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Abstract—The trend towards the cloudification of the 3GPP LTE mobile
network architecture and the emergence of federated cloud infrastruc-
tures call for alternative service delivery strategies for improved user
experience and efficient resource utilization. We propose Follow-Me
Cloud (FMC), a design tailored to this environment, but with a broader
applicability, which allows mobile users to always be connected via the
optimal data anchor and mobility gateways, while cloud-based services
follow them and are delivered via the optimal service point inside the
cloud infrastructure. FMC applies a Markov-Decision-Process-based
algorithm for cost-effective, performance-optimized service migration
decisions, while two alternative schemes to ensure service continuity
and disruption-free operation are proposed, based on either Software
Defined Networking technologies or the Locator/Identifier Separation
Protocol. Numerical results from our analytic model for FMC, as well
as testbed experiments with the two alternative FMC implementations
we have developed, demonstrate quantitatively and qualitatively the
advantages it can bring about.

1 INTRODUCTION
To cope with the explosive growth in mobile data traf-
fic [1], which challenges both their core and radio net-
works, mobile operators are pushing towards new archi-
tectural solutions to decentralize the user plane of their
networks. Such approaches involve moving data anchor
gateways towards the edge of the network and carefully
serving IP traffic via selected points close to their Radio
Access Network (RAN) nodes by mobile data offloading
techniques [2]. At the same time, computation offloading
over heterogeneous wireless network infrastructures also
attracts attention, in view of the availability of cloud
computing resources [3].

At the service delivery end, the success of cloud
computing has led Content/Service Providers to con-
sider deploying more regional Data Centers (DCs). Fur-
thermore, the dependence of content providers (CPs)
and Internet Service Providers (ISPs) on one another
for efficient content/service delivery and disruption-free
network operation in view of dynamic shifts in traffic
demands creates CP-ISP cooperation incentives [4] for
joint deployment of network-aware content and service
delivery infrastructures, and cloud computing technolo-
gies are considered for their implementation.
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Importantly, to more efficiently address the needs of
mobile users in terms of geographical coverage and
proximity of DCs to them, a new means of coopera-
tive service deployment has emerged in the form of a
networked federated cloud [5]. This involves allocating
virtual resources on a number of DCs dispersed over
a specific geographical area, over the infrastructure of
potentially heterogeneous federated cloud providers in
a transparent manner.

The availability of regional resources and the flexibility
of the virtualization technologies upon which federated
clouds are built are particularly important to support the
modern trend of cloudifying the mobile network infras-
tructure and offering mobile services in an elastic man-
ner, following user demand and presence. In the context
of the 3rd Generation Partnership Project (3GPP) Long
Term Evolution/Evolved Packet System (LTE/EPS) [6],
a decentralized mobile network architecture would in-
clude core network gateways such as Packed Data Net-
work Gateways (PGWs) and Serving Gateways (SGWs)
operating as Virtualized Network Function (VNF) instances
on the cloud [7], [8], and not necessarily running on top
of specialized dedicated hardware.

At the same time, it is important to ensure that users
connected to the mobile core network through a 3GPP
base station (eNodeB) or using non-3GPP access, such
as Wi-Fi, enjoy acceptable Quality of Experience (QoE)
by always guaranteeing optimal end-to-end connectivity
for the services offered over the federated cloud, during
the entire course of service consumption. Here lies the
main challenge we address in this work: While user
connectivity to the mobile data anchor gateway is always
optimal, this is not necessarily the case for the end-to-end
mobile service delivery, since a user on the move may
keep receiving the service from a distant (suboptimal)
DC after moving to different physical locations.

To answer to this challenge, we introduced the con-
cept of the Follow-Me Cloud (FMC) [9], a design tai-
lored to an interoperating decentralized mobile net-
work/federated cloud architecture. FMC allows not only
the content, but also the service itself, to follow a
mobile user while moving, ensuring that the latter is
always connected to the optimal data anchor and mo-
bility gateways, at the same time accessing a cloud-
based service from the optimal DC, in terms either
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of geographical/network-topological proximity or any
other service- or network-level metric, such as load,
service delay, etc.

To realize the FMC vision, service continuity and
sophisticated schemes for service migration decisions
across DCs are critical. In this article, we present a
complete framework defining FMC from architectural,
algorithmic and implementation perspectives. We ex-
plore alternative schemes for ensuring service continuity,
which either build on the Locator-Identifier Separation
Protocol (LISP) [10], [11] or on using Software-Defined
Networking (SDN) technologies. We further propose a
Markov Decision Process (MDP)-based algorithm [12]
for optimally performing service migration decisions,
taking into account user mobility information, and ad-
dressing the tradeoff between migration cost and user
experience. Our testbed implementation of the proposed
architectural alternatives, coupled with an analytic per-
formance evaluation of our system, serve to demonstrate
the feasibility and advantages of FMC, and shed light on
the practical aspects of its deployment.

The remainder of this article is structured as follows.
In Section 2 we provide an overview of related work. We
present the FMC concept, entities and high-level func-
tionality in Section 3. Section 4 introduces an analytic
model which captures the tradeoff between the benefit
and cost due to service migration, and Section 5 presents
an MDP scheme building on this model. We describe a
LISP-based and an SDN-based implementation of FMC
in Section 6, and present analytic and testbed-based
performance results in Section 7, before we conclude the
article in Section 8.

2 RELATED WORK

2.1 Service continuity for mobile users
In the mobile networking context that we position our
work, a major and well-studied challenge is maintaining
service continuity during user and, importantly, service
mobility. An approach to this problem is decoupling
session and location identifiers. A protocol which makes
this separation explicit is LISP (see Section 2.3), and we
apply it in this work.

Nordström et al. [13], on the other hand, present
Serval, a networking stack which includes a new ser-
vice access layer to cater for user and service mobility,
providing identifier/location separation. It makes use of
service identifiers, which would however require modi-
fications to legacy applications to support the proposed
functionality.

Other research works have considered the use of
OpenFlow to hide, through its rules, any changes to IP
addresses. OpenFlow-based solutions often face scalabil-
ity challenges wrt. the number of flows, number of rules,
flow setup rate, bandwidth of the control channel, etc.
To reduce the number of control packets, DevoFlow [14]
moves some of the flow creation work from controllers to
switches. Bifulco et al. [15] propose to distribute control

plane functions, in order to enhance system scalability,
which is an approach that our SDN-based design (see
Section 6.1) could follow.

2.2 Service migration
In a federated cloud context [5], where geographically
distributed DCs are connected into a common resource
pool, a cloud management procedure for directing ser-
vice requests to the optimal DCs, satisfying resource,
cost, and quality constraints is necessary. If the respective
criteria/constraints are not covered, services may need
to be migrated across DCs. Malet and Pietzuch [16]
propose a cloud management middleware for migrat-
ing part of a user’s service (represented by a set of
virtual machines) between DC sites in response to DC
workload variations and in order to move application
components geographically closer to users. Agarwal et
al. [17] present Volley, an automatic service placement
scheme for geographically distributed DCs based on
iterative optimization algorithms, which performs ser-
vice migrations when detecting that DC capacity or user
location change. Alicherry and Lakshman [18] propose
a DC selection algorithm for placing a virtual machine
(VM), modeling the problem as a sub-graph selection
one, while Steiner et al. [19] demonstrate how services
can be placed based on information retrieved from an
ALTO (Application-Layer Traffic Optimization) server.
The above works mainly focus on the VM migration
process rather than on VM mobility management.

Other works [20], [21] integrate IP mobility manage-
ment directly into the hypervisor, which interacts with a
VM before and after its migration to update IP addresses
in the VM’s routing table, or, as in the work of Li et.
al [22], invokes Mobile IP functionality each time a VM is
created, destroyed or migrated. These solutions perform
live VM migration at the expense of potentially long
downtimes. Raad et al. [23], on the other hand, achieve
sub-second downtimes using a modified version of LISP
for rapid traffic redirection. Contrary to our approach
(see Section 6.2.2), their scheme also requires modifica-
tions to the hypervisor, raising deployment issues.

2.3 The Locator-Identifier Separation Protocol
(LISP)
With location and identity traditionally coupled, IP mo-
bility becomes a challenging task. To this end, LISP [10]
separates them using Routing Locators (RLOCs) and
Endpoint Identifiers (EIDs). LISP does not impose any
constraints on the EID and RLOC identifier format; IP
addresses are typically used. RLOCs are needed to for-
ward packets to/from the Internet, while EIDs are local
to an IP subnet. At the data plane level, LISP maps the
EID address to an RLOC, and encapsulates the packets
into other IP packets before forwarding them through
the IP transit. Usually, a LISP site is managed by at
least one tunneling LISP router (xTR), having two func-
tionalities: IP packet encapsulation (packet received by a
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terminal; ingress functionality, or ITR) and decapsulation
(packet received by the network; egress functionality, or
ETR).

To guarantee EID reachability, the LISP mapping sys-
tem includes a Map Resolver (MR), a Map Server (MS),
and a cache table at each xTR. When a station has
a packet to transmit, the EID of the remote station
is used in the destination address. Once reaching the
ITR (ingress part of xTR), the latter encapsulates the
transmitted packet by adding three headers (LISP, UDP,
and IP) and fixing the fields “Source Routing Locator”
and “Destination Routing Locator” of the LISP header
to the source and destination xTR RLOCs, respectively.
The mapping between the EID and the corresponding
destination xTR RLOC is first looked up in the local
cache. If lookup fails, a Map Request message is sent to
the Map Resolver, which responds with a Map Reply if
the mapping is found. Otherwise, it redirects this request
to the Map Server. The MS searches in its local database
to find an xTR that would correspond to this EID, and
replies with a Map Reply if it exists. Otherwise, it replies
with a Negative Map Reply. Note that the MS receives
Map Register messages from ETRs and registers EID-to-
RLOC mappings in the mapping database.

Compared to mobile IP, LISP avoids triangular routing
thanks to decoupling locations and identifiers. A station
can move to another location without changing its EID;
only the RLOC has to be updated at the MS/MR. Fur-
thermore, with few modifications, LISP can help achieve
short VM migration downtimes [23].

2.4 Our own prior work

This article extends, generalizes and refines our Follow-
Me Cloud concept [9], presenting an evolved design
targeting generic decentralized mobile network archi-
tectures and making heavier use of NFV technologies,
bringing the service closer to the end user. We fur-
ther complement our LISP-based implementation of this
scheme [11], which we have updated to match our
evolved FMC design, with an SDN-based one. Finally,
on the theoretical front, we extend our service migra-
tion decision algorithm [12] to also capture 2D mobility
scenarios; our algorithm builds on our analytic model
presented in [24], included here for completeness.

3 THE FOLLOW-ME CLOUD CONCEPT

3.1 High-level design

In this section, we present the concept and main func-
tionality of our Follow-Me Cloud (FMC) design for op-
timized, disruption-free cloud-based services for mobile
users. Our high-level architecture is shown in Fig. 1. The
two main components of our scheme are the FMC con-
troller (FMCC) and the DC/GW mapping entity. These
can either be two independent architectural components,
two functional entities collocated with existing nodes, or
run as a software on any DC of the underlying cloud.

FMC was designed with the 3GPP LTE/EPS archi-
tecture in mind, but is generic and can be applied to
other decentralized mobile network access schemes. We
assume that DCs are mapped to a set of data anchor
routers/gateways. In an LTE context, these routers are
PGWs, while, for users roaming across federated Wi-Fi
hotspots, such as the Fon network [25], the data anchor
router can be the access router of the ISP to which a
public Wi-Fi access point is connected. Depending on the
mobile access architecture, other options are possible.

The DC-gateway mapping is based on some criterion,
such as location or hop-count distance. This mapping
may be static or dynamic. In the latter case, topology
information can be exchanged between the FMC service
provider and the Mobile Network Operator (MNO).
Alternatively, an MNO function could be in charge of
updating the FMC service provider with such informa-
tion either in a reactive or a proactive manner. Note,
furthermore, that our design includes a single FMCC
for managing distributed DC instances, but this does not
preclude a decentralized, self-organized implementation
for distributed DC coordination.

Taking advantage of virtualization technologies at the
data anchor end, our design extends our first version
of the FMC architecture [9] with the capability to serve
users directly from the data anchor router, bringing
services closer to the user end. We distinguish between
two types of DCs. At a macroscopic level, there are the
core (macro) DCs, which can be considered as data origin
servers. At a microscopic level, caches implemented at
the data anchor gateways operate as micro-DCs to serve
mobile users more efficiently. The focus of the macro-
DC level is persistent service (VM) storage and service
instantiation. The FMC functionality is implemented
both at UEs and at the micro-DC level and is responsible
for service identification and migration procedures. As
shown in Fig. 1, a two-level mapping takes place: Macro-
DCs are mapped to a group of micro-DCs, each of which
is in turn mapped to one or more data anchor routers.
Note that these data anchors can be implemented as
VNFs hosted in the federated cloud (e.g., collocated with
their corresponding micro-DC).

Our design allows for various strategies for selecting
which VMs to cache at micro-DCs, as well as for deciding
whether a service component will be migrated or repli-
cated at another data anchor following user mobility.
However, such strategies are outside the scope of this
work; for simplicity and presentation clarity, we assume
that a service is deployed at the data anchor router
where the user is attached to upon service initiation,
and is migrated (i.e., no replication takes place) as a user
moves.

From this point on, unless otherwise noted, the term
DC will refer to a micro-DC (µ-DC).

3.2 Service migration process
With the IP address change which takes place when a
UE changes its data anchor router (e.g., PGW reloca-
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Fig. 1. The FMC high-level architecture in a federated
cloud and distributed mobile network environment.

tion in a 3GPP LTE/EPS mobile network architecture),
there is a potential need for an FMC service migration.
This change can be detected by the serving micro-DC.
Whether service migration is worthwhile depends on the
service type and requirements (e.g., an ongoing video
service with strict QoS requirements may be migrated;
a delay-sensitive measurement task for an emergency
warning Machine Type Communications service must
always be migrated to the optimal DC), content size (e.g.,
the movie a user is watching is about to finish at the
time of PGW relocation; the UE FMC application layer
decides not to initiate service migration), and/or user
class. The migration decision relies on several poten-
tially conflicting criteria related with user expectations
about the service (QoS/QoE, cost) and network/cloud
provider policies (load balancing, maximizing DC re-
source utilization, micro-DC capacity, etc).

Once the UE or the current micro-DC consider appro-
priate to migrate the service, the FMC plugin available
at the micro-DC may request the FMCC to select the op-
timal micro-DC to initiate the service migration to. As a
service may consist of multiple cooperating components,
potentially residing at different locations, the decision
has to be made indicating whether the service has to
be fully or partially migrated, while considering the
service migration cost, e.g., the cost associated with the
initiation/replication of a new VM at the target micro-
DC, with the release of resources at the source DC, or
with the bandwidth consumption due to traffic being
exchanged between the DCs and/or the FMCC. An
estimate of these costs shall be compared to the benefits
for the (federated) cloud in terms of traffic distribution,
but also to those for end users in terms of QoE.

4 AN ANALYTIC MODEL FOR FMC
In this section we propose an analytic model to establish
the relationship and the relevant tradeoff between FMC
service migration cost and benefits in terms of user
experience. This model provides insights upon which

(a) 1D (linear) model  (b) 2D model 
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Fig. 2. A typical 3GPP cellular network.

we base a Markov Decision Process algorithm to derive
optimal migration policies (see Section 5).

4.1 Markov-based system model

We use Markovian models to represent our system, aim-
ing to be able to derive the UE position wrt. the serving
DC and predict system evolution. Here, we focus our
discussion on a 3GPP LTE mobile network environment.
A 3GPP network is typically divided into hexagonal cells
(Fig. 2). For the sake of simplicity, we assume that micro-
DCs and data anchor routers (PGWs) are collocated with
eNodeBs. In a real implementation, a micro-DC could be
mapped to a set of PGWs, which are in turn mapped to
a pool of eNodeBs.

We consider a random walk mobility model, where
a UE can visit any of the six neighboring cells with
probability p = 1/6. The residence time of a UE in each
cell follows an exponential distribution with mean 1/µ.
Fig. 2 shows a service area with k = 5 rings of cells.
Service migration and data anchor gateway relocation
are triggered for a UE when its location is k hops away
from the serving DC (assumed to be collocated with
eNodeBs). Let X(t) denote the distance of the UE to
the serving DC (in number of hops) at the time instant
t. The system {X(t), t ≥ 0} forms a Continuous-Time
Markov Chain (CTMC), with the state space {C(i,j)|0 ≤
i ≤ (k − 1), 1 ≤ j ≤ 6i}.

This chain faces a state space explosion problem, es-
pecially if k is high. To address this problem, we reduce
the state space by aggregating states that show the same
behavior [26], [27], [24], to obtain a new chain A(t) with
a lower number of states. In Fig. 2, we see that UEs
in ring 0 can move to any neighboring cell with the
same probability. UEs in ring 1 come back to the cell
which hosts the serving DC with probability p, stay
in the same ring (same distance from the serving DC)
with probability 2p, and move to ring 2, increasing the
distance from the DC, with probability 3p. Consequently,
all states of ring 1 can be aggregated into one state.
Regarding ring 2, there are two groups of cells: (i) Cells
neighboring three ring-3, two ring-2, and one ring-1 cells,
and (ii) cells having two neighbors at each of the 3 rings.
Depending on the ring-2 cell the UE is located, e.g., it
may either have 3p or 2p probability to move to ring 3.
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Therefore, we obtain two aggregated states: State C2 ag-
gregates states{C2,1, C2,3, C2,5, C2,7, C2,9, C2,11} and state
C

(1)
2 aggregates states {C2,2, C2,4, C2,6, C2,8, C2,10, C2,12}.

The same rationale is applied to obtain aggregated states
Ci and C

(m)
i for any ring i, where 1 ≤ m ≤

⌈
i−1

2

⌉
is the

identifier of an aggregated state within a ring.
As proven by Langar et al. [26], the new aggregated

chain A(t), derived from the initial Markov chain X(t),
is also Markovian. Fig. 3 shows the transition diagram of
the aggregated Markov chain when the service migration
is triggered when the UE is k = 5 hops away from
the serving DC. Based on this figure, we can derive the
steady state probabilities of the aggregated states. For
simplicity, each aggregated state of ring i in Fig. 3 is
labeled using the ring number and the superscript used
to identify different aggregate states of the same ring,
if necessary. The balance equations (Eq. (1)-(6)) to solve
the system follow1:
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1. For details on the state aggregation algorithm and more insight
on the derivation of the balance equations for the reduced CTMC, the
reader is referred to the work of Langar et al. [26].

where
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1 if i is odd
1 if i is even and 2 ≤ j ≤
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4.2 Average UE-DC distance and the probability to
be connected to the optimal DC

Let E[Dist] denote the average distance of a UE from
the serving DC. E[Dist] depends on the value of k, and
the distance (number of hops) of the UE from the data
anchor router collocated with the serving DC. Recall
that a UE remains connected to this anchor and all data
are consequently routed through the latter until service
migration is triggered. Therefore, the average distance is
expressed as:

E[Dist] =
k−1∑
i=1

iπi +
k−1∑
i=2

d k−2
2 e∑
j=1

iπ
(j)
i . (7)

The probability that the UE is connected to the optimal
DC during the system’s lifetime is π0.

4.3 Average end-to-end delay from the serving DC

We define the end-to-end (e2e) delay as the delay for a
UE to receive data packets from the serving DC. Similar
to E[Dist], the e2e delay depends on the UE distance
(number of hops) to the data anchor router connecting
to the DC. The average e2e delay is denoted by E[D]
and is given by:

E[D] =
k−1∑
i=1

Diπi +
k−1∑
i=2

d k−2
2 e∑
j=1

Diπ
(j)
i , (8)

where Di is the e2e delay when the UE is at distance i
(cells belonging to ring i).
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4.4 Service migration cost
MC denotes the cost of migrating part (i.e., some of
the components/sessions composing it) or all the service
from a DC to the optimal one. It depends on the size
of the objects to be migrated, as well as the amount
of signaling messages exchanged among the FMCC, the
UE and the DCs. In FMC, there are three signaling
messages to trigger service migration. The cost for a
service migration thus follows:

Cost = Objectssize + 3SIGsize, (9)

where SIGsize is the signaling message size. Hence, MC
can be derived as follows:

MC =

3pπk−1 + 2p(

d k−2
2 e∑
j=1

π
(j)
k−1)

× Cost. (10)

4.5 Service migration duration
The service migration duration is the time required to
transfer part or all of the service from the current DC to
the optimal one. It mainly depends on: (i) the size of the
objects to transfer; (ii) the RTT of the TCP connection
between the two DCs; and (iii) the time needed to
convert a VM to the appropriate format, if the two DCs
are not using the same hypervisor. It also represents the
time when the service cannot be used, in other words,
service disruption time (denoted as SDT ). Assuming
that the data transfer is based on an FTP-like application,
we use the empirical TCP latency model of Sikdar et
al. [28], and the SDT value can be computed as follows:

SDT = [log1.57N + f(ploss, RTT )N + 4ploss log1.57N

+ 20ploss +
(10 + 3RTT )

4(1− ploss)Wmax

√
Wmax

N ]RTT

+ TVM conversion

(11)
where ploss denotes the packet loss rate, N is the
number of packets to transfer, Wmax is the maximum
size of the congestion window, TVM conversion is the
time required to convert a VM and f(ploss, RTT ) =
2.32(2ploss+4p2loss+16p3loss)

(1+RTT )3 N + (1+ploss)
RTT103 .

Note that N =
⌈
Servicesize

MSS

⌉
, where MSS is the maximum

segment size used by the TCP connection.

5 A MDP-BASED SCHEME FOR SERVICE MI-
GRATION

We model the service migration decision as a Markov
Decision Process (MDP), capturing the tradeoff between
reducing cost and maintaining satisfactory user experi-
ence. This model decides whether a service consumed
by a user at distance d from the current DC should be
migrated to an optimal DC, a decision process carried
out by the FMCC. To formulate the service migration
decision policy, we define a Continuous Time Markov
Decision Process (CTMDP) that associates to each state

an action, corresponding transition probabilities, and
rewards.

Let st be the process describing the evolution of the
system state and S denote the state space. We assume
the cellular network topology model of Fig. 2. Each cell
belongs to a Tracking Area (TA) and each TA belongs to
a Service Area (SA), which is served by one anchor gate-
way (PGW or access router). Fig. 4 shows the CTMDP
for the case of a one-dimensional (1D) mobility model:
A mobile user has only two possible destinations, i.e., a
new SA with probability p, or moving back to a visited
SA with probability 1 − p. Higher values of p indicate
that a user is moving far from the current DC. Fig. 5
illustrates the case for the 2D mobility model described
in the previous section. The vector A = (a1, a2) describes
the actions available to the FMCC at each epoch (i.e.,
when a UE performs handoff and enters into another
SA). Action a2 is used if the service is migrated to an op-
timal DC, while action a1 is used if the UE is still served
by the same DC. Depending on the current state, the set
of available actions differs. For the sake of simplicity,
we demonstrate the use of MDP to solve the service
migration problem for 1D mobility. The same reasoning
can be applied to the case for the 2D model shown
in Fig. 5. Note that, albeit its simplicity, the 1D model
is appropriate for vehicular networking environments
where users move along predefined trajectories, such as
highways or railway tracks.

In the 1D mobility model, the residence time of a
user in each SA follows an exponential distribution
with mean 1/µ. Hence, the state space S is defined as
S = {0, 1, . . . , thr}, where thr represents the maximum
distance (in terms of visited SAs) from where the service
must be migrated to the optimal DC.

0 1 2 3 thr-1  thr 
….. 

µ, a1 

(1-p)µ, a1 

pµ, a1 pµ, a1 pµ, a1 pµ, a1 

pµ, a1 

(1-p)µ, a1 (1-p)µ, a1 (1-p)µ, a1 
(1-p)µ, a1 

µ, a2 µ, a2 µ, a2 µ, a2 

µ, a2 

Fig. 4. CTMDP of the service migration procedure: 1D
mobility model.

The FMCC observes the current state s of the network
and associates a set of possible actions As to it, taken
upon arrival to it from the previous state. For a given
action a, an instantaneous reward r(s, s′, a) is associated
to a transition from state s to another state s′. The
corresponding formal representation of the CTMDP is
as follows:

(S, (As, s ∈ S), q(s′|s, a), r(s, s′, a)).

For particular states, the set of possible actions A
reduces to a subset As. A policy P associates an action
a(s|P ) to a state s. Let Q be the transition matrix, with



2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2525987, IEEE
Transactions on Cloud Computing

7

0 1 2 3 4

2(1) 3(1) 4(1)

4(2)

t1 t2
t2

t2

t2
t2

t2

t2

t3 t2

t2

t2

t2
t2

t2
t3t3

t3t3
t3

t3 t2

t3

t3

t4 or t6

t4 or t6

t4 or t6

t6

t6

t6
t6

t5 or t6

t3
t3

t2

t1=6pμ,a1
t2=pμ,a1
t3=2pμ,a1
t4=3pμ,a1
t5=pμ,a1
t6=μ,a2

Fig. 5. CTMDP of the service migration procedure: 2D
mobility model.

q(s′|s, a) denoting the transition rate between states s
and s′ in S due to action a, which, in the FMC scenario,
represents a UE moving from one SA to another SA.
By construction, we define a policy as a function of the
actual state. The decision to migrate a service or not
is taken by observing only the actual state. Since this
process is Markovian (the sojourn time in a SA follows
an exponential distribution), the controlled process is
also Markovian. To resolve the MDP, we use an equiva-
lent Discrete Time Markov Decision Process (DTMDP)
for the defined CTMDP, with a finite state space S.
We argue that the state space is finite, since, after a
certain distance (thr) from the current DC, the service
is automatically migrated to the optimal DC. For each
s ∈ S, As represents the finite set of allowed actions in
that state. This DTMDP can be derived by uniformiza-
tion and discretization of the initial process as follows:
When all transition rates in matrix Q are bounded, the
sojourn times in all states are exponential with bounded
parameters tr(s|s, a). Therefore, a sup(s∈S,a∈As)tr(s|s, a)
exists and there is a constant value c such that

sup(s∈S,a∈As)[1− p(s, a)]tr(s|s, a) ≤ c <∞,

where p(s|s, a) denotes the probabilities of staying in the
same state after the next event. We can now define an
equivalent uniformized process with state-independent
exponential sojourn times with parameter c, and transi-
tion probabilities:

p(s′|s, a) =

{
1− ([1−p(s|s)]tr(s|s,a))

c s = s′

p(s′|s)tr(s′|s,a)
c s 6= s′

.

By setting c = µ, the transition probabilities of the
DTMDP procedure are defined as follows:

p(j|s, a) =



1 j = 0, s 6= 0, s 6= thr, a = a1

or j = 1, s = 0, a = a2

p j = s+ 1, s 6= 0, s 6= thr, a = a1

or j = 0, s = thr, a = a1

1− p j = s− 1, s 6= 0, a = a1

0 Otherwise

.

It is important to note that when the system is in state
s = thr, the only available action is a1. If the UE moves
to another SA, where the distance exceeds the threshold

thr, service migration is automatically triggered.
In the remainder of this section, we use the

DTMDP version. For t ∈ N , let st, at and rt
denote the state, action and reward at time
t of the DTMDP procedure, respectively. Let
P a(s,s′) = p

[
s(t+1) = s′|st = s, s(t+1) = s′, at = a

]
denote the transition probabilities and Ra(s,s′) =

E
[
r(t+1)|st = s, s(t+1) = s′, at = a

]
denote the expected

reward associated with the transitions. A policy π is
a mapping between a state and an action, and can be
denoted as at = π(st), where t ∈ N . Accordingly, a
policy π = (θ1, θ2, θ3, . . . , θN ) is a sequence of decision
rules to be used at all decision epochs. We restrict
ourselves only to deterministic policies, as they are
simple to implement [29]. When a UE hands off a
particular SA to another SA, the FMCC has to decide
either to migrate the service using action a2 or not to
migrate it using action a1. For each transition, a reward
is obtained. This reward is a function of the cost of
migrating a service (zero in case of no migration) and
the quality obtained from the new state. The cost of
migrating a service is defined as follows:

g(a) =

{
0 a = a1

Cm a = a2

where Cm denotes the cost of migrating all the service
or a part of it. Therefore the reward function is given by

r(s, s′, a) = Q(s′)− g(a),

where Q(s) quantifies the quality perceived by a user
connected to the source DC when at state s. Note that
quality is inversely proportional to the hop distance from
the source DC, and Q(0) is the maximum quality that
a UE can enjoy, when connected to the optimal DC. In
general, the quality function can be expressed in the form
Q(s) = Q(0) − K, where K denotes a predetermined
factor. Given a discount factor γ ∈ [0, 1] and an initial
state s, we define the total discount reward policy π =
(θ1, θ2, θ3, . . . , θN ) as

vπγ = limN→∞Eπγ {
∑N
t=1 γ

t−1rt} = Eπγ {
∑∞
t=1 γ

t−1rt}.

Given the uniformization of the CTMDP, r(s, s′, a) ex-
plicitly depends on the transitions between states. The
new reward function r′(s, s′, a) is obtained as fol-
lows [29]:

r′(s, s′, a) = r(s, s′, a)α+β(s,s′,a)
α+c ,

where β(s, s′, a) is the transition rate between states s
and s′ when using action a, and α is a predetermined
parameter. With the new formulation of the reward
function and the uniformization of CTMDP, we can use
the discounted models as in discrete models to resolve
the system [29]. Let v(s) = maxπ∈Πv

π(s) denote the
maximum discounted total reward, given the initial state
s. From [29], the optimality equations are given by

v(s) = maxπ∈Π{r′(s, s′, a) +
∑
s′∈S γP [s′|s, a] v(s′)}.

The solutions of the optimality equations correspond to
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Fig. 6. OpenFlow-based Follow-Me Cloud architecture.

the maximum expected discounted total reward v(s) and
the optimal policy π∗(s). It is worth mentioning that the
optimal policy π∗(s) indicates the decision as to which
network and which DC the UE is to be attached and
to be connected, respectively, given the state s. There
are several algorithms that can be used to solve the
optimization problem given by the above optimality
equations. Value iteration and policy iteration are two
noticeable examples [29]. In our case, we have used the
former.

6 IMPLEMENTATION ALTERNATIVES

To show the breadth of available options to realize
the FMC architecture, we explore alternative enabling
technologies for its implementation. We have identified
two candidate approaches, one based on SDN and one
on the LISP protocol. Note however that, as we have
shown [30], the FMC design can be integrated also with
the Mobile IPv6 protocol.

6.1 An OpenFlow-based FMC architecture

6.1.1 Design
Our SDN-based scheme is built on the NOX OpenFlow
Controller [31] and is shown in Fig. 6. Mobile users ac-
cess cloud-based services over a (mobile/wireless) client
network and their traffic is forwarded by OpenFlow-
capable access routers (OF AR x). Traffic from/to each
federated cloud location (data center), inside which VM
instances interconnected via virtual switches are man-
aged by local hypervisors, is routed through OpenFlow
micro-Data Center routers (OF µ-DC x). At the core of
this architecture is our NOX-based FMCC, with which
the components of our architecture communicate. The
controller is assumed to be aware of i) the virtual switch
instances and their data path identifiers on the physical
OpenFlow switch, ii) the VM identifiers (namely the IP
and MAC addresses), iii) the location and IP addresses of
each default gateway in the topology, iv) the OpenFlow
switch port identifiers at which the DC, router and
client networks are connected, v) the IP address ranges
managed by each DHCP server both for client and

Fig. 7. Service migration procedure in an SDN-based
FMC implementation.

DC networks, and vi) the locations of distributed data
centers that can either be part of the operator network or
could be autonomous domains. The basic functionalities
of the SDN-based FMCC follow.

Location Management: For correctly installing forward-
ing rules into the OpenFlow switch, each client and VM
are linked to home locations, based on their IP address
allocation and gateway settings. The current location
of a client in the client network is also maintained. If
any traffic from a particular client or VM appears on a
different network than the one corresponding to its home
location, the FMCC updates the status of that entity to
indicate that it is in a Visited Network/Location.

The location management process is also responsible
for selecting the appropriate micro-DC location for the
VM serving a client, utilizing information about the
geographic location of DCs and characteristics of the
client-VM/DC network paths, such as average delay and
network load or congestion.

Mobility detection and service migration: The actual
VM migration is carried out by the cloud infrastructure
software. (See Section 6.1.2 for some details on our proof-
of-concept implementation.) The sequence of messages
and events is shown in Fig. 7.

When a user changes its point of attachment, the
OpenFlow Access Router on the visited network sends
a PacketIn OpenFlow message to the controller, which
is thus notified of the mobility event. This process can
be initiated when a user performs the DHCP message
exchange with the visited network. Then, the FMCC
executes the service migration decision algorithm (see
Section 5), and, if migration is necessary, it installs the
appropriate OF rule at the OF AR of the visited network
and launches the VM migration, also adding a rule to the
OpenFlow router serving the micro-DC which hosts the
migrated VM, so that when traffic for the latter reaches
the OpenFlow switch of a visited network, it can be
matched in the flow table of that switch.

Session management: A key functional requirement is
for the controller to preserve all ongoing user sessions
while a VM is migrated. This implies that no configura-
tion change (e.g., IP address and gateway configurations)
is allowed on the VM. Furthermore, the (private) IP ad-
dress ranges managed by DCs can be overlapping, and
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the first-hop setting may not be consistent across subnet
boundaries. We address this by setting up a tunnel
within the visited network segment. The tunnel operates
by rewriting the IP address field within the packet IP
header for each outgoing packet from the VM to the
external network. The original IP header is restored in
the packet when the last hop in the visited network
segment is reached. The same technique is applied for
all the incoming traffic to the VM. This is achieved by
modifying the set of OpenFlow rules installed in the
visited network.

6.1.2 Experimental setup

We have developed an experimental testbed implement-
ing the SDN-based architecture of Fig. 6. Our setup
includes two DCs, each one implemented as a single
VMWare ESXi hypervisor. Each ESXi host is equipped
with two 1 Gbps Ethernet cards for forwarding manage-
ment and OpenFlow traffic over the network. A virtual
network topology is defined inside the ESXi host by two
vSwitches (soft switches), where each physical NIC is
connected with each soft switch instance. The ESXi host
manages Windows XP VMs and each VM is configured
with two virtual NICs (vNIC) connected with the virtual
network through the soft switches. One vNIC carries
management traffic (vmKernel) and the other carries
OpenFlow traffic. The storage space is shared between
the two DCs and is accessed by the standard iSCSI
protocol. The DCs are remotely managed by the VMWare
vCenter software.

There are two separate WLANs for client connectivity
and two Linux-based hosts act as first-hop routers for
client traffic, assigning client addresses using DHCP and
running Linux traffic control (tc) for controlling path
characteristics (e.g., delay and available bandwidth, and
thus congestion) between the two network segments. In
this simplified setup, each DC host plays the role of a
micro-DC mapped to a data anchor router (in our case
the WLAN first-hop router), and is placed in each of
the two client networks (and served by the respective
router).

The NOX-based FMCC, as specified in Section 6.1,
the Linux-based routers, ESXi hosts and the VMWare
vCenter host are all connected to ports of an NEC IP-8800
OpenFlow switch. From the physical OpenFlow switch
perspective, four virtual switches (VLAN) are used for
separately carrying the traffic of the two data centers and
the client network. The FMCC manages the forwarding
behavior on the four VLAN’s and also monitors the path
characteristics between a DC and the client network for
resource management optimizations. For triggering live
VM migration across DCs, the VMotion cloud infras-
tructure technology and proprietary API from VMWare
are used. VMotion traffic is mapped to the management
network, while all active communication between the
VM and remote users is managed by the OpenFlow
network.

Fig. 8. A LISP-based Follow-Me Cloud architecture.

6.2 A LISP-based FMC architecture
6.2.1 Design
Our second architectural alternative is based on the LISP
protocol. Each micro-DC is connected to the Internet
through an xTR router. The client (mobile) network
domain contains IP subnets interconnected through xTR
routers as well, and the architecture includes a LISP
MR/MS element. All LISP entities (MR/MS and xTRs)
are implemented as VNFs and are deployed on VMs in
the cloud. Note that, in practice, the xTR routers of the
mobile transport network domain could either be VNFs
or be built directly on top of the data anchor router
hardware. This FMC architecture also includes an FMCC
in the form of a VNF.

Fig. 8 shows the envisioned LISP-based FMC archi-
tecture and scenario. A mobile user accessing a service
hosted at micro-DC1, and initially connected to Subnet
1, moves to Subnet 2. The xTR router of Subnet 2 notifies
the MR/MS about this mobility event. The MR/MS
updates its cache and informs the FMCC about the new
location of the user. The FMCC executes the service
migration decision algorithm (see Section 5) to decide
whether to migrate the user’s service (that is, the VM(s)
hosting the service) to the micro-DC corresponding to
the new location of the user. If the decision is positive,
the FMCC requests Hypervisor 1 to launch the migration
procedure. Since the VM is migrated to Hypervisor 2,
the xTR router of Subnet 4 is informed of the migration
event, and the latter further informs the MR and the xTR
router of Subnet 3 (as well as other xTR routers involved
in communication with the VM) accordingly. Finally,
the MR/MS resolver updates its cache and notifies the
FMCC about this change.

6.2.2 Support for service continuity
To ensure service continuity, a LISP-assisted live service
migration mechanism should be capable of (i) maintain-
ing the VM Endpoint identifier (EID) when migrating
it from its current DC to the target one, (ii) updating
the Routing Locator (RLOC) of the target xTR router to
include the VM’s EID, (iii) informing the MR server and
all xTR routers involved in the communication with the
migrated VM to update the RLOC of the migrated VM,



2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2525987, IEEE
Transactions on Cloud Computing

10

and (iv) informing the old xTR router to erase the VM
EID from its cache.

In this work, we assume that a VM’s EID is the first IP
address it obtains, and that its RLOC is the IP address of
the corresponding xTR router. Furthermore, we consider
that a VM’s EID is registered at the initial xTR router
with a large IP subnet prefix (in our case, /24). The EID is
mapped to the RLOC of the source xTR router at the MR,
as well as in the caches of xTR routers communicating
with the VM.

When the VM is migrated to the target hypervisor,
the EID of the migrated VM should be maintained and
the destination xTR router has to be informed about the
migration event. Different approaches exist to achieve
this. In one approach [32], the xTR router does not
become aware of the new VM until the latter initiates
communication, when the xTR detects that the source
IP address (migrated VM’s EID) is not belonging to
its IP subnet. Although this solution does not require
any signaling messages, it can break the current VM’s
connections and thus does not ensure service continuity;
if the VM has no packet to transmit, the current xTR
router communicating with the VM may continue using
its old Routing Locator (RLOC). An alternative to this
approach was proposed by Raad et al. [23], where LISP is
used in the control plane to inform the source and target
xTR routers about a successful VM migration. A new
Change Priority (CP) LISP message is introduced, which
allows (i) the target hypervisor to inform the target xTR
router about the migration of a new VM to the target DC
(including the VM’s EID), and (ii) to update the cache
(RLOC-EID mapping) of other xTR routers. However,
this solution requires modifying the hypervisor, making
it hard to implement and deploy, as the hypervisor
software is independent from the operator (as well as
the LISP domain).

In this article, we propose another approach (Fig. 9),
where the FMCC informs both xTR routers (handling
the involved DC domains) about the change in the VM’s
RLOC. Since the FMC controller is integrated in the LISP
domain (it already communicates with MR/MS to track
user locations), it could easily be made aware of the xTR
router handling a DC domain. This could be obtained by
sending a message to MR/MS to know the xTR router
handling the DC’s IP domain.

Once the xTR router becomes aware of the migration
of a new VM to its local DC, it notifies the MR/MS to
update its RLOC by including the migrated VM’s EID.
The EID of the migrated VM is in the form of the initial
IP address, but with a /32 prefix. Therefore, the RLOC of
the target xTR router is mapped to both its subnet prefix
and the VM’s EID prefix (/32). Furthermore, the former
xTR router erases the old EID-to-RLOC entry from its
cache. To speed up traffic redirection, the source xTR
router uses a new LISP message (as in [23]) to inform
the other xTR router which was communicating with the
concerned VM so that the latter accordingly updates the
VM’s RLOC. Note that the xTR router should maintain a

Fig. 9. Service migration procedure in a LISP-based FMC
implementation.

list of xTR routers involved with each active connection.

6.2.3 Experimental setup
The VNFs corresponding to the entities of our LISP-
based FMC scheme are implemented using the Click
modular router framework [33] and run as ClickOS [34]
VMs deployed on a Xen hypervisor. DCs are emulated
using kvm [35] to take advantage of the VM migration
options that it offers, as kvm can migrate only the RAM
content between the involved DCs, while the hyper-
visors have a shared storage via NFS. We emulate a
mobile user moving between two IP domains; whenever
the user enters a new domain, service (VM) migration
is triggered. Each VM is Ubuntu 8.04, with 1 GB of
RAM and a one-core processor. DCs (kvm managers) run
Ubuntu 14.04 with 8 GB of RAM. We emulated varying
latencies in the paths between DCs and between the
FMCC and xTR routers using Linux tc.

7 PERFORMANCE EVALUATION

In this section we present a quantitative performance
evaluation of the proposed scheme. We begin with nu-
merical results from our analytic model, followed by
measurements carried out on our testbed implementa-
tion of the SDN- and LISP-based FMC solutions.

7.1 Model-based performance results
We present numerical results obtained by resolving the
Markov model defined in Section 4.1. We evaluate the
performance of FMC in terms of the probability that
the UE is connected to the optimal DC, the average
distance of the UE from the optimal DC, the UE connec-
tion latency, the service migration cost and the service
disruption time during service migration.

We assume a reliable connection between DCs (zero
packet loss), the total size of the service to migrate (i.e.,
the respective VM) is set to 1 Gb, and all DCs are
assumed to use the same hypervisor; thus, there is no
VM conversion cost when migrating a service. Note that
the case for k = 7 corresponds to a situation where the
FMC concept is not used, as k is unrealistically high; in
practice, the service area is typically limited to a modest
value for k.
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Fig. 10(a) and 10(b) show the probability of a UE to be
connected to an optimal DC, and the average distance
from it for different values of k, respectively. We notice
that this probability is a decreasing function of k: High
probability is obtained when the service migration is
triggered after each UE handover, ensuring that the UE is
always connected to the optimal DC, while the opposite
effect appears when delaying service migration to longer
distances. On the other hand, the average distance is
an increasing function of k. Indeed, if service migration
is delayed, the UE is likely connected from a distance
higher than one hop. This average distance exceeds two
hops when k is higher than 6.

In Fig. 11, we plot the average latency of the UE
connection for different values of k. Note that latency
is given by Lati = 0.02i2 (s), where i is the hop distance
from the serving DC. Intuitively, the average latency
increases with k. If we compare the cases of using k = 2
and k = 7, we see a significant difference of about 200
ms in delays.

Fig. 12 shows the service migration cost for different
values of k. We present results for migrating all, 50%,
and 10% of the service. This cost is a decreasing function
of k, and it is high when service relocation is launched
at each UE handover. Furthermore, the highest cost is
reached when migrating all the service, as it critically
depends on the object size to migrate.

Fig. 13 depicts the service disruption time for different
values of k. We assume that RTT is proportional to the
square of the hop distance i between two DCs, given
by RTTi = 0.01i2 (s). Similar to Fig. 12, we considered
three service migration cases: migrating all, 50%, or 10%
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Fig. 12. Cost of service migration.
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Fig. 13. Service disruption time – RTT proportional to the
square of the distance.

of the service. We clearly observe that the SDT value
is an increasing function of k. This is attributable to the
fact that high values of k mean longer distances between
the concerned DCs, thus an increased value of RTT. In
addition, we notice that the SDT value is the highest
when migrating all the service, mainly due to the larger
size of the objects to transfer. Notably, this difference is
not important for low values of k. Since SDT is highly
dependent on the RTT, accelerating data transfers using
tools like FDT [36] is mandatory when the RTT is high.

7.2 Service migration policies
Given the tradeoff between migration cost and user
experience improvement identified in Section 7.1, we
demonstrate the construction of service migration poli-
cies obtained using a Matlab implementation [37] of the
Value Iteration algorithm [29]. We set thr = 10, i.e., a
service migration is automatically triggered if the UE is
at a distance higher than 10 (in terms of the number of
visited SAs) from the source DC. The factor K of the
quality function is arbitrarily set to 1. We introduce a
new metric τ representing the ratio between the cost and
the maximum quality Q(0). Two scenarios are studied:
• τ = 0.1, which represents a low cost compared to the

quality obtained if a service migration is launched.
This could be the case when only a part of a service
is migrated.

• τ = 0.5, which indicates that the cost is not negli-
gible compared to the quality obtained if a service
migration is launched.

Fig. 14(a) and 14(b) illustrate the optimal policy con-
structions for the aforementioned scenarios. The inter-
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p\d 1 2 3 4 5 6 7 8 9 10
0.1 C C C C C C C C C M
0.2 C C C C C C C C M M
0.3 C C C C C C C M M M
0.4 C C C C C C M M M M
0.5 C C C C C M M M M M
0.6 C C C C C M M M M M
0.7 C C C C M M M M M M
0.8 C C C C M M M M M M
0.9 C C C C M M M M M M
1 C C C C M M M M M M

(a) τ = 0.1

p\d 1 2 3 4 5 6 7 8 9 10
0.1 C C C C C C C C C C
0.2 C C C C C C C C C M
0.3 C C C C C C C C M M
0.4 C C C C C C M M M M
0.5 C C C C C C M M M M
0.6 C C C C C M M M M M
0.7 C C C C C M M M M M
0.8 C C C C C M M M M M
0.9 C C C C C M M M M M
1 C C C C M M M M M M

(b) τ = 0.5

Fig. 14. Optimal policy construction.

section between i and j represents the action (a=C
continuation, a=M migration of the service) to be taken
by the FMC controller, where i is the distance from the
serving DC and j is the probability p. We remark that the
optimal policy construction has a threshold-based form,
since beyond a certain distance value, the recommended
action is service migration. This distance is inversely
proportional to the probability p.

For instance, when p = 0.8, the proposed policy
recommends service migration, if d = 6 and d = 5,
for the first and second scenarios, respectively, since a
high p value means that the UE is moving far from
the current DC, while low values indicate that the UE
will most likely remain in the vicinity of the current
DC, or will come back to the service area of the current
DC. Furthermore, we remark that τ has an impact on
the optimal policy construction, since there are less
service migrations when τ is high. This is intuitive,
as the incurred cost is not negligible compared to the
achieved gain when migrating a service. In case of a
random walk (p = 0.5), for both scenarios, the optimal
policy recommends service migration when the distance
exceeds 5, which represents a good tradeoff between cost
and quality.

7.3 Testbed experiments

7.3.1 OpenFlow-based implementation

We present early results obtained from experiments on
our SDN-based FMC testbed described in Section 6.1.2.
In particular, we focus on the evolution of service latency
during and after the migration process, to demonstrate
the advantages of FMC. To emulate increased service
latency due to a user being served from a suboptimal
DC, we introduced a 50 ms delay (round-trip) in the
path between the client network and the suboptimal DC
using Linux tc, while the RTT to the optimal DC was
1 ms. In our experiment, the client was originally being
served from the suboptimal DC and we monitored the
RTT from the user terminal to the VM hosting the service
using ping. The red curve in Fig. 15 corresponds to a case
when FMC is not used and the client keeps being served
suboptimally, and thus the approximately 50 ms RTT.
The green curve represents the case when FMC is active.
When service migration is triggered, after a period of
instability and a short-term increase in latency, the latter

converges to a value close to 1 ms, after migration has
been completed.

Note that the increased delay at the start of the exper-
iment is mainly a result of the installation of OpenFlow
rules when new traffic arrives at the FMCC. This implies
a scalability issue for large centralized FMC deploy-
ments. Therefore, decentralization schemes, such as the
one proposed by Bifulco et al. [15] could be considered
to this end.

Fig. 15. Client ping latency with and without FMC.

7.3.2 LISP-based implementation
For our LISP-based FMC design, we experimented with
the testbed described in Section 6.2.3. Our metrics of in-
terest are (i) the service downtime duration, i.e., the time
when the VM is not available, (ii) the RTT between the
mobile user and the remote VM, and (iii) the migration
duration.
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Fig. 16. The RTT between the migrated VM and mobile
user.

Fig. 16 shows the instantaneous RTT between the
migrated VM and the mobile user, measured using ping.
Using Linux tc, we introduce a 10 ms RTT between
the DCs. The RTT between the FMCC and xTR1 is
approximately 1 ms, while the RTT between the FMCC
and xTR2 is set to 10ms. At the start of the experiment,
the user is connected to DC1, and enjoys good service
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quality (RTT ≈ 12 ms). From t = 55 s, the user moves
to another network and the measured RTT increases to
approximately 250 ms. The FMCC thus triggers service
migration to DC2, which is considered the optimal one.
Migration starts at t = 58 s and ends at t = 84 s.
During this period, the overall service downtime is 7.5
ms (not visible in the figure due to its short duration).
This downtime is mainly due to the fact that the FMCC
does not notify the involved xTRs about the change in
the VM’s EID until migration is completed. The kvm
hypervisor at DC1 keeps the VM active until migration
is complete and the VM keeps sending back ICMP echo
replies from its original location (DC1). After migration
is complete, the user is served by DC2 (optimal), which
brings RTT down to a much lower value.
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Fig. 17. Downtime duration as a function of path la-
tencies. Each point is the mean value of a few tens of
iterations.

We further quantify the dependence of the service
downtime duration on the latencies in the paths between
the entities of our architecture. In Fig. 17, we show the
downtime duration when the VM is migrated from DC1
to DC2 for different values of the RTT between the
FMCC and DC2 for the following testbed configurations:
(i) The RTTs between the FMCC and xTR1 and xTR2 are
set to 100 ms and 10 ms, respectively (case 1). (ii) The
RTTs between the FMC controller and xTR1 and xTR2
are set to 50 ms and 50 ms, respectively (case 2).

It appears that the downtime duration is proportional
to the RTT between the FMCC and the target DC, since
the longer it takes to have the information from the
DC about the success of a VM migration, the longer it
takes to accordingly inform the xTR routers and thus
redirect traffic to xTR2. We draw the same conclusion
for the impact of the RTT between the FMCC and the
xTR routers on downtime. Service downtime is mainly
rooted at the LISP mobility management process, and
its capacity to rapidly inform the xTR routers about the
migration event. The VM size does not have a strong
impact on downtime, since kvm activates the VM in
DC2 only after migration is complete, which confirms
the observations made by Raad et al. [23]. Importantly,
the maximum downtime experienced is 100 ms (case 2),
which is not expected to have a noticeable impact on ser-
vice quality, especially for non-interactive applications.

Another conclusion from our experiments is that the
duration of the service migration itself becomes practi-
cally independent of the RTT between DCs, as the latter
increases. The time it takes to migrate a VM from DC1
to DC2 does not change much as the RTT in the DC1-
DC2 path increases beyond 10 ms. This is because VM
migration is based on TCP, which is impacted more by
the link bandwidth (set to 100 Mbps in this experiment)
than by the RTT.

8 CONCLUSION

We presented our vision towards the enhanced deliv-
ery of cloud-based services to mobile users, tackling
mobility-related challenges and offering an optimized
user experience. We have designed Follow-Me Cloud, a
framework that enables cloud services to “follow” users
on the move, by performing sophisticated decisions
to migrate service resources to the appropriate cloud
infrastructure locations. We have defined an analytic
model for the behavior of our system, and build on it to
propose a Markov-Decision-Process-based algorithm for
service migration decisions, which captures the tradeoff
between migration cost and user experience. We have
further developed two alternative FMC architecture de-
signs, one which is based on SDN technologies and
one making use of the LISP protocol. The presented
numerical results from our model, as well as experiments
with our SDN and LISP-based testbeds, demonstrate the
potential of our approach for optimized mobile cloud-
based service delivery and its feasibility for real-world
deployment.

APPENDIX
LIST OF ACRONYMS

CTMC Continuous-Time Markov Chain
CTMDP Continuous-Time Markov Decision Process
DTMDP Discrete-Time Markov Decision Process
EID Endpoint Identifier
ETR Egress xTR
FMC Follow-Me Cloud
FMCC FMC Controller
ITR Ingress xTR
MDP Markov Decision Process
MR Map Resolver
MS Map Server
OF AR OpenFlow Access Router
PGW Packet Data Network Gateway
RLOC Routing Locator
SGW Serving Gateway
UE User Equipment
xTR Tunneling Router
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