

Diego Leonel Cadette Dutra is with the PESC, Federal University
of Rio de Janeiro, Rio de Janeiro 21941-972, Brazil (e-mail:
diegodutra@lcp.coppe.uftj.br).

Tarik Taleb is with COMNET, Aalto University, Espoo 02710, Finland,
also with the Centre for Wireless Communications, University of Oulu,
90570 Oulu, Finland, and also with the Computer and Information Security
Department, Sejong University, Seoul 05006, South Korea.

Hannu Flinck is with Nokia Bell Labs, 02610 Espoo, Finland (e-mail:
hannu.flinck @nokia-bell-labs.com).

Digital Object Identifier 10.1109/TNSM.2021.3074618

, and Hannu Flinck

Index Terms—5G and beyond, service function chain, artificial
intelligence, machine learning, multi-access edge computing, deep
reinforcement learning, and management and orchestration.

I. INTRODUCTION

HE LATEST 5G system architecture has been designed

to be compatible with cloud technology. Control plane
network functions follow a service-based approach that builds
on Network Function Virtualization (NFV) and Software-
Defined Networking (SDN) resulting in a well-scalable con-
trol plane [1]. The initial service offerings of the 5G
network are classified through three major service types,
namely enhanced Mobile Broadband (eMBB), Ultra-Reliable
and Low-Latency Communications (URLLC), and massive
Machine-Type Communications (mMTC) [2]. The services are
also expected to be cloud-based, sharing the same comput-
ing and network infrastructure. To ensure isolation between
these three different service types, the concept of Network
Slicing (NS) [3], which is one of the key features of 5G
networks, has been introduced. Furthermore, the use of Multi-
Access Edge Clouds (MEC) [4] enables to bring latency-
sensitive services closer to the end-users. Cloud-based services
and network functions are typically implemented as Service
Function Chains (SFC) [5] of dependent micro-services that
collectively provide an end-to-end service. For example, one
micro-service is in charge of authentication, one for data
encoding, and another for the application business logic. Such
SFCs are then associated with corresponding NSs that are
consumed by the end-users.

From a resource point of view, a NS instance contains the
end-to-end services and their respective computing, storage
resources, network resources such as radio resources, and the
resources connecting the computing and storage resources that
may be distributed between edges and central data centers.
The resource consumption demands depend on the service
type, the number of service users, end-user devices, and users’
locations. When the users of a service move from a place to
another, the resource consumption load changes based on the
length and the number of users sharing the communication
path to the servers providing the service. At some point, the
original resource allocation of an NS needs to be remapped to
match the actual consumption and latency situation, leading
to the notion of NS mobility where the network connectivity
and the servers are re-provisioned.

To support NS mobility to reduce system overhead and
allow low communication latency, we have proposed SFCs

1932-4537 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Oulu University. Downloaded on August 02,2022 at 18:55:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8917-9670
https://orcid.org/0000-0003-4262-7242
https://orcid.org/0000-0003-1119-1239
https://orcid.org/0000-0001-9619-6682

ADDAD et al.: AI-BASED NETWORK-AWARE SFC MIGRATION IN 5G AND BEYOND NETWORKS 473

migration approaches for 5G networks [6]. SFC migration,
through the usage of the SDN and NFV paradigms, steers
the network traffic and flows across multiple physical and
logical infrastructures while ensuring low-latency communi-
cation by following end-users’ motion [5], [6]. Live service
migration processes, as underlying technologies and enablers
of SFC migration strategies, are known to be challenging
in inter-cloud settings. The use of chained micro-services
is adding its own challenges due to the dependency of the
chained micro-services. A prime example is the considerable
amount of network resource usage to enable the reshuf-
fling of the virtualized instances (live/cold migration) [7].
Moreover, in 5G and beyond networks, it is expected that the
number of URLLC type services that require strict delay con-
straints will increase as 5G networks become more widely
deployed [8]. This emphasizes the importance of careful man-
agement of the end-to-end service delivery. To summarize,
end-user mobility events may trigger a large number of appli-
cation migrations concurrently, hence exhausting the network
resources shared between the distributed edge clouds and their
servers.

Recently, both academia and industry have increased their
interest in Machine Learning (ML) methods, a subarea of
Artificial Intelligence (AI) [9]. The use of ML in mobile
networking has been also evaluated [10]. Furthermore, ML
will automatically perform corrective re-configurations to the
infrastructure, ensuring the availability of the network [11].
ML techniques will also apply efficient policies leading to the
optimization of the system resources; hence, enabling efficient
use of critical network and service resources, e.g., latency and
bandwidth, and system resources, e.g., RAM, CPU, DISK,
and I/O, [12]. ML techniques will be part of the networking
and communication area as different research projects, pro-
posals, and white papers have indicated [13], [14]. However,
the integration of ML methods into telecommunication’s stan-
dards and edge computing architecture is still embryonic [15].
To address this concern, more research on applying ML meth-
ods in 5G and beyond networks is necessary. AI/ML will act
as a support for enabling smarter and more responsive gener-
ation of networks while maintaining the currently proposed
architectures by the standards community, e.g., ETSI and
3GPP [1], [16].

Motivated by the limitations triggered by unpredictable end-
users mobility patterns, the complexity that the current 5G
service delivery faces fulfilling inter-cloud bandwidth con-
straints, the stochastic, i.e., non-deterministic, use of networking
resources during mobility events, and by the recent advances that
ML techniques bring to edge computing and next-generation
networking, we propose a Deep Reinforcement Learning (DRL)-
based framework that enables efficient resource allocation
mechanisms. DRL methods allow complex decision-making
without explicit knowledge of all underlying network ele-
ments and internal architectures, as it considers them as black
boxes [17]. Moreover, an appropriate algorithm selection, hyper-
parameters tuning, and well-defined neural network architecture
are required for obtaining credible mapping from system states to
control actions. Following the above observations and network
constraints, in this work, we intend to:

o Introduce our envisioned architecture hosting the
proposed network-aware agent and its constituent ele-
ments;

e Model and design a DRL-based agent capable of han-
dling bandwidth allocation as well as refining the network
usage to reduce the overhead and allow better users’ QoE;

o Present the internal operational mechanisms of our
network agent, neural network architectures used by
the two different DRL-based algorithms constituting our
network agent, and their hyper-parameters values;

o Evaluate the proposed agent under different configu-
rations and in real-world deployments while trying to
determine the most suitable DRL algorithm/approach to
enable an optimized SFC migration pattern within the 5G
network.

The remaining of this paper is organized as follows.
Section II outlines the related work. In Section III, we present
a background overview of RL and the various algorithms
proposed in the preceding research. We also detail the system
model and the design of our envisaged architecture used for
bandwidth allocation. Section IV presents a detailed overview
concerning the design of our agent as well as the different neu-
ral networks’ parameters and architectures followed in both
proposed algorithms. In Section V, we present and discuss
the results of our experimental evaluation. Finally, we con-
clude the paper and introduce future research challenges in
Section VI.

II. RELATED WORK

The authors of [18] proposed a solution to overcome
limitations, i.e., service disruptions and inadequate users’
QoE, faced when performing live migration over Wide Area
Networks (WANSs). They proposed a system named “ReSeT”
that predicts migration time and downtime utilizing a Linear
Regression (LR) technique, thus reducing them drastically.
During this work, the authors tested various metrics’ combi-
nations, e.g., CPU & number of client, CPU & network speed,
and network speed & number of clients. They finally adopted
the combination of network speed & number of client metrics
as the ideal pair of parameters for predicting best downtime
and total migration time through a series of evaluation tests.
Knowing the dynamic aspect of 5G and beyond networks, con-
sidering only network speed in the prediction model while
ignoring the bandwidth usage, will guarantee neither short
service disruptions nor users’ satisfaction.

De Vita et al. [19] proposed a solution for the data
migration problem to improve users’ QoS in a MEC envi-
ronment. The authors leveraged DRL to build a self-adaptive
algorithm capable of understanding the MEC nodes’ status
and accordingly migrating users’ application data. To select
the optimal policy for determining the migration time, the
authors used users’ positions and the current state of the
network architecture. The authors validated their proposed
model using OMNeT++/SimulLTE [20] integrated with the
Keras ML framework to simulate the MEC environment [21].
However, they disregarded the network resources in their

Authorized licensed use limited to: Oulu University. Downloaded on August 02,2022 at 18:55:32 UTC from IEEE Xplore. Restrictions apply.

474

re Training & |
s | |
[oaie ! I
! { or. ¥
-1 H Algorithms [l
. Bandwidth Trainer |
H Allocator & (DQN, DDPG) |
BB Exploitation EEEREEEEEE * |
module |

(BAE)

|

Operation/business |
support systems |
(0Ss/8SS) | |
|

|

|

'
'
' i
1 NFV Orchestrator i
1 (NFVO) i
I
i

£
i

Integrated
ETSINFV
Model

Fig. 1.

modeling, which introduces uncertainty on their solution in
scenarios with a large number of mobile users.

The authors of [22] designed and implemented a network-
aware Virtual Machine (VM) migration scheme in cloud
data-center environments. Their proposal dynamically relo-
cates VMs across nodes while minimizing the generated traffic
flow. The proposed approach was integrated into Xen-based
virtualization systems and evaluated on a practical testbed with
a 78% communication cost reduction. Stage and Setzer [23]
provided a comprehensive approach for scheduling VM migra-
tions while considering both bandwidth and network topology
requirements. The practical implementation is integrated with
a commercial data center provider. Aiming to reduce com-
pletion time and reduce network overhead in multiple VM
migrations scenarios, the authors of [24] introduced a schedul-
ing method. Their approach starts by analyzing migration
outputs, then discovers suitable shared bandwidth resources
for parallel migration operations. Evaluation results showed
the efficiency of the proposed scheduling scheme. Despite
the efficiency of the previously cited works, 5G and beyond
networks will rely on dynamic and adaptive solutions to handle
networking limitations.

Addad et al. [6] introduced a method to handle all
Virtualized Network Functions (VNFs) chain migrations,
i.e.,, under the name of SFC migrations. The proposed
approach considers both the synchronization of the VNF
chain’s instances and network resources consumption. The
authors proposed to refine the network usage by control-
ling the network’s bandwidth while executing SFC migrations.
Although their approach offers a downtime transfer similar to
when having the full utilization of the bandwidth, it was based
on a brute force method. With the high dynamic workloads of
5G applications, this approach becomes rapidly inefficient.

Duggan et al. [25] elaborated a method to diminish network
resources’ consumption generated by the VM migrations. They
used an RL agent to develop an autonomous network-aware
VM migration strategy. The authors monitored the network’s
demands and let their proposed agent accordingly schedule
the optimal VMs migrations’ decisions. They evaluated their
proposal with a simulated cloud environment. The proposed
approach based on RL also has practical limits as in complex

BW, =3 GBls

[|BW. = 2.5 GBI flime=1-1.2(s)
| [{BW, = 2 MB/s|fTime=1-1.2(s)

H
| —— R
1 Infrastructure | el A

| Manger (VM)

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

----------------- A =)
---------- LT

Framework architecture for ML-based orchestration and allocation of bandwidth resources.

and large-scale networks, the state and action spaces are usu-
ally large. Therefore, RL may neither find the optimal policy
in a reasonable time, i.e., scalability issues, nor be capable
of representing the colossal number of states in a computer’s
memory.

The authors in [26] designed, modeled, and evaluated two
DRL-based algorithms for allowing a fine-grained selection
of system-based triggers regarding network slice mobility
patterns. The work constituted an effort towards making
their defined triggers intelligent while maintaining system
resources stable. Nevertheless, the proposed solution does
not ensure reduced network resource overhead. Clearly, the
proposed approach requires complementary proposals guaran-
teeing network resource stability, as aimed for in this paper.

In comparison to the literature, this present work aims to
develop a network-aware agent capable of selecting accurate
bandwidth values while ensuring fast and reliable service
migration to address a large number of emerging use-cases
requiring strict requirements.

III. PROPOSED ARCHITECTURE & SYSTEM MODEL
A. Envisioned Architecture

The emergence of new vertical industries such as automo-
tive, e-health, and public safety on top of 5G infrastructure
expects low-latency communication. Besides, it is expected
that mMTC applications change the network requirements in
terms of the number of endpoints and the number of connec-
tions per device/user. Indeed, these stringent requirements and
standards make the availability of network resources critical
since all 5G services assume a reliable networking system.
Hence, there is an urgent need for an ML-based agent able
to refine network usage by allowing a fine-grained bandwidth
allocation process for SFC or massive inter-correlated service
migration workflows.

To achieve this goal, we adopt a conventional three-layer
architecture widely used for representing 5G and beyond
network systems. The proposed system, depicted in Fig. 1,
complies with ETSI-NFV standards. In the defined system, the
MEC layer is controlled through the interaction between the

Authorized licensed use limited to: Oulu University. Downloaded on August 02,2022 at 18:55:32 UTC from IEEE Xplore. Restrictions apply.

ADDAD et al.: AI-BASED NETWORK-AWARE SFC MIGRATION IN 5G AND BEYOND NETWORKS 475

components of the Orchestration layer and the elements con-
stituting the NFV architecture [27]. We explicitly omit several
components of the Orchestration layer to focus on the Smart
Network-Aware (SN-A) agent that is supposed to fine-tune the
bandwidth allocation process.

The Request Handler (RH) module offers to the SN-A
agent a technology-agnostic abstraction to access MEC-layer
entities, i.e., public or private cloud platforms. Therefore,
the SN-A agent retrieves states, accordingly outputs deci-
sions of bandwidth values, and receives rewards for each
decision. The SN-A agent also receives administrative
instructions from the Operation/Business Support Systems
(OSS/BSS) as defined in the ETSI-NFV model. The RH
module must ensure reliable communication and synchro-
nization between the SN-A agent and the MEC layer. It
can achieve this through a message broker functionality,
e.g., RabbitMQ, or a standardized Application Programming
Interface (API). In the NFV model, the MEC layer compo-
nents are hosted on distributed NFV Infrastructure (NFVI) and
would be controlled by one or more Virtualized Infrastructure
Managers (VIMs). The Orchestration layer is hosted sep-
arately and communicates with the NFV domain through
NFV Orchestrator (NFVO) to emit corrective decisions and
actions. VNF Managers (VNFMs) manage life-cycles of the
SEC services carried out on VNFs over multiple administra-
tive domains. Furthermore, users in the users’ layer benefit
from the distributed aspect of computations in the MEC layer,
which reduces latency while following end-users’ mobility
patterns.

We design our agent SN-A assuming that any process using
file transfer and synchronization tools, e.g., rsync, exploits all
the available bandwidth. Once other system processes start
their network transfer operations, either migrations or appli-
cation data traffic transfers, the bandwidth is shared among
them using the best-effort policy [28]. Thus, we note that as
we increase the number of concurrent migrations, the time
to complete any individual migration will increase due to
resource contention. Indeed, if the number of concurrent trans-
fers is big enough, the migration times will become too large
since none of them can be completed within a reasonable
time.

Following these assumptions and knowing that the disk and
memory pages’ transfers are the main steps of any live migra-
tion process [7], [29], [30], we can derive that searching for an
acceptable network bandwidth limit has to take into account:

o The heterogeneity of applications size;

e The content of the virtualized instances, i.e., containers
and VMs;

o The types of migration selected, i.e., SFC or simple live
migrations (not inter-correlated). Note that the authors
have already proven that SFC migration data differs from
single or simple live migration data [6], [30] .

It is therefore resulting in colossal action space. These
conditions make the action selection a non-trivial, non-
deterministic, and exhaustive procedure. Consequently, we
consider employing DRL techniques to bypass the brute force
search method or an uncontrolled migration process, both
cases causing a detrimental impact on the QoS.

DRL techniques have gained significant attention as an
enabler of RL for previously intractable problems. Indeed,
DRL represents a step toward building autonomous systems
with a higher-level understanding of the visual world [31].
Nevertheless, both DRL and RL techniques are based on trial
and error processes and hence are unfeasible to directly inte-
grate them with production environments as some tried actions
may worsen already achieved performance. We address this
issue by integrating a Training and Exploration (TE) mod-
ule responsible for creating identical digital twin environments
used for the training phase into the SN-A agent.

Initially, the TE module, through the RH module, gathers
all the bandwidth capacity and latency information between
each pair of MEC nodes to obtain a global knowledge of the
distributed infrastructure. We use a client/server-based IPerf
test integrated with the TE module in this scouting stage.
This step is a reconnaissance phase that generates most of the
network information we use as an upper-bound for selecting
bandwidth actions [32]. Then, after each migration decision
in the test environment, the TE module reserves the network
resources to successfully complete the SFC migration opera-
tions while improving the global bandwidth utilization. Finally,
we release the used resources whenever migrations are com-
pleted. Note that we use a practical implementation of the
SFC migration schemes presented in [6], which, in addition
to ensuring service migration, guarantees predetermined order
of SFC components and their respective network and system
dependencies. The presented process allows the SN-A agent to
learn how to attribute optimal/near-optimal bandwidth values
over time through the TE module. It should be also noted
that we can replicate these offline trial and error achieve-
ments in other environments, e.g., 5G networks, as the training
and testing phases share the same input features and output
decisions.

Once obtaining preliminary results, the TE module shares its
learned model with the Bandwidth Allocator and Exploitation
(BAE) module to minimize network resource utilization.
Therefore, we can validate the results’ usability by comparing
them to their handcrafted counterpart, defined in [6]. The SN-
A agent compares the learned policies against the handcrafted
values; if both downtime and total migration time of the SFC
migration increase, the TE module will continue the learn-
ing process without reporting its current findings to the BAE
module. Reversely, if the TE finished learning a fully working
model, the SN-A agent will use BAE to forward the accurate
decisions to the MEC layer. Finally, both TE and BAE use the
“DRL Algorithms Trainer (DAT)” module, which trains DRL
algorithms based on the received inputs and delivers adequate
bandwidth values. Furthermore, in Sections IV-A and V, we
detail and analyze the proposed comparison method of the
SN-A agent.

B. Reinforcement Learning Background

We start by presenting a brief introduction to RL and DRL,
given their importance to this research work. RL is one of
the most important research directions of ML, which has sig-
nificant impact on the development of AI/ML over the last

Authorized licensed use limited to: Oulu University. Downloaded on August 02,2022 at 18:55:32 UTC from IEEE Xplore. Restrictions apply.

476 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

twenty years [33]. RL is a learning process wherein an agent
can periodically interact with an environment E, where the
period, by convention, is considered discrete. Particularly, the
agent observes a current state s;, then executes an action ag,
and observes a new state s;41 along with receiving results in
the form of a reward 741, i.e., sometimes referred to as pun-
ishment, to automatically adjust the strategy/policy 7(s¢, at)
for carrying out an optimal behavior [34]. The policy 7 is the
process of mapping states to actions, i.e., 7 : S — A, while
maximizing the discounted reward over the discrete-time steps.
The discounted reward G is defined by:

(e 9]

> A rmt (1)

m=0

Gi =

where ~ is the discounting factor defined between [0-1].
The discount factor helps determine the importance of future
rewards.

Notwithstanding their proof of convergence, RL methods
have limited application in practice [35]. Admittedly, in com-
plex and large-scale networks, state-action spaces became
usually large, and RL struggles to represent them in current
memory architectures. Hence, it may fail to find an optimal
policy in a reasonable time. However, the emergence of the
Deep Learning (DL) paradigm has caused a breakthrough
in the ML area [36]. Therefore, DRL approaches combine
basic RL methods with Deep Neural Networks (DNNs) to
effectively handle scalability issues [37].

RL/DRL is composed of value-based and policy-based
methods, each of which has its advantages and inconve-
niences regarding the applicability, feasibility, and computa-
tion requirements. Among them, Q-learning, which is part of
the value-based family, is one of the most prominent RL algo-
rithms [38]. Q-learning uses a simple structure represented by
a table dubbed Q-table, however, this algorithm is, in practice,
limited and inefficient. Consequently, Deep Q-Network (DQN)
replaces the static Q-table with a DNN. The DNN computes
values of (Q(s¢, a¢) or Q-values, i.e., the quality of the selected
action a; in the state s;, and realizes an acceptable map-
ping from states to actions. Albeit showing good scalability
with regards to the number of states, DQN was often unsta-
ble and divergent. Hence, there is a need to add experience
replay memory to break the correlation between subsequent
time-steps and allowing a stable learning curve [39].

Policy-based methods directly learn the policy function that
maps states to actions instead of computing value functions to
each approximated state. Policy Gradients (PG) algorithms,
such as REINFORCE and its variants [40], in addition to
Asynchronous Actor-Critic (A2C) [41] and Asynchronous
Advantage Actor-Critic (A3C) [42], i.e., A2C and A3C are
hybrid but are often classified as policy-based algorithms.
They are efficient in high dimensional action spaces as
well as continuous spaces compared to value-based algo-
rithms [43]. Besides, policy-based methods can also learn from
stochastic policies by outputting probabilities for each action.
Therefore, handling the exploration/exploitation trade-off as
well as getting rid of the problem of perceptual aliasing state
where identical states require different actions [44]. Although

policy-based methods can solve problems that value-based
methods cannot, they usually converge on a local maximum
rather than on the global optimum [45]. Consequently, the
selection of RL/DRL algorithms heavily depends on the type
of the problem, the desired accuracy, and the computational
time/resource trade-off.

C. System Model

Before going deep into the implementation of the SN-A
agent, we first define the used state, i.e., problem’s inputs, and
action, i.e., problem’s outputs, spaces as well as the reward
function guiding the agent’s decisions.

1) State Space: As the bandwidth selection problem always
occurs between two MEC nodes, only the source and desti-
nation nodes will be considered when defining state space or
the problem inputs. We can model this problem using, as a
state or problem inputs, the size of the last iteration of a given
SFC migration process together with the number of memory
pages written in that iteration. The dump size is the memory
size of the last iteration in an iterative live migration process.
The memory pages are the number of written pages by a live
migration process. Those two input parameters are crucial as
the number of memory pages, the dump size, and the available
bandwidth are directly correlated with the instance’s downtime
duration, which is the key factor determining users’ QoE and
satisfaction [6], [29].

S: (d57p'l”) (2)

where ds denotes the dump size and p, denotes the number
of memory pages.

2) Action Space: The action space, also known as problem
outputs, is represented as allowed bandwidth allocations for
migrations. The DRL agent selects a given bandwidth value
at each time-step, offering by the same time the possibility to
test actions as much as possible.

A = {bwy, bwg, bws, . .., bwy} 3)

where A represents the set of all possible bandwidth values in
case of discretized values. However, most of the time, A tends
to infinity. Therefore, we must consider both the continuous
and discrete action spaces in our problem.

3) Reward Function: By using a reward function that cov-
ers the required metrics, an agent maximizes profits, thereby
optimally performing and selecting the right actions from
within all defined states. As the live migration process uses
both system and network resources, the adequate reward func-
tion must cover those resources. Moreover, our modeling
assumes a direct relation between the bandwidth used and the
transmission delay, as well as the propagation delay, thus cov-
ering the network resources part. Regarding the system part,
the processing delay can be considered as the synchronization
time. By measuring the required time for copying memory
pages/file system, i.e., rootfs, in all live migration’s actions,
the coverage of those three-time delays is guaranteed. Besides,
by inverting the obtained time, we ensure that the longer the
migration time is, the lower the reward R will be.

R=1/T @)

Authorized licensed use limited to: Oulu University. Downloaded on August 02,2022 at 18:55:32 UTC from IEEE Xplore. Restrictions apply.

ADDAD et al.: AI-BASED NETWORK-AWARE SFC MIGRATION IN 5G AND BEYOND NETWORKS

Training & :
Exploration |

module |
) | e(Sp Ay Ry Su) (4)
[

477

DRL Algorithms Trainer
(DQN, DDPG)

Deep Q-Learning

Bandwidth
Allocator &
Exploitation

module
(BAE)

e(Sy, Ay Ry Sia) (4)

Deep Deterministic
Policy Gradient
(DDPG)

Fig. 2. Design and principles of the DRL Algorithms Trainer (DAT) module.

where T = Tiransmission + 7;)7"010(1gation + %rocessing +AT.
AT represents a constant related to the queuing delay as well
as to the Kernel/Userspace transitions.

However, as we have several possible bandwidth values,
this reward function becomes inefficient. For instance, if we
consider a bandwidth equal to 3 GBps and a second one equal
to 2 GBps, both provide similar times for the SFC migration
metrics, which prevents the agent from determining the best
action to select. Thus, to increase the accuracy of our reward
function, the addition of the numerical value of the selected
bandwidth is mandatory. The new reward function R is then
expressed as:

R = (1/T)+ (1/bw;))

where bw; denotes the current selected bandwidth value,
bw; € A.

To demonstrate the importance of introducing the selected
bandwidth’s value into the reward function, we present a
detailed example in Fig. 1. Let us assume that a group of
users is moving to a different location, e.g., connected cars in
Fig. 1 moving from the service area of MEC 1 to the service
area of MEC2. Moreover, those connected cars are consuming
a video streaming service hosted initially in MEC1. Therefore,
intuitively, we must ensure a minimum bandwidth allocation
to support the virtualized instances’ migration, i.e., SFC, com-
posing the video application, and serving the connected cars
while ensuring users’ QoE. We represent the globally avail-
able bandwidth between the two MEC nodes in Fig. 1 using
a cylinder to indicate the capacity.

Meanwhile, we assume that the SN-A agent is in the training
phase, where the TE module measures the total available band-
width bw,. in the reconnaissance phase presented earlier. The
maximum bandwidth value measured is equal to 3 GBps, i.e.,
in blue color in the cylinder between MEC1 and MEC2. The
TE module will be constituting the state “s;,” (d; = 1.2 MB,
pr = 596 memory pages), based on the information gathered
from the MEC source via the periodical sampling of the RH
module.

The TE module then selects an action, i.e., bandwidth value,
based on a given policy, either learned (e.g., PG) or followed
(e.g., e-Greedy). In the presented example, the first selected

bandwidth value is equal to 2.5 GBps, i.e., illustrated in red
inside the cylinder representing the available bandwidth, while
the downtime was equal to 1 ~ 1.2 (s). Once done, the SN-A
agent sends the selected action to the environment, i.e., the
MEC layer, for execution. Then, the environment returns a
reward and a new state to the SN-A agent. After that, the SN-A
agent evaluates its choices and similarly selects another action
equal to 2 MBps, i.e., illustrated in green inside the cylinder
representing the available bandwidth, in which the downtime
was equal to 1 ~ 1.2 (s). We must highlight that this is only a
simplified example of two stages that differ from the training
used by the SN-A agent, which keeps repeating this process
until its convergence. This allows us to conclude that defining
a reward function only based on time is not helpful in this
situation. In other words, selecting action bw; = 2.5 GBps
and action bw, = 2 MBps is identical for the SN-A agent
since R ~ 0.83 and Ry ~ 0.83. In contrast, adding the
inverse of the chosen action will undoubtedly make our SN-
A agent select lower bandwidth values, i.e., R ~ 0.834 and
Ro =~ 1.33; hence, selecting the second, i.e., 2 MBps, band-
width value in the example and ensuring optimal bandwidth
allocation. It is worth noticing that the performances are not
affected as the first term of the reward function, i.e., 1/7,
prevents this through time.

Finally, we added coefficients to both the time and band-
width values to make one parameter more influential than
the other depending on the network provider’s considered
objective.

R =0x%(1/T)+9* (1/bw;) ©)

where 6 > 1) as we emphasize the importance of the downtime.

IV. DESIGN OF THE DRL ALGORITHMS TRAINER
A. Operational Mechanisms

We have separately introduced the DAT module in Fig. 2
to highlight the different components of the algorithms, i.e.,
Deep Deterministic Policy Gradient (DDPG) and DQN, con-
stituting it and their working mechanisms. The DAT module
aims to train two distinctive and divergent objectives through
two particular types of DRL algorithms, namely DQN and

Authorized licensed use limited to: Oulu University. Downloaded on August 02,2022 at 18:55:32 UTC from IEEE Xplore. Restrictions apply.

478

DDPG. The DQN algorithm focuses on accelerating the deliv-
ery of decisions and the learning process along with the loss
of precision, while DDPG is more constrained by the learning
time, but outputs effective decisions [46].

Our objective is to develop a hybrid approach capable of
coping with the stringent demands of 5G and beyond networks.
Leveraging the OSS/BSS components of the NFV architec-
ture, the SN-A agent can obtain information about the type
of service, i.e., URLLC, mMTC, and eMBB. Besides, we
know via MEC APIs [47], [48] the number of MEC services
and applications susceptible to request an SFC migration pat-
tern. We note a trade-off between how quickly and how
accurate decisions can be made, which depends on the under-
lying DRL algorithm. In case of a large number of users
requiring low-latency communications, a massive number of
mMTC services, or enhanced mobile broadband resources,
the DAT module will deliver actions, i.e., bandwidth values,
based on the DDPG algorithm to either the BAE module in
case of exploitation or to the TE module during training.
Contrarily, if the resource requirements and the number of
end-users applications are reasonable, the DAT module will
deliver results following the DQN algorithm as those services
do not consume or require strict bandwidth values.

Before describing both the DQN and DDPG algorithms and
their hyper-parameters, we provide the pseudo-code detailing
the SN-A agent’s functionalities in Algorithm 1. The proposed
agent is divided into two distinctive steps:

¢ The training phase: It begins by neural network initializa-
tion. It then allows our agent, through the TE and DAT
modules, to learn optimal policy by selecting appropriate
actions, i.e., bandwidth values;

o The exploitation phase: By following the optimal policy,
the agent delivers actions and optimized bandwidth values
leveraging the BAE and the DAT modules.

Algorithm 1, called Kernel SN-A (KSN-A), serves to
describe in detail the two steps constituting the SN-
A agent. Initially, KSN-A initializes both “base_bw” and
“base_downtime” variables with “baseline_bw” and “base-
line_downtime” values, respectively. The variable “base-
line_bw” is the baseline bandwidth value and the variable
baseline_downtime is the optimal downtime achieved using
the “baseline_bw” value, i.e., both defined in [6]. The vari-
able “trained” is set to “False” to allow KSN-A to start the
training phase. The initialization procedure is shown in lines 1
to 3 in KSN-A, i.e., Algorithm 1.

As long as the variable “frained” is equal to “False” and
the variable “iteration” is smaller than “M,” KSN-A will con-
tinue learning, and states will be fed into the training phase
directly, i.e., lines 4 to 18 in KSN-A. It is noticed that “M” was
introduced for reducing complexity and efficiency purposes.
KSN-A gather states, i.e., “Si,” through a blocking function,
i.e., get_state(), using the RH module that interacts with the
MEC layer, i.e., KSN-A line 7. Each state “S” is routed to
the TE module through the RH module, i.e., KSN-A line 8.
Meanwhile, we obtain the type of service requesting an SFC
migration operation from the ETSI-integrated NFV domain,
i.e., line 9. The TE module will then input the state “S” for
either the DQN algorithm or the DDPG algorithm in the DAT

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

Algorithm 1: Kernel-Smart Network-Aware (KSN-A)

1 base_bw < baseline_bw;

2 base_downtime <+ baseline_downtime;
3 trained < Fualse;

4 while trained == False do

5 iteration < O;

6 while iteration < M do

7 S < RH.get_state();

8
9

RH.route(TE);
type_of _service = NFV.service_type();
10 if type_of service == Critical then
1 | TE.input(S, DDPG);
12 end
13 else
14 | TE.input(S, DQN);
15 end
16 bw_value <+ DAT.train();
17 iteration < iteration + 1;
18 end

19 if bw_value < base_bw and RH.downtime() <
base_downtime then

20 base_bw < bw_value;

21 base_downtime <+ RH.downtime();
22 trained < True;

23 end

24 end

25 § < RH.get_state();
26 RH.route(BAE);
27 type_of_service = NFV.service_type();

28 if type_of _service == Critical then
29 | BAE.input(S, DDPG);

30 end

31 else

3 | BAE.input(S, DQN);

33 end

34 bw_value < DAT.deliver();

module, depending on the criticality of the service requesting
service migration, i.e., KSN-A, line 10 to 15. Note that the crit-
icality of the service was deeply explained in the introduction
of Section IV. Also, the initialization of both algorithms, i.e.,
DQN and DDPG, is omitted in KSN-A for the sake of simplic-
ity. After that, in line 10 of KSN-A, the DAT module trains the
selected algorithm, and the variable “iteration” is incremented
by one for each new state, i.e., lines 16 and 17. Whenever
the variable “iteration” is bigger than “M,” we compare the
learned bandwidth values and downtime to the “base_bw” and
“base_downtime” of the baseline solution. This step ensures
that the learned values are optimal compared to the current
baseline values. If the learned values are less than the baseline
values, KSN-A sets new baseline values and updates the vari-
able “trained” to “True,’ i.e., lines 19 to 23; thus, switching
to the exploitation phase starting from the next input states.
Once the variable “trained” is equal to “True,” the SN-A
agent, through its RH module and the ETSI-NFV integrated
domain, gathers new states and routes the requests to the

Authorized licensed use limited to: Oulu University. Downloaded on August 02,2022 at 18:55:32 UTC from IEEE Xplore. Restrictions apply.

ADDAD et al.: AI-BASED NETWORK-AWARE SFC MIGRATION IN 5G AND BEYOND NETWORKS 479

BAE module with the state “S” and the adequate algorithm
depending on the type of service. Finally, the BAE module
contacts the DAT module, which will deliver accurate band-
width values in the context of SFC migration operations,
i.e., lines 28 and 34 in KSN-A. Note that we precede each
function/method with the module’s name that executes it to
improve the understanding of the proposed SN-A agent’s core
features.

To enhance the understanding of the role of each used algo-
rithm, we will provide a brief introduction to both of them
while specifying the necessity and the complementary usage
in different situations.

1) Deep Q-Network: Mnih et al. [36] designed and intro-
duced DQN, a value-based algorithm where the deep network
takes a state s; as an input while following policy 7 and
produces a Q-value for every action in the action space. As
shown in Fig. 2, DQN uses experience replay to break the
correlation between subsequent time-steps, allowing a sta-
ble learning curve [39]. At each batch size, DQN computes
the Temporal Difference (TD) error by taking the difference
between target Q-values, i.e., the maximum possible value
from next states sy;y1, shown in Equation (7) as “ryy1 +
ymaza, , Q(5¢41, a;+1)I” and the predicted Q-values, i.e.,
Q™ (st, a;) in Equation (7), [49]. This process results in a
well-known regression problem in which we have to mini-
mize the total error of the training data. Hence, allowing the
function approximator, e.g., neural network, to learn a useful
behavior by adjusting its parameters through forwarding/back
propagation [50]. In short, the update of each Q-value, rep-
resented as in Equation (7), i.e., in case of Q-Learning, will
be replaced by the update of weights in Equation (8). In both
Equations (7) and (8), « is the learning rate used for setting
errors’ acceptance in which a higher value tolerates more error
by adjusting aggressively while a smaller one adjusts conser-
vatively. Whereas, in the same equations, -y is the discount rate
that promotes or reduces the next action’s impact according to
the defined value.

Q" (st at) = Q" (st, at) + arep1 + ymaza,,y Q(St41, agy1)

— Q" (st, at)) (7N
Aw = a[(rH_l +ymaza,q Q(St4+1, at+1,w)
— Q" (st, a1,w)) | VQ™ (st, az,w) 3

Although DQN has its advantages when solving prob-
lems with a small discrete action space, it fails to com-
pute mazg, +1Q(st+1,at+1,w) of the target Q-value term
in Equation (8) in case of continuous or pseudo-continuous
action space. We can solve this issue by discretizing the action
space, e.g., if our maximum available bandwidth is 3 GBps,
we can use all values starting from 1 MBps to 3000 MBps,
i.e., 3 GBps, generating 3000 actions. This will reduce the
number of actions, but it will also neglect some bandwidth
values, reducing bandwidth allocation precision. However, due
to computational limitations when using ML frameworks such
as Pytorch or Tensorflow, the discretization has to be more
refined and smaller, i.e., 3000 actions will generate a huge
computation for simple tasks [51]. Meanwhile, by leveraging
a handcrafted bandwidth value equal to 2 MBps, the author

of [6] achieved a downtime equivalent to when using the whole
available bandwidth for both video streaming applications and
blank containers. Consequently, we discretize our action space
via the Discretization Module (DM in Fig. 2) to twenty differ-
ent actions while centralizing the range around 2 MBps, which
will give us twenty actions between 1 MBps and 3 MBps with
a step of 0.1 MBps. The proposed algorithm is fast and ensures
convergence to the near-optimal value while lacking precision
in bandwidth value selection, albeit at the cost of less precise
bandwidth reservations.

2) Deep Deterministic Policy Gradient: DQN ensures fast
training and delivery of predictions [46]. However, in 5G and
beyond networks, it is expected to have numerous services
with different characteristics and types [4]. Consequently, a
lack of precision in bandwidth action selection may increase
bandwidth capacity usage without being fully exploited. This
poor action selection may result in an implicit reduction of
available network resources, thus impacting sensitive services
such as URLLC and eMBB ones. To cope with the previously
cited constraint and the continuous/pseudo-continuous action
space limitation, we propose using the DDPG algorithm,
which is considered a policy-based RL algorithm [52]. As
illustrated in Fig. 2, DDPG is quite similar to A2C and A3C
principles with a difference in the Actor’s operations [42].
Note that A3C is an A2C variant that implements parallel
training where multiple workers in parallel environments inde-
pendently update a global value function, hence the addition of
“asynchronous.” The DDPG Actor maps the states to actions
instead of outputting the probability distribution across action
space like in A3C and A2C. The Actor will start by observing
the state s; of the environment E. It will then select a given
action with the current weights of the approximator network,
ie., steps 1 and 2 in the DDPG part of Fig. 2. Besides, the
DDPG Actor adds noise N while selecting a given action a
to encourage exploration. Upon performing the action a; +N/,
the environment returns a reward r; and the next state sy
and considering that we are using experience replay principals
in all our proposals, a tuple containing (s¢, at, ¢, s¢4+1) Will be
collected and stored in the experience pool, i.e., step 4, DDPG,
Fig. 2. Once reaching the defined batch size, the DDPG Actor
will start retrieving the next states and predicting the actions
to be selected. Meanwhile, the Critic network uses the same
selected batch of next states and the predicted actions from the
Actor network to compute and evaluate the target Q-values,
ie., step 5, DDPG, Fig. 2. Finally, a loss function will be
updated to learn how to evaluate more accurately in case of a
Critic network and to increase the probability of choosing the
right actions in case of an Actor network, i.e., steps 7 and 8§,
DDPG, Fig. 2. It should be noted that both Actor and Critic
networks use target networks to prevent the optimization, i.e.,
prediction of next states’ actions and their evaluations, from
encountering tight correlation problems.

B. Design of Neural Networks

To realize an accurate mapping from states to actions,
we build our neural networks following a pseudo-grid-
searching mechanism, in which we take the hyper-parameters

Authorized licensed use limited to: Oulu University. Downloaded on August 02,2022 at 18:55:32 UTC from IEEE Xplore. Restrictions apply.

480 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

values utilized in original papers. We then vary those
hyper-parameters to obtain optimal configurations and param-
eters related to selecting bandwidth value in SFC migration
schemes. This method is similar to grid searching developed
in [53]. We selected the following specifications.

1) DON Hyper-Parameters: Regarding the DQN approach,
we use two neural networks, the main Q-Network and a target
Q-Network as a replica of the main network. While the main
Q-Network is used to predict the current state’s Q-value, the
target Q-Network is employed to predict next-state Q-values.
We utilize an “e-Greedy” based on the “€” decay policy to
allow a trade-off between exploration/exploitation dilemma.
For both Q-Networks, we adopt Adam optimizer, i.e., an
adaptive learning rate optimization algorithm for improving
stochastic gradient descent, for adjusting the network’s param-
eters [54]. The learning rates, i.e., a, and the discount factors,
i.e., v, parameters were equal to 5- 1072 and 0.95, respec-
tively, for both Q-Networks. Target Q-Network’s parameters
are updated every four episodes. The batch size used for updat-
ing the main Q-Network weights is 32. We also consider two
fully-connected hidden layers in which the number of units,
i.e., activation functions, is the mean between input and out-
put features. For both hidden layers and the output layer, we
select the Rectified Linear Unit (ReLLU) as activation func-
tions. The ReLU activation function, denoted by Equation (9),
is linear for all positive values and zero for all negative val-
ues. Therefore, it offers computational simplicity and better
convergence features compared to other activation functions.
The number of output decisions is obtained via the DM, i.e.,
introduced earlier in Section IV-A1l, showed in step 1, DQN
part, Fig. 2.

ifz>0
metv) = {5 1020 ®

2) DDPG Hyper-Parameters: DDPG uses four neural
networks. A Q-network and a target Q-network as Critic
networks for evaluation of selected actions. In addition to
a deterministic policy network and a target policy network
as Actor networks for action prediction. For both Critic and
Actor networks, we adopt the Adam optimizer for adjusting
networks’ parameters. The learning rates of Actor and Critic
networks were 25- 1075 and 25 - 10™%, respectively. The dis-
count factor v was 0.99. The parameter of the target Actor
and Critic networks are updated with a coefficient 7 equal to
1-1072. The batch size used for updating the deterministic
policy network weights is 8. We employ a similar representa-
tion of hidden layers for all Actor/Critic networks; mainly, we
use two fully-connected hidden layers in which the number of
units, i.e., activation functions, is 400 and 300, respectively.
Each activation function uses the ReLU function for weights
computation, introduced in Equation (9). For the output layers
of Actor networks, we utilize a Tanh activation function, i.e.,
Equation (10). It is worth noticing that Critic networks have
a unique output used to compute the value of taking a given
action at a given state. By using Tanh as an output activation
function for Actor networks, the selected bandwidth values are
confined between the range of [—1, 1], see Equation (10).

1 —exp(—22)

1+ exp(—22) (10)

tanh(z)

Intel FRD 3
Orchestrator

@ ‘Smart
Network-Aware
25—

Migrations
Processes
%

Intel FRD 2
Host Destination

sssss

Intel FRD 1
Host Source

Fig. 3. Training Testbed setup.

However, having bandwidth values limited between this
small range is not conceivable. Hence, leveraging the Action
Refinement (AR) module, illustrated in Fig. 2, i.e., step 3
in the DDPG section, and Equation (11), we multiply the
obtained values by a given number dubbed “X1” Then, we
add “X” to the obtained number; this has the main objective
to centralize the output around “X1” For instance, our Actor
network output 0.5, the AR module will output 750 KBps if
the “X” = 500 KBps.

bwggpg (X, 2) = X x (1 + tanh(z)) (11)

Note that “X” is also considered a critical hyper-parameter;
thus, we vary it to obtain optimal configurations and param-
eters related to selecting bandwidth value in SFC migration
schemes. Initially, we exploit the results in [6], where the
authors achieved the best results using a handcrafted band-
width value equal to 2 MBps. Having this initial indicator,
knowing that the Tanh function varies from —1 to +1, and
using the proposed formula developed in Equation (11), we
initially set “X” equal to 1 MBps. This value is half of the
handcrafted value and allows us to visit the range from 0 MBps
to 2MBps. Then, we vary the hyper-parameter “X” while
observing the different learning curves. This method is similar
to grid searching developed in [53]. Note that we selected the
value 800 for the hyper-parameter “X,” Finally, we add the
Ornstein-Uhlenbeck Noise to obtained action for encouraging
exploration [55].

V. EXPERIMENTAL EVALUATION

This section presents our preliminary training and assess-
ments of the two DRL-based algorithms for enabling a
fine-grained selection of network bandwidth values for ser-
vice migration. Our focus on the networking part of migration
processes arises from our perceived need to support multiple
simultaneous migrations, i.e., SFC migrations, caused by user
mobility across domains or resource shortages.

Fig. 3 describes the testbed environment used for the train-
ing phase, thus allowing our SN-A agent to refine bandwidth
values selection. The testbed consists of three edge servers,
Intel Fog Reference Design (FRD),! as depicted in Fig. 3.

IThe Fog reference design is not a product sold by Intel and is rather a
reference design offered to certain industry leaders to allow rapid development
of Edge products.

Authorized licensed use limited to: Oulu University. Downloaded on August 02,2022 at 18:55:32 UTC from IEEE Xplore. Restrictions apply.

ADDAD et al.: AI-BASED NETWORK-AWARE SFC MIGRATION IN 5G AND BEYOND NETWORKS 481

Rewards
~ w IS r

-

—— L-input-feature (dump size)
2-inputs-features {dump size, memory pages}

Average Rewards

—— lL-inputfeature (dump size)
0 2-inputs-features {dump size, memory pages)

0 100 200 300 400 500 600 700 800
Iterations

(a) Rewards using DQN.

Fig. 4. DQN-based training and comparison.

0 100 200 300 400 500 600 700 800
Iterations

(b) Average rewards using DQN.

Rewards
w
n

3.0

— linput-feature (dump size)
2-inputs-features (dump size, memory pages)

Average Rewards

—— linput-feature (dump size)
0 2-inputs-features (dump size, memory pages)

0 200 400 600 800 1000
Iterations

(a) Rewards using DDPG.

Fig. 5. DDPG-based training and comparison.

It is worth noticing that we adopted FRDs servers to match
MECs’ computations standards. Each FRD has 8 cores, i.e.,
Intel Xeon CPU E3-1275 v5 @ 3.60GHz, with VI-X sup-
port enabled, 32 GB of memory, and Ubuntu 16.04 LTS with
the 4.4.0-77-generic kernel installed. FRD1 and FRD2 are
acting as the host source and destination, respectively. Both
of them are using LXC 2.8 as a container engine to enable
container-level virtualization and CRIU 3.11 to allow ser-
vice migration. We use the Synchronized Wait-For-Me SFC
migration pattern developed in our previous work. This SFC
migration pattern allows us to run all migration steps for each
instance of the SFC in parallel except the final memory block-
ing action, i.e., dump, where all instances should wait for
each other [6]. This approach in a basic handcrafted con-
trolled network aims to efficiently control each step separately,
thus allowing a fine-grained control and reducing the over-
all system and network resource consumption. Besides, we
use ONOS as an SDN controller to configure OVS switches
and steer network traffic between the SFC constituents. We
consider an SFC for a video streaming application with three
virtualized instances, i.e., length three. Each SFC contains a
client, a video streaming server, and a turnaround node that
analyzes and route the integrality of the traffic in both direc-
tions. FRD3 serves as a global orchestrator used for handling
the life-cycle of containers and agent’s training and exploita-
tion phases. Note that FRD3 consists of the SN-A agent, the
life-cycle orchestrator, i.e., managing network function cre-
ation/deletion/migration/scaling operations, and the message
broker server, i.e., RabbitMQ in our case.

We start evaluating our proposed agent by showing the
training phases for both DQN and DDPG while considering

0 200 400 600 800 1000
Iterations

(b) Average rewards using DDPG.

different input features to highlight features selection, train-
ing speed, and stability, i.e., Fig. 4 and Fig. 5. Afterward,
we present a detailed comparison, in Fig. 6, regarding action
selection, i.e., bandwidth values, for DDPG against DQN and
handcrafted values, i.e., baseline solution. Finally, we show
the efficiency and the capacity of the proposed agent, i.e., SN-
A, to reduce the network consumption compared to the basic
solution via a downtime comparison, i.e., Fig. 7. Note that
we consider an SN-A variant that only uses DQN and another
SN-A variant that only uses DDPG to properly and separately
evaluate each algorithm in our current experiments. Note also
that we overcome the issues of migration failures in the train-
ing of both DDPG and DQN based algorithms, i.e., Fig. 4
and Fig. 5, through the use of the retry module developed in
our previous work [7]. This module was developed due to the
need for high efficiency of the live migration. We designed a
mechanism able to detect the failure of the last step and trig-
ger an automatic retry to ensure a highly efficient migration
that meets the 5G networks’ requirements. Thus, the correla-
tion between migration requests is respected. In the case of
unknown issues or errors, the whole scenario is deleted or not
used for the training to keep the results concrete.

The initial experiment is related to the SN-A agent based on
the DQN algorithm. We run 800 migration operations while
randomly modifying the virtualization instances’ resources,
i.e., CPU, RAM. Fig. 4 shows the training comparison while
considering the agent based on SN-A DQN for respectively
two, i.e., dump size and memory pages, and a single, i.e.,
dump size, input features. In Fig. 4(a), the Y-axis represents the
rewards collected over time-steps while the X-axis shows the
number of iterations in the training process. Still, in Fig. 4(a),

Authorized licensed use limited to: Oulu University. Downloaded on August 02,2022 at 18:55:32 UTC from IEEE Xplore. Restrictions apply.

482 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

3000 2000

2750
1800

/s)

@
g 2500

H
@
3
3

§ 2250
E]

< 2000

i

8
i1

th

2 1750

H
N
S
s

1500

Bandwidth values (KB/s)
=
3

Bandwi

,_.
S
151
3

1250

1000

@
3
8

3000

2500

2000

1500 1

Bandwidth values (KB/s)

1000

0 100 200 300 400 500 600 700 80C 0
Iterations

—— DON actions (1 feature} —— DON actions {2 fealures) —— Handcrafled values

(a) Comparing using different input features
in the DQN-based agent.

100 200 300 400 500 600 700 800 0
Iterations

—— DDPG actions (1 fealure) —— DDPG actions (2 fealures) —— Handeralted values

(b) Comparing using different input features in
the DDPG-based agent.

100 200 300 400 500 600 700 800
Iterations

—— DON actions (2 fealures)] —— DDPG aclions (2 fealures) —— Handcrafled values

(c) Comparing DQN to DDPG when input
features = 2.

Fig. 6. Comparing bandwidth action selection for DQN against DDPG and handcrafted values.

rewards for two input features are represented with the orange
color while the single input is illustrated using the blue color.
Fig. 4(b) conserves an identical representation, except for the
Y-axis, in which we show the average rewards for every 32
iterations. As an initial reflection, we can state that DQN
using both the dump size and the memory pages features
outperforms DQN using one input feature, i.e., dump size.

Next, we evaluate the SN-A agent based on a DDPG
algorithm approach in our second experimental scenario. We
trained the model for thousands of migrations while randomly
selecting application types and modifying the resources, i.e.,
CPU, RAM, of the virtualization instances. Fig. 5 features the
comparison between the dump size, i.e., blue, as a unique input
feature and both the dump size and the memory pages, i.e.,
orange, features when considering the DDPG-based algorithm.
In Fig. 5(a), the Y-axis represents the obtained rewards over
all iterations, while the X-axis shows the number of iterations
or migrations we did during training in the proposed archi-
tecture. Fig. 5(b) keeps the same depiction for the X-axis,
while the cumulative reward for every 8§ iterations is used for
Y-axis. Unlike the results in Fig. 4, findings in Fig. 5 show
that our DDPG-based algorithm is immune to the number of
input features.

In Fig. 6, we compare the bandwidth action selection for
SN-A based on the DQN algorithm, SN-A with the DDPG
algorithm, and a baseline solution. It is noticed that the base-
line solution that uses handcrafted bandwidth values is an
existing approach developed by [6] and serves as an upper
layer for the comparison. In Fig. 6, for all sub-figures, the left
Y-axis represents the bandwidth values in “KBps” while the
X-axis portrays the number of iterations done in the training
phase. It is noticed that for Figures 6(a), 6(b), and 6(c), the
baseline solution is represented by the green color. The sin-
gle input feature-based solution and two inputs features are
shown with red and blue colors, respectively, in Figures 6(a)
and 6(b). While in Figure 6(c), the colors red and blue por-
tray actions based on DQN and DDPG algorithms, both for
two features, respectively. Fig. 6(a) highlights the comparison
between bandwidth action selection for SN-A agent based on
DQN when considering one and two features, respectively.
Based on the results, the agent using the DQN algorithm with
one input feature, i.e., dump/memory size, failed to outperform
the baseline solution, i.e., handcrafted, while the SN-A agent
using the DQN algorithm with two features surpasses clearly

Downtime Analysis

= Dummy Container
= Video Container

16

14

12

1.0

0.8

Time (s)

0.6

0.4

0.2 4

0.0

Handcrafted

DON DDPG

Fig. 7. Downtime comparison in case of different algorithms.

both the baseline solution and the one feature DQN algorithm.
Thus, we conclude the necessity of considering memory pages
as a second input feature. We also notice the high variation in
action selection for both approaches, i.e., DQN with one input
feature or two features. Unlike DQN, the DDPG-based agent,
shown in Fig. 6(b), outputs stable and consistent training for
both considerations, i.e., one/two input features. Besides, both
DDPGs approaches outperform by far the baseline solution
showed in green; the selected bandwidth actions were near to
1,600 KBps.

To compare DDPG and DQN agents, we plotted Fig. 6(c)
while considering two input features. The preliminary results
demonstrate that both DQN and DDPG achieved better results
compared to the baseline solution. From Fig. 6(c), we confirm
that DDPG is stable compared to DQN and explores a broader
range of actions during the training phase. However, Fig. 6(c)
indicates that in convergence, DQN is selecting lower band-
width values than the DDPG-based agent, i.e., 1,400 KBps.
Based only on action selection, we cannot determine the best
approach in terms of resource efficiency. Thus, we extend our
evaluation to cover downtime comparison.

Fig. 7 depicts the induced downtime under distinct network
configurations while using DQN-based agent, DDPG-based
agent, and Handcrafted bandwidth, i.e., baseline solution,
respectively. The main purpose of this experiment is to com-
pare the proposed DRL algorithms, i.e., DQN and DDPG,
with each other as well as against the limited handcrafted
bandwidth used in [6] in terms of induced downtime. Still,
in Fig. 7, the DQN-based agent, the DDPG-based agent, and
the baseline solution downtimes can be viewed in the X-axis,
while the Y-axis presents the time in seconds. This experiment

Authorized licensed use limited to: Oulu University. Downloaded on August 02,2022 at 18:55:32 UTC from IEEE Xplore. Restrictions apply.

ADDAD et al.: AI-BASED NETWORK-AWARE SFC MIGRATION IN 5G AND BEYOND NETWORKS

TABLE I
DOWNTIME COMPARISON IN CASE OF DIFFERENT DRL APPROACHES

Algorithms Strategies Mean Time (s) | Std dev | CI 95% | Coef Var
DQN-based Blank Container 1.026 0.208 0.0181 0.203
agent Video Container 1.224 0.324 | 0.0286 0.265
DDPG-based | Blank Container 0.957 0.098 0.008 0.102
agent Video Container 1.198 0.138 0.012 0.115
Handcrafted | Blank Container 1.222 0.066 0.05 0.054
Video Container 1.571 0.056 0.042 0.036

outputs the mean downtime, standard deviation, 95% confi-
dence interval (CI), and coefficient of variation (CV) results
when using the learned policy in case of DQN and DDPG
algorithms and the static handcrafted value, i.e., 2 MBps, as
part of defining the most suitable DRL algorithm. Table I
presents detailed downtime values. As expected, the video-
streaming container results are larger when compared to the
blank, i.e., turnaround or dummy, container results for all vari-
ants. The difference in these results is due to the additional
copies of the network connections status. From Table I, we
can observe that the agent based on the DDPG algorithm
outperforms the remaining proposed approaches in terms of
downtime. Indeed, the DDPG-based agent is the only DRL
algorithm which reached less than one-second downtime when
migrating blank, i.e., turnaround, containers.

A. Discussion

Based on the bandwidth action selection shown in Fig. 6(c)
and the downtime comparison displayed in Fig. 7, we con-
clude that the minimal downtime is unbacked by selecting
lower bandwidth values actions; this was confirmed by the
downtime results in Table I. Moreover, increasing the down-
time may affect end-users’ QoE and break the Service Level
Agreement (SLA) defining the requested QoS. Therefore,
DDPG is preferred over DQN for its training stability, lower
downtime achievements and user satisfaction.

VI. CONCLUSION AND FUTURE WORK

In this work, we designed, modeled, and evaluated two
DRL-based algorithms for allowing a fine-grained selection
and allocation of bandwidth resources. Our results show
that DDPG outperforms DQN in terms of accuracy, stabil-
ity, and users’ QoE. Nonetheless, the proposed SN-A agent
with its two DRL-based algorithms is limited to only detect-
ing the required bandwidth for a given workflow. As a
future research work, we will extend the proposed ML-based
solution, presented in this paper, to cover the scheduling
of workflows after detecting their bandwidth requirements.
Besides, we intend to improve the downtime results by taking
into account application-level indicators and decision-making
optimizations. Finally, we plan to extend our work to cover
extreme variations in environments by developing an efficient
mechanism for coefficient selection.

REFERENCES

[1]1 System Architecture for the 5G System; Stage 2, 3GPP Standard TS
23.501, Mar. 2018.
[2] 5G White Paper, NGMN Alliance, Geneva, Switzerland, Feb. 2015.

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

483

T. Taleb, B. Mada, M.-1. Corici, A. Nakao, and H. Flinck, “PERMIT:
Network slicing for personalized 5SG mobile telecommunications,” IEEE
Commun. Mag., vol. 55, no. 5, pp. 88-93, May 2017.

D. M. Gutierrez-Estevez et al., “Artificial intelligence for elastic man-
agement and orchestration of 5G networks,” IEEE Wireless Commun.,
vol. 26, no. 5, pp. 134-141, Oct. 2019.

R. A. Addad, T. Taleb, H. Flinck, M. Bagaa, and D. Dutra, “Network
slice mobility in next generation mobile systems: Challenges and poten-
tial solutions,” IEEE Netw., vol. 34, no. 1, pp. 84-93, Jan./Feb. 2020.
R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck,
“Towards studying service function chain migration patterns in
5G networks and beyond,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Waikoloa, HI, USA, Dec. 2019, pp. 1-6.

R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck,
“MIRA!: An SDN-based framework for cross-domain fast migration of
ultra-low latency 5G services,” in Proc. IEEE Global Commun. Conf.
GLOBECOM, Abu Dhabi, UAE, Dec. 2018, pp. 1-6.

MEC in 5G Networks, ETSI, Sophia Antipolis, France, Jun.2018.

O. Obulesu, M. Mahendra, and M. ThrilokReddy, “Machine learning
techniques and tools: A survey,” in Proc. Int. Conf. Invent. Res. Comput.
Appl. (ICIRCA), Coimbatore, India, Jul. 2018, pp. 1-9.

M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine learning
for networking: Workflow, advances and opportunities,” IEEE Netw.,
vol. 32, no. 2, pp. 92-99, Mar. 2018.

J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” Proc. IEEE, vol. 107, no. 11, pp. 2204-2239,
Nov. 2019.

T. K. Rodrigues, K. Suto, H. Nishiyama, J. Liu, and N. Kato, “Machine
learning meets computation and communication control in evolving edge
and cloud: Challenges and future perspective,” IEEE Commun. Surveys
Tuts., vol. 22, no. 1, pp. 38-67, Ist Quart., 2020.

M. Latva-Aho and K. Leppinen, “Key drivers and research challenges
for 6G ubiquitous wireless intelligence,” 6G Res. Vis., Univ. Oulu, Oulu,
Finaland, White Paper, 2019.

“White paper 5G evolution and 6G,” NTT DOCOMO, INC, Tokyo,
Japan, Rep., Jan. 2020.

Experiential Networked Intelligence (ENI); ENI Definition of Categories
for AI Application to Networks, Eur. Telecommun. Stand. Inst., Sophia
Antipolis, France, Nov. 2019.

Experiential Networked Intelligence (ENI); ENI Use Cases, Eur.
Telecommun. Stand. Inst., Sophia Antipolis, France, Sep. 2019.

L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artif. Intell. Res., vol. 4, pp. 237-285, May 1996.
J. Jeong, J. Ha, and M. Kim, “ReSeT: Reducing the service disruption
time of follow me edges over wide area networks,” in Proc. 22nd Conf.
Innov. Clouds Internet Netw. Workshops (ICIN), Paris, France, Feb. 2019,
pp. 159-166.

F. De Vita, D. Bruneo, A. Puliafito, G. Nardini, A. Virdis, and G. Stea,
“A deep reinforcement learning approach for data migration in multi-
access edge computing,” in Proc. ITU Kaleidoscope Mach. Learn. 5G
Future (ITU K), Santa Fe, Argentina, Nov. 2018, pp. 1-8.

A. Varga and R. Hornig, “An overview of the OMNET++ simulation
environment,” in Proc. Ist Int. Conf. Simulat. Tools Techn. Commun.
Netw. Syst. Workshops, Marseille, France, Mar. 2008, p. 60.
FE. Chollet et al. (2015). Keras. [Online].
https://github.com/fchollet/keras

F. P. Tso, G. Hamilton, K. Oikonomou, and D. P. Pezaros,
“Implementing scalable, network-aware virtual machine migration for
cloud data centers,” in Proc. IEEE 6th Int. Conf. Cloud Comput., Santa
Clara, CA, USA, Jun. 2013, pp. 557-564.

A. Stage and T. Setzer, “Network-aware migration control and schedul-
ing of differentiated virtual machine workloads,” in Proc. ICSE
Workshop Softw. Eng. Challenges Cloud Comput., Vancouver, BC,
Canada, May 2009, pp. 9-14.

H. Chen, H. Kang, G. Jiang, and Y. Zhang, “Coordinating vir-
tual machine migrations in enterprise data centers and clouds,”
2012. [Online]. Available: https://www.semanticscholar.org/paper/
Coordinating-Virtual-Machine-Migrations-in-Data-and-Chen-Kang/4d3
28f0ae97749e4a28c5cb3ec575619ffoedefa

M. Duggan, J. Duggan, E. Howley, and E. Barrett, “An autonomous
network aware VM migration strategy in cloud data centres,” in
Proc. Int. Conf. Cloud Auton. Comput. (ICCAC), Augsburg, Germany,
Sep. 2016, pp. 24-32.

R. A. Addad, D. L. C. Dutra, T. Taleb, and H. Flinck, “Toward using
reinforcement learning for trigger selection in network slice mobil-
ity,” IEEE J. Selected Areas Commun., vol. 39, no. 7, pp. 2241-2253,
Jul. 2021, doi: 10.1109/JSAC.2021.3078501.

Available:

Authorized licensed use limited to: Oulu University. Downloaded on August 02,2022 at 18:55:32 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1109/JSAC.2021.3078501

484

(271

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
(371
(38]
[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

Developing Software for Multi-Access Edge Computing, Eur.
Telecommun. Stand. Inst., Sophia Antipolis, France, Feb. 2019.

Linux & Unix Tutorials. (2019). How to Set RSYNC Speed Limit
From Eating All Bandwidth With Bwlimit Option. [Online]. Available:
https://www.cyberciti.biz/fag/how-to-set-keep-rsync-from-using-all-
your-bandwidth-on-linux-unix/

R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck,
“Towards a fast service migration in 5G,” in Proc. IEEE Conf. Stand.
Commun. Netw. (CSCN), Paris, France, Oct. 2018, pp. 1-6.

R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck, “Fast
service migration in 5G trends and scenarios,” IEEE Netw., vol. 34,
no. 2, pp. 92-98, Mar./Apr. 2020.

N. C. Luong et al., “Applications of deep reinforcement learning in
communications and networking: A survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 4, pp. 3133-3174, 4th Quart., 2019.

A. Tirumala, F. J. Qin, J. M. Dugan, J. A. Ferguson, and K. Gibbs.
(2005). iPERF: TCP/UDP Bandwidth Measurement Tool. [Online].
Available: https://iperf.fr/

R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process.
Mag., vol. 34, no. 6, pp. 26-38, Nov. 2017.

H. V. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double () —learning,” in Proc. 13th AAAI Conf. Artif. Intell. (AAAI),
Feb. 2016, pp. 2094-2100.

V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013.
[Online]. Available: arxiv.abs/1312.5602

V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, pp. 529-533, Feb. 2015.

C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, nos. 3-4,
pp- 279-292, May 1992.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” 2015. [Online]. Available: arxiv.abs/1511.05952

R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, nos. 3-4,
pp. 229-256, May 1992.

V. R. Konda and J. N. Tsitsiklis, “On actor—critic algorithms,” SIAM J.
Control Optim., vol. 42, no. 4, pp. 1143-1166, Apr. 2003.

Z. Wang et al., “Sample efficient actor—critic with experience replay,”
Aug. 2016. [Online]. Available: arxiv.abs/1611.01224

V. Mnih et al., “Asynchronous methods for deep reinforcement learn-
ing,” in Proc. 33rd Int. Conf. Mach. Learn. (ICML), New York, NY,
USA, Jun. 2016, pp. 1928-1937.

L. Chrisman, “Reinforcement learning with perceptual aliasing: The per-
ceptual distinctions approach,” in Proc. 10th Nat. Conf. Artif. Intell.
(AAAI), San Jose, CA, USA, Jul. 1992, pp. 183-188.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
in Proc. Adv. Neural Inf. Process. Syst. (NIPS), Denver, CO, USA,
Nov. 1999, pp. 1-9.

S. Chen, “Comparing deep reinforcement learning methods for engineer-
ing applications,” M.S. thesis, Fac. Comput. Sci., Otto-von-Guericke-
Universitit Magdeburg, Magdeburg, Germany, 2018.

“Multi-access edge computing (MEC); application mobility service
APL” Eur. Telecommun. Stand. Inst., Sophia Antipolis, France, Rep.
ETSI GS MEC 021, Jan. 2020.

“Mobile edge computing (MEC); bandwidth management API” Eur.
Telecommun. Stand. Inst., Sophia Antipolis, France, Rep. GS MEC-IEG
006, Oct. 2017.

R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Mach. Learn., vol. 3, no. 1, pp. 944, Aug. 1988.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp- 359-366, Jul. 1989.

A. Paszke et al, “PyTorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
Vancouver, BC, Canada, Dec. 2019, p. 32.

[52] T. P. Lillicrap et al., “Continuous control with deep reinforcement

learning,” 2015. [Online]. Available: arxiv.abs/1509.02971

[53] J. Bergstra and Y. Bengio, “Random search for hyper-parameter

optimization,” J. Mach. Learn. Res., vol. 13, no. 1, pp. 281-305,
Feb. 2012.

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

2014. [Online]. Available: arxiv:abs/1412.6980

[55] L. Valdivieso, W. Schoutens, and F. Tuerlinckx, “Maximum likelihood

estimation in processes of ornstein-uhlenbeck type,” Stat. Inference
Stochast. Process., vol. 12, no. 1, pp. 1-19, Feb. 2009.

Rami Akrem Addad (Graduate Student Member,
IEEE) received the Licentiate and master’s degrees
(High Distinction and Hons.) from USTHB, Algeria,
in 2015 and 2017, respectively. He is currently
pursuing the Doctoral degree with the Department
of Communications and Networking, School of
Electrical Engineering, Aalto University, Finland.
His research interests include 5G network archi-
tecture, cloud-native technologies and approaches,
network softwarization and slicing mechanisms,
MEC, NFV, SDN, and distributed systems.

Diego Leonel Cadette Dutra received the B.Sc.
degree in computer science, and the M.Sc. and D.Sc.
degrees in systems engineering and computer sci-
ence program from the Federal University of Rio de
Janeiro (UFRJ), Brazil. He is currently working as a
Professor with UFRJ, where he is also a Member of
the COMPASS Lab. He has worked as a Postdoctoral
Researcher with the COMPASS/UFRJ and MOSA!C
Lab/Aalto. His research interests include computer
architecture, HPC, virtualization, cloud computing,
wireless networking, and SDN.

Tarik Taleb received the B.E. degree (with
Distinction) in information engineering and the
M.Sc. and Ph.D. degrees in information sciences
from Tohoku University, Sendai, Japan, in 2001,
2003, and 2005, respectively. He is a Professor
with Aalto University, Espoo, Finland and the
University of Oulu, Oulu, Finland. He is also a
Visiting Professor with Sejong University, Seoul,
South Korea. He is the Founder and the Director
of the MOSA!C Lab (www.mosaic-lab.org).

Hannu Flinck received the M.Sc. and Lic.Tech.
degrees in computer science and communication
systems from Aalto University in 1986 and 1993,
respectively. He was with Nokia Research Center
and the Technology and Innovation Unit of Nokia
Networks in various positions. He is a Research
Manager with Nokia Bell Labs, Espoo, Finland.
He has been actively participating in a number of
EU research projects. His current research interests
include MEC, SDN, and content delivery in mobile
networks, particularly in 5G networks.

Authorized licensed use limited to: Oulu University. Downloaded on August 02,2022 at 18:55:32 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

